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Abstract

This paper deals with free vibration problems of functionally graded shells. The
analysis is performed by radial basis functions collocation, according to a higher-
order shear deformation theory that accounts for through-the-thickness deformation.

The equations of motion and the boundary conditions are obtained by Carrera’s
Unified Formulation resting upon the principle of virtual work, and further interpo-
lated by collocation with radial basis functions.

Numerical results include spherical as well as cylindrical shell panels with all edges
clamped or simply supported and demonstrate the accuracy of the present approach.

Keywords: functionally graded materials; shells; free vibration.



1 Introduction

Functionally graded materials (FGM) are a class of composite materials that
were first proposed by Bever and Duwez [1] in 1972. In a typical FGM shell the
material properties continuously vary over the thickness direction by mixing
two different materials [2]. The computational modelling of FGM is an impor-
tant tool to the understanding of the structures behavior, and has been the
target of intense research [2–8]. The continuous development of new structural
materials leads to ever increasingly complex structural designs that require
careful analysis. Although analytical techniques are very important, the use
of numerical methods to solve shell mathematical models of complex struc-
tures has become essential.

The most common numerical procedure for the analysis of the shells is the
finite element method [9–13]. This paper considers collocation with radial
basis fuctions as a meshless technique. A radial basis function, φ(‖x − xj‖)
depends on the Euclidian distance between distinct collocation points xj,j =
1, 2, ..., N ∈ R

n. The unsymmetrical Kansa method [14] is employed in this
work, for its good accuracy and easy implementation. The use of radial basis
function for the analysis of structures and materials has been previously stud-
ied [15–29]. The authors have applied the RBF collocation to the analysis of
composite beams and plates [30–32]. The combination of CUF and meshless
methods has been performed in [33–36] for laminated plates, in [37,38] for
laminated shells, and in [39,40] for FGM plates.

In this paper it is investigated for the first time how the Unified Formulation
by Carrera [41–45,9] can be combined with radial basis functions collocation
to the free vibration analysis of thin and thick FG shells, using a higher-
order shear deformation theory (HSDT), allowing for through-the-thickness
deformations. The effect of ǫzz 6= 0 in these problems is also investigated. The
quality of the present method in predicting free vibrations of thin and thick
FG shells is demonstrated through numerical examples.

2 The Unified Formulation applied to shell HSDT

The Unified Formulation (UF) proposed by Carrera has been applied in several
finite element analysis of beams, plates, and shells, either using the Principle
of Virtual Displacements, or by using the Reissner’s Mixed Variational theo-
rem. The stiffness matrix components, the external force terms or the inertia
terms can be obtained directly with this UF, irrespective of the shear defor-
mation theory being considered. We present in the following the details of the
formulation.
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Fig. 1. Geometry and notations for a multilayered shell (doubly curved).

2.1 Shell geometry

Shells are bi-dimensional structures in which one dimension (in general the
thickness in z direction) is negligible with respect to the other two in-plane
dimensions. The CUF formulation applied to FGM shells considers virtual
(mathematical) layers of constant thickness. The geometry and the reference
system are indicated in Fig. (1).

2.2 A higher-order shear deformation theory

The present higher-order shear deformation theory involves the following ex-
pansion of displacements

u(α, β, z, t) = u0(α, β, t) + zu1(α, β, t) + z3u3(α, β, t) (1)

v(α, β, z, t) = v0(α, β, t) + zv1(α, β, t) + z3v3(α, β, t) (2)

w(α, β, z, t) = w0(α, β, t) + zw1(α, β, t) + z2w2(α, β, t) (3)

where u, v, and w are the displacements in the α−, β−, and z− directions, re-
spectively. u0, u1, u3, v0, v1, v3, w0, w1, and w2 are functions to be determined.
u0, v0 and w0 are translations of a point at the middle-surface of the shell, and
u1, v1, u3, v3 denote rotations. The consideration of higher-order terms in w
allows the study of the thickness-stretching effects.

2.3 Governing equations and boundary conditions

The functionally graded shell is divided into a number (NL) of uniform thick-
ness layers. The square of an infinitesimal linear segment in the k-th layer, the
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associated infinitesimal area and volume are given by:

ds2k = Hk
α
2
dα2 + Hk

β
2
dβ2 +Hk

z
2
dz2 ,

dΩk = Hk
αH

k
β dα dβ ,

dVk = Hk
α H

k
β H

k
z dα dβ dz ,

(4)

where the metric coefficients are:

Hk
α = Ak(1 + z/Rk

α), Hk
β = Bk(1 + z/Rk

β), Hk
z = 1 . (5)

k denotes the k-layer of the multilayered shell; Rk
α and Rk

β are the principal
radii of curvature along the coordinates α and β respectively. Ak and Bk are
the coefficients of the first fundamental form of Ωk (Γk is the Ωk boundary).
In this work, the attention has been restricted to shells with constant radii of
curvature (cylindrical, spherical, toroidal geometries) for which Ak = Bk = 1.

The Principle of Virtual Displacements (PVD) for the pure-mechanical case
can be expressed as:

NL∑

k=1

∫

Ωk

∫

Ak

{
δǫkpG

T
σk
pC + δǫknG

T
σk
nC

}
dΩkdz =

NL∑

k=1

δLk
e (6)

where Ωk and Ak are the integration domains in plane (α,β) and z direc-
tion, respectively. Here, k indicates the layer and T the transpose of a vector.
G means geometrical relations and C constitutive equations and δLk

e is the
external work for the kth layer.

