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Abstract

This paper deals with free vibration problems of functionally graded shells. The
analysis is performed by radial basis functions collocation, according to a higher-
order shear deformation theory that accounts for through-the-thickness deformation.

The equations of motion and the boundary conditions are obtained by Carrera’s
Unified Formulation resting upon the principle of virtual work, and further interpo-
lated by collocation with radial basis functions.

Numerical results include spherical as well as cylindrical shell panels with all edges
clamped or simply supported and demonstrate the accuracy of the present approach.

Keywords: functionally graded materials; shells; free vibration.




1 Introduction

Functionally graded materials (FGM) are a class of composite materials that
were first proposed by Bever and Duwez [1] in 1972. In a typical FGM shell the
material properties continuously vary over the thickness direction by mixing
two different materials [2|. The computational modelling of FGM is an impor-
tant tool to the understanding of the structures behavior, and has been the
target of intense research [2-8|. The continuous development of new structural
materials leads to ever increasingly complex structural designs that require
careful analysis. Although analytical techniques are very important, the use
of numerical methods to solve shell mathematical models of complex struc-
tures has become essential.

The most common numerical procedure for the analysis of the shells is the
finite element method [9-13]. This paper considers collocation with radial
basis fuctions as a meshless technique. A radial basis function, ¢(||lz — ;||
depends on the Euclidian distance between distinct collocation points z;; =
1,2,...,N € R". The unsymmetrical Kansa method [14] is employed in this
work, for its good accuracy and easy implementation. The use of radial basis
function for the analysis of structures and materials has been previously stud-
ied [15-29]. The authors have applied the RBF collocation to the analysis of
composite beams and plates [30-32]. The combination of CUF and meshless
methods has been performed in [33-36] for laminated plates, in [37,38] for
laminated shells, and in [39,40] for FGM plates.

In this paper it is investigated for the first time how the Unified Formulation
by Carrera [41-45,9] can be combined with radial basis functions collocation
to the free vibration analysis of thin and thick FG shells, using a higher-
order shear deformation theory (HSDT), allowing for through-the-thickness
deformations. The effect of €., # 0 in these problems is also investigated. The
quality of the present method in predicting free vibrations of thin and thick
FG shells is demonstrated through numerical examples.

2 The Unified Formulation applied to shell HSDT

The Unified Formulation (UF) proposed by Carrera has been applied in several
finite element analysis of beams, plates, and shells, either using the Principle
of Virtual Displacements, or by using the Reissner’s Mixed Variational theo-
rem. The stiffness matrix components, the external force terms or the inertia
terms can be obtained directly with this UF, irrespective of the shear defor-
mation theory being considered. We present in the following the details of the
formulation.
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Fig. 1. Geometry and notations for a multilayered shell (doubly curved).

2.1 Shell geometry

Shells are bi-dimensional structures in which one dimension (in general the
thickness in z direction) is negligible with respect to the other two in-plane
dimensions. The CUF formulation applied to FGM shells considers virtual
(mathematical) layers of constant thickness. The geometry and the reference
system are indicated in Fig. (1).

2.2 A higher-order shear deformation theory

The present higher-order shear deformation theory involves the following ex-
pansion of displacements

u(a, B, 2,t) = up(a, B,t) + zuy (a0, B, 1) + 2us(a, B, t) (1)
’U(Of, 57 Zat) - UO(aa ﬁ?t) + Zvl(a7ﬁ>t> + 231)3(01, ﬁ?t) (2)
w(a, ﬁ? Zat) = ’LU()(O&, /6a t) + Zwl(a7ﬁat) + 22w2(a767t) (3)

where u, v, and w are the displacements in the a—, f—, and z— directions, re-
spectively. ug, uq, us, vg, v1, v3, Wy, wi, and wy are functions to be determined.
ug, Vg and wy are translations of a point at the middle-surface of the shell, and
uy, V1, u3, v3 denote rotations. The consideration of higher-order terms in w
allows the study of the thickness-stretching effects.

2.3  Governing equations and boundary conditions

The functionally graded shell is divided into a number (N L) of uniform thick-
ness layers. The square of an infinitesimal linear segment in the k-th layer, the



associated infinitesimal area and volume are given by:

ds? = HY do® + HE dB* + H¥ d2*
dQy = HEHE dodf (4)

dVj, = H§ HE Hf da dp dz
where the metric coefficients are:
Hy = A*(1+z/R}), Hi=B"(1+2/R;), Hf=1. (5)

k denotes the k-layer of the multilayered shell; R* and Rg are the principal
radii of curvature along the coordinates o and 3 respectively. A¥ and B* are
the coefficients of the first fundamental form of €. (T'y is the Q4 boundary).
In this work, the attention has been restricted to shells with constant radii of
curvature (cylindrical, spherical, toroidal geometries) for which A* = B* = 1.

The Principle of Virtual Displacements (PVD) for the pure-mechanical case
can be expressed as:

NL NL

T T
> //{éelgc ohe + berg aﬁc}kodz: > " SLE (6)
k=1¢), A, k=1

where € and Aj, are the integration domains in plane («,3) and z direc-
tion, respectively. Here, k indicates the layer and T' the transpose of a vector.
G means geometrical relations and C' constitutive equations and §L* is the
external work for the kth layer.

