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Chapter 1

Introduction

The physics of black holes[1, 2], with its phenomenological and theoretical im-

plications, has a great impact on many branches of natural science, such as:

cosmology, astrophysics, particle physics, mathematical physics and quan-

tum information theory[3, 4]. This is not so strange in view of the fact that,

owing to “The singularities of gravitational collapse and cosmology” of S. W.

Hawking and R. Penrose[5], the existence of black holes seems to be a con-

sequence of Einstein’s theory of general relativity[3] and its generalizations

such as supergravity[6, 7, 8], superstrings and M-Theory[9, 10].

A fundamental aspect of black hole physics is in their thermodynamic

properties that seem to encode fundamental insights of a not yet “discovered

final theory” of quantum gravity. In this context a “fascinating role” is played

by “Bekenstein-Hawking”, or B −H (o BH ) entropy formula [11, 12]:

SBH =
kB
`2p

A

4
; (1.1)

where `2p = G~/c3 is the squared Planck length and kB is Boltzmann’s con-

stant. The subscript BH stands either for “Bekenstein-Hawking” or “black

hole”. The black hole entropy is proportional to the area of its event horizon

A.

This relation between a geometric quantity (A) and a thermodynamic

quantity (SBH) is a fundamental aspect that motivated much theoretical

1



2 CHAPTER 1. INTRODUCTION

work in the last decades. In fact a microscopic statistical explanation of BH

entropy formula, related to microstate counting, has been regarded as possi-

ble only within a satisfactory and consistent formulation of quantum gravity

[3]. Superstring theory is a serious candidate for a theory of quantum grav-

ity and, as such, should eventually provide such a microscopic explanation of

the entropy formula [13, 14, 15, 16]. Since black holes are a nonperturbative

phenomonon, perturbative string theory could say very little about their en-

tropy. Progress in this direction came by the early 1990s [17], through the

recognition of the role of string dualities [3]. These dualities allow one to

relate the strong coupling regime of one string model to the weak coupling

regime of another. String duality is a class of symmetries in physics that

link different superstring theories. Interestingly enough, there is evidence

that the non-perturbative and perturbative string dualities are all encoded

in the global symmetry group, called the U -duality group, of the low energy

supergravity effective action [18].

Let us introduce the topic of spherically symmetric, asymptotically flat

extremal black hole solutions in supergravity. This theory has a history of

almost twenty years. In the mid nineties a broad interest was raised by two

discoveries:

• The attractor mecchanism [19, 20] in BPS black holes, where the scalar

fields of the supergravity flow to fixed values Φa
fix at the event-horizon,

independent of the boundary values at infinity Φa
∞ and solely deter-

mined by the eletromagnetic dyonic charges Q = {PΛ, QΛ}, (Λ =

1, . . . , N), of the N gauge fields of the theory [21, 20, 22, 23]. The area

of the horizon, AH = AH(Q) is a function of the quantized charges only

[24]:

AH(Q) = 4π
√
|I4(Q)|; (1.2)

where I4(Q) is a certain quadratic invariant of the duality group U and

of the dyonic charge vector Q and depends on the particular theory

under consideration;



3

• The statistical interpretation of black hole entropy. The horizon area

of BPS black holes can be interpreted as:

AH(Q)

4`2p
= log(Ns); (1.3)

where Ns denotes the number of microstates that correspond to the

same classical solution of the effective supergravity Lagrangian [21, 13].

In the context of superstring theory, the microstates are given by the

possible superstring configurations corresponding to the given effective

supergravity description of the black hole.

These two points have a strong conceptual link pivoted around the in-

terpretation of the entropy as the square root of the quartic invariant. In

view of these perspectives the search and analysis of BPS black hole solu-

tions was extensively pursued in the nineties in all versions of supergravity

[25, 26, 27, 28, 21]. A basic tool in these theories was the use of the first order

Killing spinor equations obtained by imposing that a fraction of the original

supersymmetry should be preserved by the classical solution [29, 30, 31].