Stresses and strains are separated into in-plane and normal components, de-
noted respectively by the subscripts p and n. The mechanical strains in the
kth layer can be related to the displacement field uk = {ukα, ukβ, ukz} via the
geometrical relations:

ǫkpG = [ǫkαα, ǫ
k
ββ, ǫ

k
αβ]

T = (Dk
p+Ak

p) u
k , ǫknG = [ǫkαz, ǫ

k
βz, ǫ

k
zz]

T = (Dk
nΩ+Dk

nz−Ak
n) u

k

(7)
The explicit form of the introduced arrays follows:

Dk
p =




∂α
Hk

α
0 0

0
∂β
Hk

β

0

∂β
Hk

β

∂α
Hk

α
0



, Dk

nΩ =




0 0 ∂α
Hk

α

0 0
∂β
Hk

β

0 0 0



, Dk

nz =




∂z 0 0

0 ∂z 0

0 0 ∂z



, (8)
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Ak
p =




0 0 1
Hk

αR
k
α

0 0 1
Hk

β
Rk

β

0 0 0



, Ak

n =




1
Hk

αR
k
α

0 0

0 1
Hk

β
Rk

β

0

0 0 0



. (9)

The 3D constitutive equations are given as:

σk
pC = C

k
pp ǫ

k
pG +C

k
pn ǫ

k
nG

σk
nC = C

k
np ǫ

k
pG +C

k
nn ǫ

k
nG

(10)

In the case of functionally graded materials, the matrices C
k
pp, C

k
pn, C

k
np, and

C
k
nn are reduced to:

C
k
pp =




Ck
11 C

k
12 0

Ck
12 C

k
11 0

0 0 Ck
44




C
k
pn =




0 0 Ck
12

0 0 Ck
12

0 0 0




C
k
np =




0 0 0

0 0 0

Ck
12 C

k
12 0




C
k
nn =




Ck
44 0 0

0 Ck
44 0

0 0 Ck
33




(11)

The computation of elastic constants Ck
ij for each layer, considers the following

steps:

(1) computation of volume fraction of the ceramic and metal phases
(2) computation of elastic properties Ek and νk

(3) computation of elastic constants Cij

In the present work, the volume fraction of the ceramic phase is defined ac-
cording to the power-law:

V k
c =

(
0.5 +

z

h

)p

(12)

being z ∈ [−h/2, h/2], h the thickness of the shell, and the exponent p a scalar
parameter that defines gradation of material properties across the thickness
direction. The volume fraction of the metal phase is given as V k

m = 1− V k
c .

The Young’s modulus, Ek, and Poisson’s ratio, νk, are computed by the law-
of-mixtures:

Ek(z) = EmV
k
m + EcV

k
c ; νk(z) = νmV

k
m + νcV

k
c ; (13)
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Then, the computation of the elastic constants Ck
ij is performed, depending on

the assumption of ǫzz. If ǫzz = 0, then Ck
ij are the plane-stress reduced elastic

constants:

Ck
11 =

Ek

1− (νk)2
; Ck

12 = νk
Ek

1− (νk)2
; Ck

44 =
Ek

2(1 + νk)
; C33 = 0 (14)

where Ek is the modulus of elasticity, νk is the Poisson’s ratio found in previous
step.

If ǫzz 6= 0 (thickness-stretching), then Ck
ij are the three-dimensional elastic

constants, given by

Ck
11 =

Ek(1− (νk)2)

1− 3(νk)2 − 2(νk)3
, Ck

12 =
Ek(νk + (νk)2)

1− 3(νk)2 − 2(νk)3
(15)

Ck
44 =

Ek

2(1 + νk)
, Ck

33 =
Ek(1− (νk)2)

1− 3(νk)2 − 2(νk)3
(16)

The three displacement components uα, uβ and uz (given in (1) to (3)) and
their relative variations can be modelled by CUF as:

(uα, uβ, uz) = Fτ (uατ , uβτ , uzτ ) (δuα, δuβ, δuz) = Fs (δuαs, δuβs, δuzs)
(17)

where Fτ are functions of the thickness coordinate z and τ is a sum index. In
the present formulation the thickness functions are

Fsuα = Fsuβ = Fτuα = Fτuβ =
[
1 z z3

]
(18)

for in-plane displacements u, v and

Fsw = Fτw =
[
1 z z2

]
(19)

for transverse displacement w. All the terms of the equations of motion are
then obtained by integrating through the thickness direction.

Substituting the geometrical relations, the constitutive equations and the uni-
fied formulation into the variational statement PVD, for the kth layer, one
obtains:

NL∑

k=1

{
∫

Ωk

∫

Ak

{((Dp +Ap)δu
k)T (Ck

pp(Dp +Ap)u
k +Ck

pn(DnΩ +Dnz −An)u
k)+

((DnΩ +Dnz −An)δu
k)T (Ck

np(Dp +Ap)u
k +Ck

nn(DnΩ +Dnz −An)u
k)}dΩkdzk}

=
NL∑

k=1

δLk
e

(20)
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At this point, the formula of integration by parts is applied:
∫

Ωk

(
(DΩ)δa

k
)T

a
kdΩk = −

∫

Ωk

δakT
(
(DT

Ω)a
k
)
dΩk +

∫

Γk

δakT
(
(IΩ)a

k
)
dΓk

(21)

where IΩ matrix is obtained applying the Divergence theorem:

∫

Ω

∂ψ

∂xi
dυ =

∮

Γ
niψds (22)

being ni the components of the normal n̂ to the boundary along the direc-
tion i. After integration by parts and the substitution of CUF, the governing
equations and boundary conditions for the shell in the mechanical case are
obtained:

NL∑

k=1

{
∫

Ωk

∫

Ak

{δukT
s [(−Dp +Ap)

TFs(C
k
pp(Dp +Ap)Fτu

k
τ +Ck

pn(DnΩ +Dnz −An)Fτu
k
τ )]+

δukT
s [(−DnΩ +Dnz −An)

TFs(C
k
np(Dp +Ap)Fτu

k
τ +Ck

nn(DnΩ +Dnz −An)Fτu
k
τ )]}dΩkdzk}

+
NL∑

k=1

{
∫

Γk

∫

Ak

{δukT
s [IT

p Fs(C
k
pp(Dp +Ap)Fτu

k
τ +Ck

pn(DnΩ +Dnz −An)Fτu
k
τ )]+

δukT
s [IT

npFs(C
k
np(Dp −Ap)Fτu

k
τ +Ck

nn(DnΩ +Dnz −An)Fτu
k
τ )]}dΓkdzk}

=
NL∑

k=1

{
∫

Ωk

δukT
s Fsp

k
u} .