Stresses and strains are separated into in-plane and normal components, de-
noted respectively by the subscripts p and n. The mechanical strains in the
kth layer can be related to the displacement field w* = {ul, uf, uf} via the
geometrical relations:

€0 = €t €5, €apl’ = (Dp+A)) u', g = [e. e, el.]” = (Do + Dy — Ay u
(7)

The explicit form of the introduced arrays follows:

#7000 00 2,00
Di=|0 %0, D, = 00%, Dy =100.0[, (8
= %0 00 0 00 9,



00 = 00

HkRk HERE
k _ k _
00 0 0 0 O

The 3D constitutive equations are given as:
Cpp pG + Cpn nG

_ ik
OC_Cn pG+Cnn nG

Cr,, Ck, an

pn?

nd

In the case of functionally graded materials, the matrices C*

pp?
Ck  are reduced to:

k k
Cp:n - sz Cfl 0 Cpn =100 O{Cz
0 0 C’ff4 00 0O
- (11)
0 00 Ck 0 0
k k
Cnp =10 00 C..=10 Cf4 0
ch Chy 0 0 0 ch

The computation of elastic constants C’Z-kj for each layer, considers the following
steps:

(1) computation of volume fraction of the ceramic and metal phases
(2) computation of elastic properties E* and v*
3) computation of elastic constants C;;

j

In the present work, the volume fraction of the ceramic phase is defined ac-
cording to the power-law:

vk = (0.5 + Z)p (12)

being z € [—h/2, h/2], h the thickness of the shell, and the exponent p a scalar
parameter that defines gradation of material properties across the thickness
direction. The volume fraction of the metal phase is given as V¥ =1 — VF.

The Young’s modulus, E*, and Poisson’s ratio, v*, are computed by the law-
of-mixtures:

Ek(z) = Emel + ECVCk; Vk(z) = van]fi + VCVCk; (13)



Then, the computation of the elastic constants C’fj is performed, depending on
the assumption of e,,. If €,, = 0, then C’fj are the plane-stress reduced elastic
constants:

EF EF i EF

1—(yk)23 Cfy = v - ; O =0 (14)

ko .
Cll - 1 — (Vk)Qv C’44 2<1 + Vk),

where E* is the modulus of elasticity, v* is the Poisson’s ratio found in previous
step.

If €.. # 0 (thickness-stretching), then CJ are the three-dimensional elastic
constants, given by

B (1 — ()?) BX(" + (4)?)
C’fl = 1= 3(vk)2 — 2(k)3 fz = 1 —3(vk)2 — 2(vk)3 (15)
LA (S Uoo 19

21+ k) BT T 3(vk)2 — 2(vk)3
The three displacement components u,, ug and u, (given in (1) to (3)) and
their relative variations can be modelled by CUF as:

(uan ug, uz) - FT (um—a Ugr, uzr) (5ua7 5“67 5uz) - Fs (6ua87 6uﬂs> 6“25)
(17)

where F, are functions of the thickness coordinate z and 7 is a sum index. In
the present formulation the thickness functions are

Fsua = Lsup — FTua = Lrup — [1 z 23} (18>
for in-plane displacements u, v and
Fay=Fu=[1 2z 2 (19)

for transverse displacement w. All the terms of the equations of motion are
then obtained by integrating through the thickness direction.

Substituting the geometrical relations, the constitutive equations and the uni-
fied formulation into the variational statement PVD, for the kth layer, one
obtains:

NL
S, [ Dy + AN (C(Dy + Ay’ + O (Do + Dy = A+
((Dpq 4 Dy — Ap)ouM)(CL (D, + Apu* + CL, (Dypq + D,y — Ay)ub) dQydz}
NL
=Y ot
k=1
(20)



At this point, the formula of integration by parts is applied:
T T T
Dg)da") a*dQ, = — [ sa*" ((D§)a*) d0 sa™ ((Ig)a")dr
|, (Da)sat)" atden = — [ 6a*" ((Df)a) dy + [ 50" ((Ta)a")
(21)
where I, matrix is obtained applying the Divergence theorem:

O

dv = ﬁniwds (22)

being n; the components of the normal n to the boundary along the direc-
tion 7. After integration by parts and the substitution of CUF, the governing
equations and boundary conditions for the shell in the mechanical case are
obtained:

Z{ / / (0uf"[(~D, + A,)"F.(C" (D, + A,)Fauf + C¥ (Dyo + D, — A,)Foub)]+
o
6u’“T[(—DnQ +D,. — A,) ' F,(Ct (D, + A,)Fyul + CE (Do + D, — A,) Frub)|}dQudz )
+ Z{/ / (0u!T[ITF,(CF (D, + Ay Foul + CF (Dyg + D, — A,) Frub)]+
sul I}, F(Ch, (D, — Ay Fyul + C}, (Do + D, — Ay) Frul)|}dTpdz}

NL
=Y sulTFpl}
k=1 7%

(23)
k k )
where I’ and I}, depend on the boundary geometry:
7 00 00 7
T’LB n
Z—‘; 7 0 00 0
The normal to the boundary of domain 2 is:
Ng cos(pq
T L (25)
g cos(pp)

where ¢, and ¢z are the angles between the normal 7 and the direction av and
B respectively.