The bridge between the two aspects of the theory, namely the microscopic

and the macroscopic one, was constantly provided by the algebraic and geo-

metric structure of supergravity theories dictating the properties of the su-

persymmetry field dependent central charges ZA and of the U -duality [21].

In this context the most investigated case of study was that of N = 2 super-

gravity where the geometric structure of scalar sector, i.e. special Kähler ge-

ometry [32, 33, 34, 35, 36], provides a mathematical framework to formulate

and investigate all the fundamental questions about black hole construction

and properties [21].

Renewed interest in the topics of supergravity black holes and a new

wave of extended research activities developed in the last decade as soon

as it was realized that the attractor mechanism is not limited to the BPS

black holes but occurs also for the non BPS ones [37, 38, 39, 40, 41, 3].

In this situation there emerged the concept of fake superpotential, that is

a function, W , also named prepotential [24, 42, 43, 44, 45]. A first order
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description of the scalar fields coupled to asymptotically flat black holes in

supergravities, called “gradient-flow” was considered, using the identification

of the function W with Hamilton’s characteristic function of a corresponding

Hamiltonian formulation of the effective one-dimensional theory. The first

order differential equations obtained by gradient-flow equations for static,

spherically symmetric black holes take the form [42, 43]:

dφa

dr
= Gab(φ)

(
∂W
∂φb

)
, (1.4)

where the function W and the symmetric tensor Gab are suitable real func-

tions of the scalar fields. Let us observe that the evolution variable here is

the radial variable r. [43, 42, 24, 46, 47, 48, 49].

One of the most significant significant points in these new developments is

that equation (1.4) is reminiscent of the Hamilton-Jacobi (H-J) formulation

of classical mechanics. This fact was first observed and exploited in the paper

“First order description of black holes in moduli space” by L. Andrianopoli,

R. D’Auria, E. Orazi and M. Trigiante [42] in the context of supergravity

black holes to derive general properties of function W like its duality invari-

ance [43, 42, 24, 46, 47, 48, 49]. Considering the radial variable as a “time”,

the prepotential plays the role of Hamilton principal function of an associated

Hamiltonian system, while the set of fields φa = {ϕa; ∂L
∂∂rϕa} is assimilated to

the coordinates of phase-space [42]. This opens an entirely new perspective

on the nature of the black hole construction problem[21]. Indeed the exis-

tence of the function W , alias Hamilton–Jacobi equation, is guaranteed for

a system of 2n variables φa equipped with an underlying Poisson structure,

namely with a Poisson bracket [21]:

{φa, φb} = −{φb, φa}; (1.5)

if this latter is Liouville integrable, namely if there exist n Hamilton functions

Hα(φ) in involution:

{Hα,Hβ} = 0 ∀α , β ; (1.6)
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whose set includes the “Hamiltonian” H0 defining the field equations of the

dynamical sistem[21]:

dφa

dr
= {H0, φ

a} . (1.7)

Naturally, in order for the remarks to make sense, the crucial issue is the ex-

istence of a Poissonian equations and of a Hamiltonian allowing to recast the

supergravity field equations into the form of a “classical dynamical system”.

From a physical point of view, the first order description of static, spherically

symmetric black holes appeared as a very appropriate tool to study extremal

solutions, supersymmetric or not, which exhibit an attractive behavior, but

also as a powerful tool to better understand solutions out of the extremality.

Our main aim in the present thesis will be to extend the first order descrip-

tion of black holes to more general solutions, in particular to axisymmetric

black holes far from extremality and also to analyze their extremal limit.

A peculiarity of static, spherically symmetric solutions is that one can

exploit the symmetries to reduce the Lagrangian to a one-dimensional ef-

fective Lagrangian, where the evolution variable is the radial one [23, 50].

However, when considering four dimensional solutions with less symmetries,

in particular stationary solutions where only the time-like Killing vector ∂t

is present, an effective three-dimensional Lagrangian can be obtained upon

compactification along the time coordinate [51, 52, 53, 54, 21, 55, 56, 57].