(23)

where I
k
p and I

k
np depend on the boundary geometry:

Ip =




nα

Hα
0 0

0
nβ

Hβ
0

nβ

Hβ

nα

Hα
0




; Inp =




0 0 nα

Hα

0 0
nβ

Hβ

0 0 0




; . (24)

The normal to the boundary of domain Ω is:

n̂ =



nα

nβ


 =



cos(ϕα)

cos(ϕβ)


 (25)

where ϕα and ϕβ are the angles between the normal n̂ and the direction α and
β respectively.
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The governing equations for a multi-layered shell subjected to mechanical
loadings are:

δuk
s

T
: K

kτs
uu u

k
τ = P

k
uτ (26)

where the fundamental nucleus K
kτs
uu is obtained as:

Kkτs
uu =

∫

Ak

[
[−Dp +Ap]

T Ck
pp[Dp +Ap] + [−Dp +Ap]

T Ck
pn[DnΩ +Dnz −An]+

[−DnΩ +Dnz −An]
T Ck

np[Dp +Ap] + [−DnΩ +Dnz −An]
T Ck

nn[DnΩ +Dnz −An]
]

FτFsH
k
αH

k
β dz .

(27)

and the corresponding Neumann-type boundary conditions on Γk are:

Π
kτs
d u

k
τ = Π

kτs
d ū

k
τ , (28)

where:

Π
kτs
d =

∫

Ak

[
IT
p Ck

pp[Dp +Aτ
p] + IT

p Ck
pn[DnΩ +Dnz −Aτ

n]+

IT
npC

k
np[Dp +Aτ

p] + IT
np Ck

nn[DnΩ +Dnz −Aτ
n]
]
FτFsH

k
αH

k
β dz .

(29)

and P
k
uτ are variationally consistent loads with applied pressure.
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2.4 Fundamental nuclei

The fundamental nucleo K
kτs
uu is reported for functionally graded doubly curved

shells (radii of curvature in both α and β directions (see Fig.1)):

(
K

τsk
uu

)
11

= −Ck
11J

kτs
β/α∂

s
α∂

τ
α − Ck

44J
kτs
α/β∂

s
β∂

τ
β

+ Ck
44

(
Jkτzsz
αβ − 1

Rαk

Jkτzs
β − 1

Rαk

Jkτsz
β +

1

R2
αk

Jkτs
β/α

)

(
K

τsk
uu

)
12

= −Ck
12J

kτs∂τα∂
s
β − Ck

44J
kτs∂sα∂

τ
β

(
K

τsk
uu

)
13

= −Ck
11

1

Rαk

Jkτs
β/α∂

τ
α − Ck

12

1

Rβk

Jkτs∂τα − Ck
12J

kτsz
β ∂τα

+ Ck
44

(
Jkτzs
β ∂sα − 1

Rαk

Jkτs
β/α∂

s
α

)

(
K

τsk
uu

)
21

= −Ck
12J

kτs∂sα∂
τ
β − Ck

44J
kτs∂τα∂

s
β

(
K

τsk
uu

)
22

= −Ck
22J

kτs
α/β∂

s
β∂

τ
β − Ck

26J
kτs∂sα∂

τ
β − Ck

26J
kτs∂τα∂

s
β − Ck

44J
kτs
β/α∂

s
α∂

τ
α

+ Ck
44

(
Jkτzsz
αβ − 1

Rβk

Jkτzs
α − 1

Rβk

Jkτsz
α +

1

R2
βk

Jkτs
α/β

)

(
K

τsk
uu

)
23

= −Ck
12

1

Rαk

Jkτs∂τβ − Ck
22

1

Rβk

Jkτs
α/β∂

τ
β − Ck

12J
kτsz
α ∂τβ

+ Ck
44

(
Jkτzs
α ∂sβ −

1

Rβk

Jkτs
α/β∂

s
β

)

(
K

τsk
uu

)
31

= Ck
11

1

Rαk

Jkτs
β/α∂

s
α + Ck

12

1

Rβk

Jkτs∂sα + Ck
12J

kτzs
β ∂sα

− Ck
44

(
Jkτsz
β ∂τα − 1

Rαk

Jkτs
β/α∂

τ
α

)

(
K

τsk
uu

)
32

= Ck
12

1

Rαk

Jkτs∂sβ + Ck
22

1

Rβk

Jkτs
α/β∂

s
β + Ck

12J
kτzs
α ∂sβ

− Ck
44

(
Jkτsz
α ∂τβ − 1

Rβk

Jkτs
α/β∂

τ
β

)

(
K

τsk
uu

)
33

= Ck
11

1

R2
αk

Jkτs
β/α + Ck

22

1

R2
βk

Jkτs
α/β + Ck

33J
kτzsz
αβ

+ 2Ck
12

1

Rαk

1

Rβk

Jkτs + Ck
12

1

Rαk

(
Jkτzs
β + Jkτsz

β

)
+ Ck

12

1

Rβk

(
Jkτzs
α + Jkτsz

α

)