The governing equations for a multi-layered shell subjected to mechanical
loadings are:

gT .

ou K. vy =P, (26)

where the fundamental nucleus K#7¢ is obtained as:

K”ZZLS = /A {[_Dp + Ap]T Cl;p[Dp + Ap] + [_Dp + AP]T Clgn[DnQ + Dnz - An]+
k

[_Dnﬂ + Dnz - An]T Cﬁp[Dp + Ap] + [_Dnﬂ + Dnz - An]T Cﬁn[DnQ + Dnz - An]
F,F,HYH) d= .

(27)
and the corresponding Neumann-type boundary conditions on I'y are:
I uy = I a7 (28)
where:
ITrs — /A k {I;F C! D, + A7)+ 17 C* Do+ D,. — A]]+ 0

IICL[D,+ Al +1I), Cr [Duo+ D,.— A]]|F,F,HH) d= .

and P* are variationally consistent loads with applied pressure.



2.4 Fundamental nuclei

The fundamental nucleo K*7¢ is reported for functionally graded doubly curved
shells (radii of curvature in both « and g directions (see Fig.1)):

(KiF),, = —ChJadnds — ChiJ /ﬁagaﬁ

Jszs

+ ij4 (Jk‘TzSz . Jg:TSz + Jg}';)

ROé Rak RQ

k

Tsk k 7kTs QT 9s k 71kTs Qs QT
(Kw)u:—(JuJ 0L05 — Ch, T2 0307

Jk*rosl " Ck
B/ 12 Rﬂk

T8k _ k kTs qr k 7kTs. aT
(KuF) = —Cli— o JETST — Yy JET 0]
1

i Ch (570 - ke

Tsk k 1kTs Qs AT k 7kTs QT Qs
(K7iF),, = —ChJ* 0505 — C,J 40705

Tsk o k 7kTs Qs QT k T1kTsAqs AT k 71kTs QT Qs k 1kTs Os
(K““ )22 o _022‘]@/58685 — CgJ"°0 aﬁ — CJ" ™0 55 — 044J

/aaa

+ 054 (Jk‘rzsz o Jk'rzs . Jkrsz + Jk’TS)

R/D’k Rﬁk R

1
kTs k kTs AT k 7kTs. aT

+Ck <J§72583 — k7 8)
44 B Rﬁ a/BYB

kTs
JEs0s + C

/aa

T8k _ ik kTs s k7.5 s
(KF),, = CHR% ”Rﬁkj 05 + Ct, 520

TS, OT 1 TS AT
- Cf4];:4 < k Za R g/oc oz)
ag

1
T8k . k kTs qs k

1
o Ck <JC];J’TSZ aT o JZ:TS@T)
44 B Rg, /BYB

J’f;gaﬁ + Ch k20

(K7F),, = Ct J’“}j +C3 Jk;g + Chy JAT

11 R2 22 R2
k kTs k kT.s kTs, k’rzs kTs,
+20%, Rak Rﬁk JhTS 4 ok, —— Rak (J5=* + JF) + ¢, ng (Tl =)
— Oy Ja50505 — CiyJ570050] (30)



where

Ha Hp

JETS RS TR J’”S J’”S Jy = | F.F,(1,H,, H JH, Hyg) dz
( s Jag’) " ( Ho g L 5)
OF, H H
Jszs (]szs Jk’rzs Jk'rzs Jszs Jk:TZs — F 1 f[oz H ,3 H H dz
( B Yap ) Ay 82 ( y By T F[B f[a 5)
H, H
(Jk’rsz JkTSZ Jk’rsz J]CTSZ Jk’rsz’Ji:gsz / F 1 f[a; f[ﬁu 5 H f[ﬂ) dz
OF. 8F H H
] kTys kT.s kT.s kTzs kT.s T B
wse JhTess Jhess Jhress phress | phress) 1,H,, Hy,  H,Hy) d
(TE58 JaT, JGT T, T o ™) Akaz@z( P Hy' Hy 5) d2
(31)

The application of boundary conditions makes use of the fundamental nucleo
I1, in the form:

= naCY, J57005 + 15 Ciy 17505

= naCfQJ’”Sag + ngCF, JE 508

chl Jk;; +Nap— R CfQ T 4o Oy JkTSZ

= ngCF,J*50° + naCLJkTS(()g

= naC44J§TS i nngkaﬁaﬁ + ngChs JT508 + naC’é%JkTS@ﬁ

/o

— nﬁRika Jk'rs + n,BR Cvéczl]k'rs + nﬁck Jkrsz

_ 1 k 71kTs k 7kTs,
wu )31 = Na R, Ciadgja +1aCiyJs
1
Tsk _ k 71kTs k 7kTs.
(Huu )32 = nNg R/J)k CY44‘] /B + nBC44Ja

(T3, = naCluT57adi +nsCli 57505 (32)

Note that all the equations written for the shell degenerate in those for the

1
plate when —— = —— = 0. In practice, the radii of curvature are set to 10°
Rar  Rgg

for analysis of plates with the present formulation.

10



2.5 Dynamic governing equations

The PVD for the dynamic case is expressed as:

NL . . NL NL

> //{éelgc ‘71];0 + 0k, asc}kodz => //pk5ukTﬁdekdz+ S oLk

k=1¢ A, k=1¢, A, k=1
(33)

where p* is the mass density of the k-th layer and double dots denote acceler-
ation.