The fields in the effective Lagrangian now depend on the three space vari-

ables xi, (i = 1, 2, 3). In particular, for stationary axisymmetric solutions,

the presence of an azimuthal angular Killing vector ∂ϕ allows a further di-

mensional reduction to two dimensions.

An important issue in my research work was to extend the Hamilton-

Jacobi formalism from mechanical models, whose degrees of freedom depend

on just one variable, to field theories where the degrees of freedom (the fields)

depend on two or more variables. This problem was addressed and devel-

oped in generality in field theory from several points of view (a useful review

is given by [58, 59]), but not much was known in the context of gravita-

tional theories. Our main aim in the present thesis is to apply such extended
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formalism to the study of black holes. We will adhere to the so-called De

Donder-Weyl-Hamilton-Jacobi theory, hereafter referred to as DWHJ, which

is the simplest extension of the classical Hamilton-Jacobi approach in me-

chanics [58, 59]. One important difference with respect to the case of classical

mechanics consists in the replacement of the Hamilton principal function S,

directly related to the fake-superpotential of static black holes, with a Hamil-

ton principal 1-form, that is with a covariant vector Si. In this case the issue

of integrability is more involved than in mechanics since to find solutions to

the Euler–Lagrange equations strong constraints, which are trivial in the one

dimensional case, have to be imposed on the vector Si.

A first achievement in my thesis is to formulate the physics of rotating

black holes (Kerr, Kerr-Newman or their extensions in the presence of scalar

matter) in terms of an effective two dimensional Euclidean Lagrangian, whose

independent variables are the radial variable r and the angular variable θ.

It is particularly useful to formulate the theory in such a way that all the

propagating degrees of freedom have been reduced to scalars by use of 3D

Hodge-dualization [51]. In this way, the effective 3-dimensional Lagrangian

has the form of a non linear sigma model, whose scalars include the degrees of

freedom of the space-time metric and of the electric and magnetic components

of the gauge vectors. Note that the effective three-dimensional description

of axisymmetric black holes:

• allows a simplified effective Lagrangian description of the physics and

consequently also a Hamiltonian one [59, 18, 56];

• the scalars φr parametrize a tangent space with metric GIJ(Φ) of in-

definite signature [60], since the kinetic terms of the degrees of free-

dom corresponding to four-dimensional vector fields contribute to the

σ-model with negative-definite terms;

• the third important consequence of the lower dimensional description is

that the isometry group G(3) of the σ-model metric Gab(z) contains as

non trivial subgroups the 4-dimensional U-duality group G(4) times the
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group SL(2,R) (the Ehlers group) under which the degrees of freedom

of the 4d metric transform. The simplest 3D model is the one origi-

nating form a pure 4D Einstein–Maxwell gravitational theory with a

single time-like Killing vector. In this case G(4) = U(1) and the 3D

σ-model has the homogeneous-symmetric target space:

SU(1, 2)

U(1)× SU(1, 1)
. (1.8)

Its field content consists of four scalars belonging to a non-compact

version of the universal hypermultiplet, dubbed the universal pseudo-

hypermultiplet [59].

The thesis is organized as follows:

In Chapter 2 we will discuss rotating and non-rotating black hole solutions

of gravity theory, including an introduction to the thermodynamics of black

holes[61, 62, 1, 2, 7, 63]. It is shown how familiar concepts such as temper-

ature and entropy apply to systems containing black holes. The thermody-

namic connection is based on Hawking’s celebrated application of quantum

theory to black holes[11, 12].

In Chapter 3 we report on the main features of the physics of extremal, static

and spherically symmetric black holes embedded in supersymmetric theories

of gravitation. In particular, we present a detailed derivation of the effective

one-dimensional Lagrangian, which encodes the dynamics of this class of so-

lution.

In Chapter 4 we present the application of the Hamilton-Jacobi equation to

the first order description of four dimensional static and spherically symmet-

ric black holes. In particular we show that the prepotential characterizing

the flow coincides with the Hamiltonian principal function associated with

the one-dimensional Lagrangian[24].