− Ck
44J

kτs
α/β∂

s
β∂

τ
β − Ck

44J
kτs
β/α∂

s
α∂

τ
α (30)
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where

(Jkτs, Jkτs
α , Jkτs

β , Jkτs
α
β
, Jkτs

β

α

, Jkτs
αβ ) =

∫

Ak

FτFs(1, Hα, Hβ,
Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(Jkτzs, Jkτzs
α , Jkτzs

β , Jkτzs
α
β

, Jkτzs
β

α

, Jkτzs
αβ ) =

∫

Ak

∂Fτ

∂z
Fs(1, Hα, Hβ,

Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(Jkτsz , Jkτsz
α , Jkτsz

β , Jkτsz
α
β

, Jkτsz
β

α

, Jkτsz
αβ ) =

∫

Ak

Fτ
∂Fs

∂z
(1, Hα, Hβ,

Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(Jkτzsz , Jkτzsz
α , Jkτzsz

β , Jkτzsz
α
β

, Jkτzsz
β

α

, Jkτzsz
αβ ) =

∫

Ak

∂Fτ

∂z

∂Fs

∂z
(1, Hα, Hβ,

Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(31)

The application of boundary conditions makes use of the fundamental nucleo
Πd in the form:

(
Π

τsk
uu

)
11

= nαC
k
11J

kτs
β/α∂

s
α + nβC

k
44J

kτs
α/β∂

s
β

(
Π

τsk
uu

)
12

= nαC
k
12J

kτs∂sβ + nβC
k
44J

kτs∂sα

(
Π

τsk
uu

)
13

= nα
1

Rαk

Ck
11J

kτs
β/α + nα

1

Rβk

Ck
12J

kτs + nαC
k
12J

kτsz
β

(
Π

τsk
uu

)
21

= nβC
k
12J

kτs∂sα + nαC
k
44J

kτs∂sβ

(
Π

τsk
uu

)
22

= nαC
k
44J

kτs
β/α∂

s
α + nβC

k
22J

kτs
α/β∂

s
β + nβC

k
26J

kτs∂sα + nαC
k
26J

kτs∂sβ

(
Π

τsk
uu

)
23

= nβ
1

Rαk

Ck
12J

kτs + nβ
1

Rβk

Ck
22J

kτs
α/β + nβC

k
12J

kτsz
α

(
Π

τsk
uu

)
31

= −nα
1

Rαk

Ck
44J

kτs
β/α + nαC

k
44J

kτsz
β

(
Π

τsk
uu

)
32

= −nβ
1

Rβk

Ck
44J

kτs
α/β + nβC

k
44J

kτsz
α

(
Π

τsk
uu

)
33

= nαC
k
44J

kτs
β/α∂

s
α + nβC

k
44J

kτs
α/β∂

s
β (32)

Note that all the equations written for the shell degenerate in those for the

plate when
1

Rαk

=
1

Rβk

= 0. In practice, the radii of curvature are set to 109

for analysis of plates with the present formulation.
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2.5 Dynamic governing equations

The PVD for the dynamic case is expressed as:

NL∑

k=1

∫

Ωk

∫

Ak

{
δǫkpG

T
σk
pC + δǫknG

T
σk
nC

}
dΩkdz =

NL∑

k=1

∫

Ωk

∫

Ak

ρkδukT
ü
kdΩkdz +

NL∑

k=1

δLk
e

(33)

where ρk is the mass density of the k-th layer and double dots denote acceler-
ation.

By substituting the geometrical relations and the constitutive equations, one
obtains the following governing equations:

δuk
s

T
: K

kτs
uu u

k
τ = M

kτs
ü
k
τ + P

k
uτ (34)

In the case of free vibrations one has:

δuk
s

T
: K

kτs
uu u

k
τ = M

kτs
ü
k
τ (35)

where M
kτs is the fundamental nucleus for the inertial term, given by

M
kτs
ij = ρkJkτs

αβ , i = j

M
kτs
ij = 0, i 6= j

(36)

The meaning of the integral Jkτs
αβ has been illustrated in eq. (31). The geomet-

rical and mechanical boundary conditions are the same of the static case.

3 The radial basis function method for free vibration problems

Consider a linear elliptic partial differential operator L acting in a bounded
region Ω in R

n and another operator LB acting on a boundary ∂Ω. The eigen-
problem looks for eigenvalues (λ) and eigenvectors (u) that satisfy

Lu + λu = 0 in Ω (37)

LBu = 0 on ∂Ω (38)

The eigenproblem defined in (37) and (38) will be replaced by a finite-dimensional
eigenvalue problem, after the radial basis approximations.

11



The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑

i=1

αiφ (‖x− yi‖2) ,x ∈ R
n (39)

where yi, i = 1, .., N is a finite set of distinct points (centers) in R
n.

Derivatives of ũ are computed as

∂ũ

∂x
=

N∑

j=1

αj
∂φj

∂x
(40)

∂2ũ

∂x2
=

N∑

j=1

αj
∂2φj

∂x2
, etc (41)

In the present collocation approach, one needs to impose essential and natural
boundary conditions. Consider, for example, the condition w = 0, on a simply
supported or clamped edge. The conditions are enforced by interpolating as

w = 0 →
N∑

j=1

αW
j φj = 0 (42)

Other boundary conditions are interpolated in a similar way.