By substituting the geometrical relations and the constitutive equations, one
obtains the following governing equations:

T,
S

su KM ub = MFsik o+ P (34)

In the case of free vibrations one has:

8T
S

su KFrsub = MFiik (35)

where M*™* is the fundamental nucleus for the inertial term, given by

My = a5 1= (36)
M =0, i)

kTs

The meaning of the integral Ji3* has been illustrated in eq. (31). The geomet-
rical and mechanical boundary conditions are the same of the static case.

3 The radial basis function method for free vibration problems

Consider a linear elliptic partial differential operator £ acting in a bounded
region €2 in R™ and another operator Lg acting on a boundary 0€). The eigen-
problem looks for eigenvalues () and eigenvectors (u) that satisfy

Lu+ Au=0in () (37)
Lpu =0 on 0 (38)

The eigenproblem defined in (37) and (38) will be replaced by a finite-dimensional
eigenvalue problem, after the radial basis approximations.

11



The radial basis function (¢) approximation of a function (u) is given by

u(x) I;ai¢(|!x—yzl|z),X€R" (39)

where y;,7 = 1,.., N is a finite set of distinct points (centers) in R™.

Derivatives of 1 are computed as

on X 0¢;
= . 4
ox jz::l% ox (40)
32{1 N a2¢
e z;ozj 8x2] ,etc (41)
J:

In the present collocation approach, one needs to impose essential and natural
boundary conditions. Consider, for example, the condition w = 0, on a simply
supported or clamped edge. The conditions are enforced by interpolating as

N
w=0—=> aVe; =0 (42)
j=1
Other boundary conditions are interpolated in a similar way:.

Examples of some common RBFs are

Cubic:

o(r) =r
Thin plate splines:  ¢(r) = r?log(r)
Wendland functions: ¢(r) = (1 —7)"'p(r)
Gaussian:  ¢(r) = e~ )’
Multiquadrics:  ¢(r) = Ve + 12
(7)

Inverse Multiquadrics: ¢

where the Euclidian distance r is real and non-negative and c¢ is a posi-
tive shape parameter. Considering N distinct interpolations, and knowing
u(z;),7 =1,2,..., N, one finds «; by the solution of a N x N linear system

Aa=u (43)
where A = [¢ (|| — yill2) yun> @ = [@1, Q2, ..., any]T and u = [u(z1), u(xa), ..., u(zy)]".
The solution of the eigenproblem by radial basis functions considers N; nodes

in the interior of the domain and N nodes on the boundary, witha total

12



number of nodes N = N; + Np. The interpolation points are denoted by
;€ Qi =1,...,Nrand x; € 09,7 = Ny + 1,...,N. At the points in the
domain, the following eigenproblem is defined

N
Zazﬁqﬁ(ﬂx—yzﬂg) :Aﬁ(QT]),] = 1,2,,N[ (44)
i=1

or

Lo = Mu! (45)
where
L' =[Lo (I = yill2)] ny (46)

At the points on the boundary, the imposed boundary conditions are

N
i=1

or

Ba =0 (48)

where B = Lo [(||xn,+1 — yj||2)]NB><N'

Therefore, one can write a finite-dimensional eigenvalue problem and solve
equations (45) and (48) as a generalized eigenvalue problem

L A’
o=\ o (49)
B 0

where
Al = ¢ [(|lzn, — Yill2)ln,

For free vibration problems an harmonic solution is assumed for the displace-
ments ug, 41, Vg, V1, * -

wt, wt,

ug = Up(z,y)e™";  uy = Up(w,y)e™s  uz = Us(x,y)e™”
vo = Volz,y)e™s v = Vi(z,y)e™; vy = Vs(z,y)e™! (50)

wt, wt,

wo = Wo(z,y)e™";  wy = Wi(z,y)e™; we = Wa(z,y)

eiwt

where w is the frequency of natural vibration. Substituting the harmonic ex-
pansion into equations (49) in terms of the amplitudes Uy, Uy, Us, Vo, Vi, Vs, Wy, Wi, Wa,
one can obtain the natural frequencies and vibration modes for the plate or

shell problem, by solving the eigenproblem

13



£-wG|X =0 (51)

where £ collects all stiffness terms and G collects all terms related to the
inertial terms. In (51) X are the modes of vibration associated with the natural
frequencies defined as w.

4 Numerical results

In this section the higher-order shear deformation theory is combined with
radial basis functions collocation for the free vibration analysis of functionally
graded shell panels. Examples include spherical (R, = R, = R) as well as
cylindrical (R, = R and R, = 00) shell panels with all edges clamped (CCCC)
or simply supported (SSSS). Particular cases of these are also considered:
isotropic materials (fully ceramic, p = 0, and fully metal, p = oo) and plates
(R, = R, = 0).

To study the effect of €., # 0 in these problems, the case €,, = 0 is imple-
mented by considering w = wy instead (3).

Results are compared with those from Pradyumna and Bandyopadhyay [46],
who used finite elements formulation and a HSDT disregarding through-the-
thickness deformations.