In Chapter 5, which contains the main results reached during this thesis

work, we present the extension of the Hamilton-Jacobi theory to field theory,

following the DWHJ approach, and give a general formula to find the Hamil-

ton principal 1-form; our main focus is on stationary axisymmetric black
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holes, whose description, following [51], is two dimensional. We review the

construction of the two-dimensional effective Lagrangian and the expression

of the characteristic physical quantities associated with the four-dimensional

solution in terms of Nöether currents of the 3D sigma-model. We also write

the angular momentum in terms of the 3D sigma-model Nöether currents

and introduce, besides Q, the matrix Qψ, which allows to describe in a G(3)-

invariant fashion the rotational properties of the solution. We also discuss

the under-rotating extremal limit of a non-extremal solution in the G(3)-orbit

of the Kerr-black hole. Then we find a manifestly (three-dimensional) du-

ality invariant expression for the principal functions Sm (m = 1, 2). Finally

we restrict our attention to the KN-Taub-NUT solution, making use of the

so called Ernst potentials written in terms of the inhomogeneous fields (u, v)

parametrizing the SU(1, 2)/U(1, 1) coset and give the explicit form of the

principal functions Sm in terms of the fields and the two-dimensional spher-

ical coordinates.

We end in Chapter 6 with some concluding remarks.

In Appendix A we introduce the idea of duality in supergravity theory

[64, 65, 8, 66, 67]. In Appendix B we will discuss the Taub-NUT solu-

tion, while Appendix C contains the explicit form of the algebra SU(1, 2).

In Appendix D we present the surface gravity, and finally in Appendix E we

discuss the geometry of the Special Kähler manifold of the D = 4, N = 2

model.



Chapter 2

Black holes and black hole

thermodynamics

This chapter includes an introduction to the thermodynamics of black holes[61,

62, 1, 2, 7, 63]. It is shown how familiar concepts such as temperature and

entropy apply to systems containing black holes. The thermodynamic con-

nection is based on Hawking’s celebrated application of quantum theory to

black holes[11, 12].

In the first part of the chapter, we will discuss rotating and non-rotating

black hole solutions. A rotating black hole is a black hole that possesses spin

angular momentum[62, 1, 2, 7, 63]. There are four known black hole solution

to Einstein’s equations, which describe gravity coupled to electromagnetic

in general relativity. Two of these, the Kerr and Kerr-Newman black holes,

rotate. We will see that stable black holes can be completely described by

these quantities:

• mass-energy;

• linear momentum;

• angular momentum;

• electric charge1.

1Electric charge, or else more generally electric and magnetic charge.

9



10 CHAPTER 2. BLACK HOLES AND THERMODYNAMICS

In the second part we present the concept of black hole thermodynamics.

In physics, thermodynamics of black holes is an area of study that seeks

to reconcile the laws of thermodynamics with the existence of black holes

event horizons[61, 1, 2, 63]. Much as the study of statistical mechanics of

black body radiation led to the advent of the theory of quantum mechanics,

the effort to understand the statistical mechanics of black holes has had

a deep impact upon the understanding of quantum gravity, leading to the

formulation of the holographic principle[68, 69, 70, 71].

2.1 Types of black holes

Black holes are classical solutions of Einstein-Maxwell equations defined by

a spacetime metric asymptotically flat with a singularity hidden by an event

horizon. There are four known black hole solutions to Einstein-Maxwell field

equations, which describe gravity in general relativity. Two of these, the

Kerr and Kerr-Newman black holes, rotate; and, by no-hair theorem, any

stable black holes can be completely described these quantities:

• mass-energy;

• linear momentum;

• angular momentum;

• electric charge.

These quantities represent the conserved attributes of a physical body

and can be determined by examining its gravitational and electromagnetic

field by are asymptotically distant observer. All the other physical quantities

of the black hole will either escape to infinity or be swallowed up by the black

hole. This is because anything happening inside the back hole horizon can

not affects events outside it[72, 73].