Examples of some common RBFs are

Cubic: φ(r) = r3

Thin plate splines: φ(r) = r2 log(r)

Wendland functions: φ(r) = (1− r)m+p(r)

Gaussian: φ(r) = e−(cr)2

Multiquadrics: φ(r) =
√
c2 + r2

Inverse Multiquadrics: φ(r) = (c2 + r2)−1/2

where the Euclidian distance r is real and non-negative and c is a posi-
tive shape parameter. Considering N distinct interpolations, and knowing
u(xj), j = 1, 2, ..., N , one finds αi by the solution of a N ×N linear system

Aα = u (43)

where A = [φ (‖x− yi‖2)]N×N , α = [α1, α2, ..., αN ]
T and u = [u(x1), u(x2), ..., u(xN )]

T .

The solution of the eigenproblem by radial basis functions considers NI nodes
in the interior of the domain and NB nodes on the boundary, witha total

12



number of nodes N = NI + NB. The interpolation points are denoted by
xi ∈ Ω, i = 1, ..., NI and xi ∈ ∂Ω, i = NI + 1, ..., N . At the points in the
domain, the following eigenproblem is defined

N∑

i=1

αiLφ (‖x− yi‖2) = λũ(xj), j = 1, 2, ..., NI (44)

or

LIα = λũI (45)

where

LI = [Lφ (‖x− yi‖2)]NI×N (46)

At the points on the boundary, the imposed boundary conditions are

N∑

i=1

αiLBφ (‖x− yi‖2) = 0, j = NI + 1, ..., N (47)

or

Bα = 0 (48)

where B = LBφ [(‖xNI+1 − yj‖2)]NB×N .

Therefore, one can write a finite-dimensional eigenvalue problem and solve
equations (45) and (48) as a generalized eigenvalue problem



LI

B


α = λ



AI

0


α (49)

where

AI = φ [(‖xNI
− yj‖2)]NI×N

For free vibration problems an harmonic solution is assumed for the displace-
ments u0, u1, v0, v1, · · ·

u0 = U0(x, y)e
iωt; u1 = U1(x, y)e

iωt; u3 = U3(x, y)e
iωt

v0 = V0(x, y)e
iωt; v1 = V1(x, y)e

iωt; v3 = V3(x, y)e
iωt

w0 = W0(x, y)e
iωt; w1 = W1(x, y)e

iωt; w2 = W2(x, y)e
iωt

(50)

where ω is the frequency of natural vibration. Substituting the harmonic ex-
pansion into equations (49) in terms of the amplitudes U0, U1, U3, V0, V1, V3,W0,W1,W2,
one can obtain the natural frequencies and vibration modes for the plate or
shell problem, by solving the eigenproblem

13



[
L − ω2G

]
X = 0 (51)

where L collects all stiffness terms and G collects all terms related to the
inertial terms. In (51) X are the modes of vibration associated with the natural
frequencies defined as ω.

4 Numerical results

In this section the higher-order shear deformation theory is combined with
radial basis functions collocation for the free vibration analysis of functionally
graded shell panels. Examples include spherical (Rx = Ry = R) as well as
cylindrical (Rx = R and Ry = ∞) shell panels with all edges clamped (CCCC)
or simply supported (SSSS). Particular cases of these are also considered:
isotropic materials (fully ceramic, p = 0, and fully metal, p = ∞) and plates
(Rx = Ry = ∞).

To study the effect of ǫzz 6= 0 in these problems, the case ǫzz = 0 is imple-
mented by considering w = w0 instead (3).

Results are compared with those from Pradyumna and Bandyopadhyay [46],
who used finite elements formulation and a HSDT disregarding through-the-
thickness deformations.

The following material properties are used:

silicon nitride (Si3N4):

Ec = 322.2715GPa, νc = 0.24, ρc = 2370Kg/m3 (52)

stainless steel (SUS304):

Em = 207.7877GPa, νm = 0.31776, ρm = 8166Kg/m3 (53)

aluminum:

Em = 70GPa, νm = 0.3, ρm = 2707Kg/m3 (54)

alumina:

Ec = 380GPa, νc = 0.3, ρc = 3000Kg/m3 (55)

The non-dimensional frequency is given as

w̄ = wa2
√
ρmh

D
where D =

Emh
3

12(1− ν2m)
. (56)

In all numerical examples a Chebyshev grid is employed (see figure 2) and the
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grid 132 172 192 212

1st 60.3483 60.3431 60.3499 60.3479

2nd 115.2450 115.2134 115.2315 115.2044

3rd 115.3917 115.3665 115.3755 115.3347

4th 162.1741 162.0337 162.0727 162.0860
Table 1
Initial study. Square CCCC FG cylindrical panel, Si3N4 and SUS304, a/h = 10,
a/R = 0.1, p = 0.2.

Wendland function defined as

φ(r) = (1− c r)8+
(
32(c r)3 + 25(c r)2 + 8c r + 1

)
(57)

Here, the shape parameter (c) is obtained by an optimization procedure, as
detailed in Ferreira and Fasshauer [47].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. A sketch of a Chebyshev grid for 172 points

An initial study was performed to show the convergence of the present ap-
proach and select the number of points to use in the computation of the
vibration problems. Results are presented in table 1 and refer to the first
four vibration modes of a clamped functionally graded cylindrical shell panel
composed of silicon nitride (52) and stainless steel (53), with side-to-thickness
ratio a/h = 10, side-to-radius ratio a/R = 0.1, power law exponent p = 0.2,
and a = b = 2. A 172 grid was chosen for the following vibration problems.
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p = 0 p = 0.2 p = 2 p = 10 p = ∞
mode source (Si3N4) (SUS304)