The following material properties are used:

silicon nitride (Si3Ny):

E. = 322.2715GPa, v, = 0.24, p. = 2370K g/m? (52)
stainless steel (SUS304):

E,, = 207.7877GPa, v,, = 0.31776, p,, = 8166 K g/m? (53)
aluminum:

E,, = T0GPa, v, = 0.3, p, = 2707TKg/m* (54)
alumina:

E. = 380G Pa, v. = 0.3, p. = 3000K g/m® (55)

The non-dimensional frequency is given as

Eph?
12(1—12)

5 | Pmh

w = wa o where D = (56)

In all numerical examples a Chebyshev grid is employed (see figure 2) and the

14



grid 132 172 192 212

15t 60.3483 | 60.3431 | 60.3499 | 60.3479
2nd | 1152450 | 115.2134 | 115.2315 | 115.2044
3rd | 115.3917 | 115.3665 | 115.3755 | 115.3347
4% 1162.1741 | 162.0337 | 162.0727 | 162.0860

Table 1
Initial study. Square CCCC FG cylindrical panel, SigNy and SUS304, a/h = 10,
a/R=0.1,p=0.2.

Wendland function defined as
p(r)=1—cr)d (32(0 r)? 4+ 25(cr)? +8cr + 1) (57)

Here, the shape parameter (c) is obtained by an optimization procedure, as
detailed in Ferreira and Fasshauer [47].

o o
0.8
06 e o o . . . . . o . . o o oo
0.4

0.2

_0.2,
—0.4k

o
—0Bgpee o o o o . B o . o e o o oo

o o
-0.81
. o

.
—18-3 313 3 gL s | g I g 3 L g [ s 13 3

Fig. 2. A sketch of a Chebyshev grid for 172 points

An initial study was performed to show the convergence of the present ap-
proach and select the number of points to use in the computation of the
vibration problems. Results are presented in table 1 and refer to the first
four vibration modes of a clamped functionally graded cylindrical shell panel
composed of silicon nitride (52) and stainless steel (53), with side-to-thickness
ratio a/h = 10, side-to-radius ratio a/R = 0.1, power law exponent p = 0.2,
and a = b= 2. A 17% grid was chosen for the following vibration problems.

15



p=0 p=202 p=2 p=10 p =00

mode | source (Si3Nyg) (SUS304)
1 ref. [46] 72.9613 | 60.0269 | 39.1457 | 33.3666 | 32.0274
ref. [48] 74.518 07.479 40.750 35.852 32.761

present €,, = 0 | 74.2634 | 60.0061 | 40.5259 | 35.1663 | 32.6108
present €,, # 0 | 74.5821 | 60.3431 | 40.8262 | 35.4229 | 32.8593

2 ref. [46] 138.5552 | 113.8806 | 74.2915 | 63.2869 | 60.5546
ref. [48] 144.663 | 111.717 78.817 69.075 63.314
present €,, =0 | 141.6779 | 114.3788 | 76.9725 | 66.6482 | 61.9329
present €,, # 0 | 142.4281 | 115.2134 | 77.6639 | 67.1883 | 62.4886

3 ref. [46] 138.5552 | 114.0266 | 74.3868 | 63.3668 | 60.6302
ref. [48] 145.740 | 112.531 79.407 69.609 63.806
present €,, = 0 | 141.8485 | 114.5495 | 77.0818 | 66.7332 | 62.0082
present €., # 0 | 142.6024 | 115.3665 | 77.7541 | 67.2689 | 62.5668

4 ref. [46] 195.5366 | 160.6235 | 104.7687 | 89.1970 | 85.1788
ref. [48] 206.992 | 159.855 | 112.457 | 98.386 90.370
present €,, = 0 | 199.1566 | 160.7355 | 107.9484 | 93.3350 | 86.8160
present €., # 0 | 200.3158 | 162.0337 | 108.9677 | 94.0923 | 87.6341

Table 2
First 4 modes of a CCCC square FG cylindrical shell panel, Sig/Ny and SUS304,
a/h =10, a/R = 0.1, for several p.

4.1 Clamped functionally graded cylindrical shell panel

The free vibration of clamped FG cylindrical shell panels is analysed.

In table 2 the first 4 vibration modes of a square clamped FG cylindrical shell
panel with constituents silicon nitride (52) and stainless steel (53), side-to-
thickness ratio a/h = 10, side-to-radius ratio a/R = 0.1, and several power
law exponents p are presented. Results are compared with [46] and those
from Yang and Shen [48], with the differential quadrature approximation and
Galerkin technique, both neglecting through-the-thickness deformations.

In figure 3 the first 4 modes of a CCCC square FG cylindrical shell panel, with

constituents silicon nitride and stainless steel, ratios a/h = 10 and R/a = 10,
and power law exponent p = 0.2 are presented.
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Fig. 3. First 4 modes of a CCCC square FG cylindrical shell panel, SizN,; and
SUS304, a/h =10, a/R=10.1, p=0.2.

The fundamental frequency of square clamped FG cylindrical shell panels com-
posed of aluminum (54) and alumina (55), with side-to-radius ratio a/R = 0.1,
various side-to-thickness ratios a/h and power law exponents p are presented
in table 3.

The results of the present approach in tables 2 and 3 compare well with ref-
erences. The combination of present HSDT and the meshless technique based
on collocation with radial basis function shows very good accuracy in the free
vibration analysis of FG shells.

In table 4 the fundamental frequency of square clamped FG cylindrical shell
panels composed of aluminum (54) and alumina (55), with side-to-thickness

ratios a/h = 10, are presented considering various side-to-radius ratio a/R,
and power law exponents p.