In terms of these physical properties, the four types of stable black holes

are:
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Nonrotating (J = 0) Rotating (J > 0)

Uncharged (Q = 0) Schwarzschild Kerr

Charged (Q 6= 0) Reissner-Nordström Kerr-Newman

The following subsections will analyze these four types of black holes.

2.1.1 Schwarzschild black hole

According to Birkhoff’s theorem, the Schwarzschild vacuum is the most gen-

eral spherically symmetric, vacuum solution of the Einstein field equations[7].

A Schwarzschild black hole is a black hole that has no angular momentum

or charge. A Schwarzschild black hole has a Schwarzschild metric, and can

not be distinguished from any other Schwarzschild black hole except by its

mass[62, 1, 2, 7].

The Schwarzschild black hole is characterized by a surrounding surface,

which is spherical, called the event horizon which is situated at the Schwarzschild

radius. The Schwarzschild radius is often called the radius of the black

hole[62, 1, 2, 7].

In the polar spherical coordinates, the Schwarzschild metric has the form[62,

1, 2, 7]:

ds2 = c2dτ 2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2) (2.1)

where:

• τ is the proper time2;

2In relativity, proper time is time measured by an ideal clock that is carried along with

a specified particle, and is based on the invariant timelike spacetime intervals between

points along the particle’s trajectory[7].
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• c is the speed of light;

• t is the time coordinate;

• r is the radial coordinate;

• θ is the colatitude;

• ϕ is the longitude;

• rs is the Schwarzschild radius, of the “massive body” which is related

to its mass M by:

rs =
2GM

c2
(2.2)

• G is the gravitational constant3.

The Schwarzschild solution appears to have two singularities at r = 0 and

r = rs. Since the Schwarzschild metric is only expected to be valid for radii

larger than the radius R of the gravitational body, there is no problem as

long as R > rs. One could naturally wonder what happens when the radius R

becomes equal or less then to the Schwarzschild radius rs; one can prove that

the Schwarzschild solution still makes sense in this case, although it has some

rather strange properties[62, 1]. The apparent singularity at gtt = 0 (r = rs)

is actually an instance of what is called a coordinate singularity[7, 74]. As the

name implies, the singularity arises from a non-optimal choice of coordinates.

By choosing another set of suitable coordinates, for example Kruskal-Szekeres

coordinates, one can show that the metric is well-defined at the Schwarzschild

radius[7, 74].

For the Schwarzschild black hole the case r = 0 is different from the r =

rs. If one asks that the solution be valid for all r one runs into a gravitational

singularity, or true physical singularity, at the origin. To see that this is a

true singularity one must look at quantities that are independent of the choice

3We will use Planck units: c = G = ~ = 1.
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of coordinates. One such important quantity is the Kretsschmann invariant,

which is given by[75]:

K = RklijR
klij =

12rs
2

r6
=

48M2

r6
. (2.3)

At r = 0 the Kretsschmann scalar blows up, becomes infinite, indicating the

presence of a singularity. At this point spacetime, and the metric itself, is

no longer well-defined. For a long time it was thought that such a solution

was non-physical. However, a greater understanding of general relativity led

to the realization that such singularities were a generic feature of the theory

and not just a special case. Such solutions are now believed to exist and are

called black holes.

The Schwarzschild solution, taken to be valid for all r > 0, is called a

Schwarzschild black hole. It is a perfectly valid solution of the Einstein field

equations, although it has some rather strange properties. For r < rs the

Schwarzschild radial coordinate r becomes timelike and the time coordinates

t becomes spacelike. The r = rs demarcates what is called the event horizon

of the black hole. It represents the point past which light can no longer escape

the gravitational field. Any physical body whose radius R becomes less than

or equal to the Schwarzschild radius will undergo gravitational collapse and

become a black hole.

2.1.2 Reissner-Nordström black hole

In this section we are going to initiate the study of the black hole solution

of the Einstein equations in the presence of electricmagnetic field so that the

stress-energy tensor is now nonzero.