1 ref. [46] 72.9613 60.0269 39.1457 33.3666 32.0274

ref. [48] 74.518 57.479 40.750 35.852 32.761

present ǫzz = 0 74.2634 60.0061 40.5259 35.1663 32.6108

present ǫzz 6= 0 74.5821 60.3431 40.8262 35.4229 32.8593

2 ref. [46] 138.5552 113.8806 74.2915 63.2869 60.5546

ref. [48] 144.663 111.717 78.817 69.075 63.314

present ǫzz = 0 141.6779 114.3788 76.9725 66.6482 61.9329

present ǫzz 6= 0 142.4281 115.2134 77.6639 67.1883 62.4886

3 ref. [46] 138.5552 114.0266 74.3868 63.3668 60.6302

ref. [48] 145.740 112.531 79.407 69.609 63.806

present ǫzz = 0 141.8485 114.5495 77.0818 66.7332 62.0082

present ǫzz 6= 0 142.6024 115.3665 77.7541 67.2689 62.5668

4 ref. [46] 195.5366 160.6235 104.7687 89.1970 85.1788

ref. [48] 206.992 159.855 112.457 98.386 90.370

present ǫzz = 0 199.1566 160.7355 107.9484 93.3350 86.8160

present ǫzz 6= 0 200.3158 162.0337 108.9677 94.0923 87.6341
Table 2
First 4 modes of a CCCC square FG cylindrical shell panel, Si3N4 and SUS304,
a/h = 10, a/R = 0.1, for several p.

4.1 Clamped functionally graded cylindrical shell panel

The free vibration of clamped FG cylindrical shell panels is analysed.

In table 2 the first 4 vibration modes of a square clamped FG cylindrical shell
panel with constituents silicon nitride (52) and stainless steel (53), side-to-
thickness ratio a/h = 10, side-to-radius ratio a/R = 0.1, and several power
law exponents p are presented. Results are compared with [46] and those
from Yang and Shen [48], with the differential quadrature approximation and
Galerkin technique, both neglecting through-the-thickness deformations.

In figure 3 the first 4 modes of a CCCC square FG cylindrical shell panel, with
constituents silicon nitride and stainless steel, ratios a/h = 10 and R/a = 10,
and power law exponent p = 0.2 are presented.
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Fig. 3. First 4 modes of a CCCC square FG cylindrical shell panel, Si3N4 and
SUS304, a/h = 10, a/R = 0.1, p = 0.2.

The fundamental frequency of square clamped FG cylindrical shell panels com-
posed of aluminum (54) and alumina (55), with side-to-radius ratio a/R = 0.1,
various side-to-thickness ratios a/h and power law exponents p are presented
in table 3.

The results of the present approach in tables 2 and 3 compare well with ref-
erences. The combination of present HSDT and the meshless technique based
on collocation with radial basis function shows very good accuracy in the free
vibration analysis of FG shells.

In table 4 the fundamental frequency of square clamped FG cylindrical shell
panels composed of aluminum (54) and alumina (55), with side-to-thickness
ratios a/h = 10, are presented considering various side-to-radius ratio a/R,
and power law exponents p.

4.2 Simply supported functionally graded cylindrical shell panel

The free vibration of simply supported FG cylindrical shell panels is now
analysed.
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p source a/h =5 a/h =10 a/h =15 a/h =20 a/h =50 a/h =100

0 FSDT 56.5548 70.8035 75.7838 77.5654 85.4346 103.4855

ref. [46] 58.2858 71.7395 75.0439 77.0246 84.8800 102.9227

present ǫzz = 0 59.0433 72.3272 76.4904 78.4918 85.6073 102.3351

present ǫzz 6= 0 59.7741 72.8141 76.8148 78.7342 85.7713 102.7871

0.5 FSDT 47.2468 57.7597 62.2838 63.8393 70.3199 87.1049

ref. [46] 48.7185 58.5305 61.5835 63.1381 69.8604 86.5452

present ǫzz = 0 49.3050 59.5188 62.6780 64.2371 70.4237 85.4780

present ǫzz 6= 0 49.9508 59.9353 62.9544 64.4438 70.5664 85.9029

1 FSDT 42.0305 51.0884 55.4209 56.7991 62.8458 77.7762

ref. [46] 43.4243 52.0173 54.7015 56.0880 62.2152 77.0774

present ǫzz = 0 43.9548 52.8776 55.6437 57.0255 62.7088 76.6386

present ǫzz 6= 0 44.5754 53.2759 55.9081 57.2226 62.8414 77.0381
Table 3
Fundamental frequencies of CCCC square FG cylindrical shell panels composed of
aluminum and alumina, R/a = 0.1, for various a/h and p.

Table 5 presents the fundamental frequency of a square simply supported FG
cylindrical shell panel with constituents aluminum (54) and alumina (55),
length-to-thickness ratio a/h = 10, and several length-to-radius ratio a/R and
several power law exponents p as well.

In figure 4 the relationships between fundamental frequency and the radius-to-
length ratio R/a is visualized for various power law exponents p. It refers to the
square simply supported FG cylindrical shell panel composed from aluminum
(54) and alumina (55), with side-to-thickness ratio a/h = 10. The graphic on
the left was obtained from tabulated values on table 5 and the right one is
more detailed for values of p smaller or equal than 5 (p = 0.5, 1, 2, 3, 4, 5).

4.3 Clamped functionally graded spherical shell panel

We now study the free vibration of clamped FG spherical shell panels.