4.2 Simply supported functionally graded cylindrical shell panel

The free vibration of simply supported FG cylindrical shell panels is now
analysed.
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p | source a/h =5 | a/h=10 | a/h =15 | a/h =20 | a/h =50 | a/h =100
FSDT 56.5548 | 70.8035 | 75.7838 | 77.5654 | 85.4346 | 103.4855
ref. [46| 58.2858 | 71.7395 | 75.0439 | 77.0246 | 84.8800 | 102.9227
present €., =0 | 59.0433 | 72.3272 | 76.4904 | 78.4918 | 85.6073 | 102.3351
present €,, # 0 | 59.7741 | 72.8141 | 76.8148 | 78.7342 | 85.7713 | 102.7871

0.5 | FSDT 47.2468 | 57.7597 | 62.2838 | 63.8393 | 70.3199 | 87.1049
ref. [46] 48.7185 | 58.5305 | 61.5835 | 63.1381 | 69.8604 | 86.5452
present €., =0 | 49.3050 | 59.5188 | 62.6780 | 64.2371 | 70.4237 | 85.4780
present €., # 0 | 49.9508 | 59.9353 | 62.9544 | 64.4438 | 70.5664 | 85.9029

1 | FSDT 42.0305 | 51.0884 | 55.4209 | 56.7991 | 62.8458 T7.7762
ref. [46] 43.4243 | 52.0173 | 54.7015 | 56.0880 | 62.2152 77.0774
present €., =0 | 43.9548 | 52.8776 | 55.6437 | 57.0255 | 62.7088 76.6386
present €, # 0 | 44.5754 | 53.2759 | 55.9081 | 57.2226 | 62.8414 77.0381

Table 3
Fundamental frequencies of CCCC square FG cylindrical shell panels composed of
aluminum and alumina, R/a = 0.1, for various a/h and p.

Table 5 presents the fundamental frequency of a square simply supported FG
cylindrical shell panel with constituents aluminum (54) and alumina (55),
length-to-thickness ratio a/h = 10, and several length-to-radius ratio a/ R and
several power law exponents p as well.

In figure 4 the relationships between fundamental frequency and the radius-to-
length ratio R/a is visualized for various power law exponents p. It refers to the
square simply supported FG cylindrical shell panel composed from aluminum
(54) and alumina (55), with side-to-thickness ratio a/h = 10. The graphic on
the left was obtained from tabulated values on table 5 and the right one is
more detailed for values of p smaller or equal than 5 (p = 0.5,1,2,3,4,5).

4.8 Clamped functionally graded spherical shell panel

We now study the free vibration of clamped FG spherical shell panels.

The fundamental frequency of a square clamped FG spherical shell panel
with constituents aluminum (54) and alumina (55), and side-to-thickness ratio
a/h = 10, considering various side-to-radius ratios a/ R, and several power law
exponents p are presented in table 6.
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p | source R/a =05 | R/a=1| R/a=5| R/a=10 | R/a =50 | Plate
ref. [46] 129.9808 | 94.4973 | 71.8861 | 71.0394 | 70.7660 | 70.7546
present €,, =0 | 133.6037 | 95.5849 | 73.1640 | 72.3304 | 72.0614 | 72.0502
present €., # 0 | 134.5056 | 96.0131 | 73.6436 | 72.8141 | 72.5465 | 72.5353

0.2 | ref. [46] 119.6109 | 87.3930 | 68.1152 | 67.3320 | 67.0801 | 67.0698
present €, =0 | 121.8612 | 87.8148 | 66.6620 | 65.8808 | 65.6371 | 65.6299
present €,, # 0 | 122.7375 | 88.1659 | 67.1004 | 66.3235 | 66.0814 | 66.0743

0.5 | ref. [46] 108.1546 | 79.5689 | 63.1896 | 62.4687 | 62.2380 | 62.2291
present €., =0 | 110.2017 | 80.0146 | 60.2477 | 59.5215 | 59.3022 | 59.2985
present €,, # 0 | 111.0739 | 80.3049 | 60.6568 | 59.9353 | 59.7178 | 59.7142

1 | ref. [46] 96.0666 | 71.2453 | 56.5546 | 55.8911 | 55.6799 | 55.6722
present €,, =0 | 97.9069 | 71.6716 | 53.5430 | 52.8800 | 52.6864 | 52.6856
present €., # 0 | 98.7955 | 71.9167 | 53.9340 | 53.2759 | 53.0841 | 53.0835

2 | ref. [46] 84.4431 | 62.9748 | 36.2487 | 35.6633 | 35.4745 | 35.4669
present €., =0 | 86.3088 | 63.4398 | 47.5205 | 46.9447 | 46.7820 | 46.7835
present €,, # 0 | 87.2271 | 63.6675 | 47.9060 | 47.3343 | 47.1726 | 47.1741

10 | ref. [46] 69.8224 | 51.3803 | 33.6611 | 33.1474 32.9812 | 32.9743
present €., =0 | 71.7634 | 52.0900 | 40.8099 | 40.4145 | 40.3028 | 40.3037
present €,, # 0 | 72.3922 | 52.2780 | 41.0985 | 40.7046 | 40.5923 | 40.5929

oo | ref. [46] 61.0568 | 44.2962 | 32.4802 | 32.0976 | 31.9741 | 31.9689
present €., =0 | 60.3660 | 43.1880 | 33.0576 | 32.6810 | 32.5594 | 32.5543
present €,, # 0 | 60.7735 | 43.3815 | 33.2743 | 32.8995 | 32.7786 | 32.7735

Table 4

Fundamental frequencies of CCCC square FG cylindrical shell panels composed of
aluminum and alumina, a/h = 10, for various R/a and p.