The fundamental frequency of a square clamped FG spherical shell panel
with constituents aluminum (54) and alumina (55), and side-to-thickness ratio
a/h = 10, considering various side-to-radius ratios a/R, and several power law
exponents p are presented in table 6.
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p source R/a =0.5 R/a =1 R/a =5 R/a =10 R/a =50 Plate

0 ref. [46] 129.9808 94.4973 71.8861 71.0394 70.7660 70.7546

present ǫzz = 0 133.6037 95.5849 73.1640 72.3304 72.0614 72.0502

present ǫzz 6= 0 134.5056 96.0131 73.6436 72.8141 72.5465 72.5353

0.2 ref. [46] 119.6109 87.3930 68.1152 67.3320 67.0801 67.0698

present ǫzz = 0 121.8612 87.8148 66.6620 65.8808 65.6371 65.6299

present ǫzz 6= 0 122.7375 88.1659 67.1004 66.3235 66.0814 66.0743

0.5 ref. [46] 108.1546 79.5689 63.1896 62.4687 62.2380 62.2291

present ǫzz = 0 110.2017 80.0146 60.2477 59.5215 59.3022 59.2985

present ǫzz 6= 0 111.0739 80.3049 60.6568 59.9353 59.7178 59.7142

1 ref. [46] 96.0666 71.2453 56.5546 55.8911 55.6799 55.6722

present ǫzz = 0 97.9069 71.6716 53.5430 52.8800 52.6864 52.6856

present ǫzz 6= 0 98.7955 71.9167 53.9340 53.2759 53.0841 53.0835

2 ref. [46] 84.4431 62.9748 36.2487 35.6633 35.4745 35.4669

present ǫzz = 0 86.3088 63.4398 47.5205 46.9447 46.7820 46.7835

present ǫzz 6= 0 87.2271 63.6675 47.9060 47.3343 47.1726 47.1741

10 ref. [46] 69.8224 51.3803 33.6611 33.1474 32.9812 32.9743

present ǫzz = 0 71.7634 52.0900 40.8099 40.4145 40.3028 40.3037

present ǫzz 6= 0 72.3922 52.2780 41.0985 40.7046 40.5923 40.5929

∞ ref. [46] 61.0568 44.2962 32.4802 32.0976 31.9741 31.9689

present ǫzz = 0 60.3660 43.1880 33.0576 32.6810 32.5594 32.5543

present ǫzz 6= 0 60.7735 43.3815 33.2743 32.8995 32.7786 32.7735
Table 4
Fundamental frequencies of CCCC square FG cylindrical shell panels composed of
aluminum and alumina, a/h = 10, for various R/a and p.

4.4 Simply supported functionally graded spherical shell panel

This example considers the free vibration of simply supported FG spherical
shell panels.

The fundamental frequency of a square simply supported FG spherical shell
panel composed of aluminum (54) and alumina (55), with side-to-thickness
ratio a/h = 10, are presented in table 7 considering various side-to-radius
ratios a/R as well power law exponents p.
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p source R/a =0.5 R/a =1 R/a =5 R/a =10 R/a =50 Plate

0 ref. [46] 68.8645 51.5216 42.2543 41.9080 41.7963 41.7917

present ǫzz = 0 70.1594 52.1938 42.6701 42.3153 42.2008 42.1961

present ǫzz 6= 0 69.9872 52.1101 42.7172 42.3684 42.2560 42.2513

0.2 ref. [46] 64.4001 47.5968 40.1621 39.8472 39.7465 39.7426

present ǫzz = 0 65.3889 47.9338 38.7168 38.3840 38.2842 38.2827

present ǫzz 6= 0 65.2100 47.8590 38.7646 38.4368 38.3384 38.3368

0.5 ref. [46] 59.4396 43.3019 37.2870 36.9995 36.9088 36.9057

present ǫzz = 0 60.4255 43.6883 34.8768 34.5672 34.4809 34.4820

present ǫzz 6= 0 60.2422 43.6239 34.9273 34.6219 34.5365 34.5376

1 ref. [46] 53.9296 38.7715 33.2268 32.9585 32.8750 32.8726

present ǫzz = 0 54.8909 39.1753 30.9306 30.6485 30.5759 30.5792

present ǫzz 6= 0 54.7074 39.1246 30.9865 30.7077 30.6355 30.6386

2 ref. [46] 47.8259 34.3338 27.4449 27.1789 27.0961 27.0937

present ǫzz = 0 48.7807 34.7654 27.5362 27.2979 27.2423 27.2472

present ǫzz 6= 0 48.6005 34.7289 27.5977 27.3616 27.3055 27.3102

10 ref. [46] 37.2593 28.2757 19.3892 19.1562 19.0809 19.0778

present ǫzz = 0 38.2792 28.8072 24.2472 24.1063 24.0762 24.0802

present ǫzz 6= 0 38.1172 28.7611 24.2839 24.1444 24.1125 24.1171

∞ ref. [46] 31.9866 24.1988 19.0917 18.9352 18.8848 18.8827

present ǫzz = 0 31.7000 23.5827 19.2796 19.1193 19.0675 19.0654

present ǫzz 6= 0 31.6222 23.5448 19.3008 19.1433 19.0924 19.0903
Table 5
Fundamental frequencies of SSSS square FG cylindrical shell panels composed of
aluminum and alumina, a/h = 10, for various R/a and p.

4.5 Discussion

All results presented in tables 2 to 7 are in excellent agreement with references
considered. Exceptions are p = 10 and R/a = 5, 10, 50 for the SSSS panels,
and p = 2, 10 and R/a = 5, 10, 50 for the CCCC panels. The authors did not
find any explanation for these exceptions.

A detailed analysis of previous tables lead us to the following conclusions:

• Boundary conditions: Clamped FG shell panels present higher frequency
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Fig. 4. Fundamental frequency as a function of the radius-to-length ratio for several
p.

values than simply supported ones.
• Geometry: Lower radii of curvature values present higher frequency values,

i. e., the fundamental frequency decreases as the ratio R/a increases.
• Material properties: The fundamental frequency of FG shell panels de-

creases as the exponent p in power-law increases.