4.4 Simply supported functionally graded spherical shell panel

This example considers the free vibration of simply supported FG spherical
shell panels.

The fundamental frequency of a square simply supported FG spherical shell
panel composed of aluminum (54) and alumina (55), with side-to-thickness
ratio a/h = 10, are presented in table 7 considering various side-to-radius

ratios a/ R as well power law exponents p.
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p | source R/a =05 | R/a=1| R/a=5| R/a=10 | R/a =50 | Plate
ref. [46] 68.8645 | 51.5216 | 42.2543 | 41.9080 | 41.7963 | 41.7917
present €,, =0 | 70.1594 | 52.1938 | 42.6701 | 42.3153 | 42.2008 | 42.1961
present €,, # 0 | 69.9872 | 52.1101 | 42.7172 | 42.3684 | 42.2560 | 42.2513

0.2 | ref. [46] 64.4001 | 47.5968 | 40.1621 | 39.8472 | 39.7465 | 39.7426
present €., =0 | 65.3889 | 47.9338 | 38.7168 | 38.3840 | 38.2842 | 38.2827
present €,, # 0 | 65.2100 | 47.8590 | 38.7646 | 38.4368 | 38.3384 | 38.3368

0.5 | ref. [46] 59.4396 | 43.3019 | 37.2870 | 36.9995 | 36.9088 | 36.9057
present €., =0 | 60.4255 | 43.6883 | 34.8768 | 34.5672 | 34.4809 | 34.4820
present €,, # 0 | 60.2422 | 43.6239 | 34.9273 | 34.6219 | 34.5365 | 34.5376

1 | ref. [46] 53.9296 | 38.7715 | 33.2268 | 32.9585 | 32.8750 | 32.8726
present €., =0 | 54.8909 | 39.1753 | 30.9306 | 30.6485 | 30.5759 | 30.5792
present €., # 0 | 54.7074 | 39.1246 | 30.9865 | 30.7077 | 30.6355 | 30.6386

2 | ref. [46] 47.8259 | 34.3338 | 27.4449 | 27.1789 | 27.0961 | 27.0937
present €,, =0 | 48.7807 | 34.7654 | 27.5362 | 27.2979 | 27.2423 | 27.2472
present €,, # 0 | 48.6005 | 34.7289 | 27.5977 | 27.3616 | 27.3055 | 27.3102

10 | ref. [46] 37.2593 | 28.2757 | 19.3892 | 19.1562 19.0809 | 19.0778
present €., =0 | 38.2792 | 28.8072 | 24.2472 | 24.1063 | 24.0762 | 24.0802
present €,, # 0 | 38.1172 | 28.7611 | 24.2839 | 24.1444 24.1125 | 24.1171

oo | ref. [46] 31.9866 | 24.1988 | 19.0917 | 18.9352 18.8848 | 18.8827
present €., =0 | 31.7000 | 23.5827 | 19.2796 | 19.1193 | 19.0675 | 19.0654
present €,, # 0 | 31.6222 | 23.5448 | 19.3008 | 19.1433 | 19.0924 | 19.0903

Table 5

Fundamental frequencies of SSSS square FG cylindrical shell panels composed of
aluminum and alumina, a/h = 10, for various R/a and p.

4.5  Discussion

All results presented in tables 2 to 7 are in excellent agreement with references
considered. Exceptions are p = 10 and R/a = 5,10,50 for the SSSS panels,
and p = 2,10 and R/a = 5,10, 50 for the CCCC panels. The authors did not

find any explanation for these exceptions.

A detailed analysis of previous tables lead us to the following conclusions:

¢ Boundary conditions: Clamped FG shell panels present higher frequency
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Fig. 4. Fundamental frequency as a function of the radius-to-length ratio for several
.

values than simply supported ones.

e Geometry: Lower radii of curvature values present higher frequency values,
i. e., the fundamental frequency decreases as the ratio R/a increases.

e Material properties: The fundamental frequency of FG shell panels de-
creases as the exponent p in power-law increases.

Another conclusion from all tables, as easily seen in figure 4, is that the fun-
damental frequency decreases as the radius of curvature increases. The fall-off
is faster for smaller values of R (R/a) and then shows fast convergence.

The effect of €,, # 0 shows significance in thicker shells (see table 2) and seems
independent of the radius of curvature (see tables 4 to 7).

5 Concluding remarks

For the first time, Carrera’s Unified Formulation was combined with the ra-
dial basis functions collocation technique for the free vibration analysis of
functionally graded shells. A higher-order shear deformation theory that al-
lows extensibility in the thickness direction was implemented and the effect of
€., # 0 was studied.