Another conclusion from all tables, as easily seen in figure 4, is that the fun-
damental frequency decreases as the radius of curvature increases. The fall-off
is faster for smaller values of R (R/a) and then shows fast convergence.

The effect of ǫzz 6= 0 shows significance in thicker shells (see table 2) and seems
independent of the radius of curvature (see tables 4 to 7 ).

5 Concluding remarks

For the first time, Carrera’s Unified Formulation was combined with the ra-
dial basis functions collocation technique for the free vibration analysis of
functionally graded shells. A higher-order shear deformation theory that al-
lows extensibility in the thickness direction was implemented and the effect of
ǫzz 6= 0 was studied.

Numerical results were compared with other sources and the present approach
demonstrated to be successful in the free vibration analysis of functionally
graded shells and easy to implement.
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p source R/a =0.5 R/a =1 R/a =5 R/a =10 R/a =50 Plate

0 ref. [46] 173.9595 120.9210 73.5550 71.4659 70.7832 70.7546

present ǫzz = 0 176.8125 122.0934 74.8207 72.7536 72.0784 72.0502

present ǫzz 6= 0 176.8356 122.3533 75.2810 73.2322 72.5633 72.5353

0.2 ref. [46] 161.3704 112.2017 69.6597 67.7257 67.0956 67.0698

present ǫzz = 0 163.0852 112.7143 68.2142 66.2686 65.6498 65.6299

present ǫzz 6= 0 163.0460 112.8132 68.6329 66.7063 66.0938 66.0743

0.5 ref. [46] 147.4598 102.5983 64.6114 62.8299 62.2519 62.2291

present ǫzz = 0 149.0931 103.1804 61.6902 59.8745 59.3112 59.2985

present ǫzz 6= 0 149.0095 103.1490 62.0789 60.2831 59.7265 59.7142

1 ref. [46] 132.3396 92.2147 57.8619 56.2222 55.6923 55.6722

present ǫzz = 0 133.8751 92.8282 54.8597 53.1956 52.6921 52.6856

present ǫzz 6= 0 133.7710 92.6962 55.2302 53.5864 53.0895 53.0835

2 ref. [46] 116.4386 81.3963 37.3914 35.9568 35.4861 35.4669

present ǫzz = 0 118.0167 82.0948 48.6656 47.2135 46.7849 46.7835

present ǫzz 6= 0 117.9317 81.9179 49.0328 47.5990 47.1754 47.1741

10 ref. [46] 92.1387 64.8773 34.6658 33.4057 32.9916 32.9743

present ǫzz = 0 93.9111 65.8103 41.6016 40.5998 40.3049 40.3037

present ǫzz 6= 0 93.8398 65.7018 41.8796 40.8883 40.5946 40.5929

∞ ref. [46] 80.7722 56.2999 33.2343 32.2904 31.9819 31.9689

present ǫzz = 0 79.8889 55.1653 33.8061 32.8722 32.5671 32.5543

present ǫzz 6= 0 79.8994 55.2827 34.0141 33.0884 32.7862 32.7735
Table 6
Fundamental frequencies of CCCC square FG spherical shell panels composed of
aluminum and alumina, a/h = 10, for various R/a and p.

6 Acknowledgement

The first author is grateful for the grant SFRH/BD/45554/2008 assured by
FCT.

22



p source R/a =0.5 R/a =1 R/a =5 R/a =10 R/a =50 Plate

0 ref. [46] 124.1581 78.2306 44.0073 42.3579 41.8145 41.7917

present ǫzz = 0 126.2994 79.2626 44.4455 42.7709 42.2192 42.1961

present ǫzz 6= 0 126.0882 79.0008 44.4697 42.8180 42.2741 42.2513

0.2 ref. [46] 115.7499 72.6343 41.7782 40.2608 39.7629 39.7426

present ǫzz = 0 117.3053 73.2663 40.3936 38.8074 38.2988 38.2827

present ǫzz 6= 0 117.0197 73.0034 40.4211 38.8551 38.3528 38.3368

0.5 ref. [46] 106.5014 66.5025 38.7731 37.3785 36.9234 36.9057

present ǫzz = 0 108.0044 67.1623 36.4453 34.9574 34.4922 34.4820

present ǫzz 6= 0 107.6572 66.9033 36.4782 35.0080 34.5478 34.5376

1 ref. [46] 96.2587 59.8521 34.6004 33.3080 32.8881 32.8726

present ǫzz = 0 97.6938 60.5121 32.3691 31.0012 30.5840 30.5792

present ǫzz 6= 0 97.2968 60.2636 32.4101 31.0572 30.6437 30.6386

2 ref. [46] 84.8206 52.7875 28.7459 27.5110 27.1085 27.0937

present ǫzz = 0 86.2288 53.4659 28.7833 27.5984 27.2474 27.2472

present ǫzz 6= 0 85.8028 53.2311 28.8329 27.6602 27.3109 27.3102

10 ref. [46] 65.2296 41.6702 20.4691 19.4357 19.0922 19.0778

present ǫzz = 0 66.7088 42.4365 25.0772 24.3034 24.0791 24.0802

present ǫzz 6= 0 66.3594 42.2155 25.1038 24.3401 24.1168 24.1171

∞ ref. [46] 57.2005 36.2904 19.8838 19.1385 18.8930 18.8827

present ǫzz = 0 57.0657 35.8131 20.0818 19.3251 19.0759 19.0654

present ǫzz 6= 0 56.9702 35.6948 20.0927 19.3464 19.1006 19.0903
Table 7
Fundamental frequencies of SSSS square FG spherical shell panels composed of alu-
minum and alumina, a/h = 10, for various R/a and p.
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