Numerical results were compared with other sources and the present approach
demonstrated to be successful in the free vibration analysis of functionally
graded shells and easy to implement.
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p | source R/a=05| R/a=1 | R/a=5| R/a=10 | R/a =50 | Plate
ref. [46] 173.9595 | 120.9210 | 73.5550 | 71.4659 | 70.7832 | 70.7546
present €,, =0 | 176.8125 | 122.0934 | 74.8207 | 72.7536 | 72.0784 | 72.0502
present €., # 0 | 176.8356 | 122.3533 | 75.2810 | 73.2322 | 72.5633 | 72.5353

0.2 | ref. [46] 161.3704 | 112.2017 | 69.6597 | 67.7257 | 67.0956 | 67.0698
present €, =0 | 163.0852 | 112.7143 | 68.2142 | 66.2686 | 65.6498 | 65.6299
present €,, # 0 | 163.0460 | 112.8132 | 68.6329 | 66.7063 | 66.0938 | 66.0743

0.5 | ref. [46] 147.4598 | 102.5983 | 64.6114 | 62.8299 | 62.2519 | 62.2291
present €., =0 | 149.0931 | 103.1804 | 61.6902 | 59.8745 | 59.3112 | 59.2985
present €,, # 0 | 149.0095 | 103.1490 | 62.0789 | 60.2831 | 59.7265 | 59.7142

1 | ref. [46] 132.3396 | 92.2147 | 57.8619 | 56.2222 | 55.6923 | 55.6722
present €., =0 | 133.8751 | 92.8282 | 54.8597 | 53.1956 | 52.6921 | 52.6856
present €., # 0 | 133.7710 | 92.6962 | 55.2302 | 53.5864 | 53.0895 | 53.0835

2 | ref. [46] 116.4386 | 81.3963 | 37.3914 | 35.9568 | 35.4861 | 35.4669
present €, =0 | 118.0167 | 82.0948 | 48.6656 | 47.2135 | 46.7849 | 46.7835
present €,, # 0 | 117.9317 | 81.9179 | 49.0328 | 47.5990 | 47.1754 | 47.1741

10 | ref. [46] 92.1387 64.8773 | 34.6658 | 33.4067 | 32.9916 | 32.9743
present €,, =0 | 93.9111 65.8103 | 41.6016 | 40.5998 | 40.3049 | 40.3037
present €., # 0 | 93.8398 65.7018 | 41.8796 | 40.8883 | 40.5946 | 40.5929

oo | ref. [46] 80.7722 56.2999 | 33.2343 | 32.2904 | 31.9819 | 31.9689
present €., =0 | 79.8889 55.1653 | 33.8061 | 32.8722 | 32.5671 | 32.5543
present €,, # 0 | 79.8994 05.2827 | 34.0141 | 33.0884 | 32.7862 | 32.7735

Table 6

Fundamental frequencies of CCCC square FG spherical shell panels composed of

aluminum and alumina, a/h = 10, for various R/a and p.
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p | source R/a =05 | R/a=1| R/a=5| R/a=10 | R/a =50 | Plate
ref. [46] 124.1581 | 78.2306 | 44.0073 | 42.3579 | 41.8145 | 41.7917
present €,, =0 | 126.2994 | 79.2626 | 44.4455 | 42.7709 | 42.2192 | 42.1961
present €,, # 0 | 126.0882 | 79.0008 | 44.4697 | 42.8180 | 42.2741 | 42.2513

0.2 | ref. [46] 115.7499 | 72.6343 | 41.7782 | 40.2608 | 39.7629 | 39.7426
present €., =0 | 117.3053 | 73.2663 | 40.3936 | 38.8074 | 38.2988 | 38.2827
present €,, # 0 | 117.0197 | 73.0034 | 40.4211 | 38.8551 | 38.3528 | 38.3368

0.5 | ref. [46] 106.5014 | 66.5025 | 38.7731 | 37.3785 | 36.9234 | 36.9057
present €., =0 | 108.0044 | 67.1623 | 36.4453 | 34.9574 | 34.4922 | 34.4820
present €,, # 0 | 107.6572 | 66.9033 | 36.4782 | 35.0080 | 34.5478 | 34.5376

1 | ref. [46] 96.2587 | 59.8521 | 34.6004 | 33.3080 | 32.8881 | 32.8726
present €., =0 | 97.6938 | 60.5121 | 32.3691 | 31.0012 | 30.5840 | 30.5792
present €., # 0 | 97.2968 | 60.2636 | 32.4101 | 31.0572 | 30.6437 | 30.6386

2 | ref. [46] 84.8206 | 52.7875 | 28.7459 | 27.5110 | 27.1085 | 27.0937
present €,, =0 | 86.2288 | 53.4659 | 28.7833 | 27.5984 | 27.2474 | 27.2472
present €,, # 0 | 85.8028 | 53.2311 | 28.8329 | 27.6602 | 27.3109 | 27.3102

10 | ref. [46] 65.2296 | 41.6702 | 20.4691 | 19.4357 | 19.0922 | 19.0778
present €., =0 | 66.7088 | 42.4365 | 25.0772 | 24.3034 | 24.0791 | 24.0802
present €,, # 0 | 66.3594 | 42.2155 | 25.1038 | 24.3401 24.1168 | 24.1171

oo | ref. [46] 57.2005 | 36.2904 | 19.8838 | 19.1385 18.8930 | 18.8827
present €., =0 | 57.0657 | 35.8131 | 20.0818 | 19.3251 19.0759 | 19.0654
present €,, # 0 | 56.9702 | 35.6948 | 20.0927 | 19.3464 | 19.1006 | 19.0903

Table 7

Fundamental frequencies of SSSS square FG spherical shell panels composed of alu-

minum and alumina, a/h = 10, for various R/a and p.
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