The Reissner-Nordström metric[76, 77] is a static solution to the Einstein-

Maxwell field equations, which corresponds to the gravitational field of a

charged, non-rotating, spherically symmetric object of mass M [62, 1, 2, 7].

We start by implementing the standard field equations of general relativ-

ity. The Einstein field equations (EFE) may be written in the form[7]:

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν = 8πTµν (2.4)
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where:

• Rµν is the Ricci curvature tensor;

• R is the scalar curvature;

• gµν is the metric tensor;

• Tµν is the stress-energy tensor of the matter field;

The EFE is a tensor equation relating a set of a symmetric 4 x 4 tensor;

so that this tensor equation has ten independent components.

Despite the simple appearance of the equations they are, in fact, quite

complicated. Given a specified distribution of energy and matter in the form

of a stress-energy tensor, the EFE are understood to be equations for the

metric tensor gµν , as both the scalar curvature and Ricci tensor depend on

the metric in a complicated nonlinear manner.

One can write the Einstein field equations in a more compact form by

defining Einstein tensor:

Gµν = Rµν −
1

2
gµνR + gµνΛ = 8πTµν (2.5)

or:

Gµν = 8πTµν (2.6)

which is a symmetric second-rank tensor that is function of the metric,

where the cosmological term Λ is taken to be zero in conventional relativity

theory[7]. The expression on the right represents the energy-matter content

of spacetime and the expression on the left represents the curvature of space-

time as determined by the metric. The EFE can then be interpreted as a

set of equations dictating how the curvature of spacetime is related to the

energy-matter content of the universe.

The electromagnetic field admits a coordinate-independent geometric de-

scription, and Maxwell’s equations expressed in terms of these geometrical

quantity are the same in any spacetime curved or not.
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The electromagnetic field is a covariant vector Aα (α = 0, 1, 2, 3); as a

covariant vector, its rule for transforming from one coordinate system to

another is:

A′α =
∂xβ

∂x′α
Aβ. (2.7)

The electromagnetic field is a covariant antisymmetric rank two tensor which

can be defined in terms of the electromagnetic potential by:

Fµν = ∂µAν − ∂νAµ. (2.8)

This equation is covariant:

F ′
αβ =

∂A′β
∂x′α

− ∂A′α
∂x′β

=
∂xµ

∂x′α
∂xν

∂x′β
Fµν . (2.9)

In the vacuum, the action for the electromagnetic field in curved spacetime

is given the Einstein-Hilbert term SG plus a term SEM describing the elec-

tromagnetic field:

S = SG + SEM ; (2.10)

with, in Planck units:

SG =
1

16π

∫
d4x
√
−gR; (2.11)

SEM =
−1

8π

∫
d4x
√
−gFµνF µν ; (2.12)

and the stress-energy tensor is:

Tµν = +
2√
−g

δS

δgµν
=

1

4π

[
FµλFν

λ − gµν
4
F 2
]
; (2.13)

where:

F 2 = FµνF
µν . (2.14)

The Einstein field equations assume the following form:

Rµν −
1

2
gµνR = 8πTµν = 2

[
FµλFν

λ − gµν
4
F 2
]
. (2.15)
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The Reissner-Nordström is concerned with a single single electrostatic field:

Ftr =
Q

r2
, (2.16)

so that the stress-energy tensor is:

8πTµν =



Q2Σ
r4

0 0 0

0 − Q2

r4Σ
0 0

0 0 Q2

r2
0

0 0 0 Q2

r2
sin2θ


(2.17)

with

Σ =

(
1− 2m

r
+
Q2

r2

)
(2.18)

The Reissner-Nordström (R-N) metric[76, 77] is a static solution to the

Einstein-Maxwell field equations (2.15), which corresponds to the gravita-

tional field of a charged, non-rotating, spherically symmetric object of mass

M [62, 1, 2, 7], where metric is given by:

ds2 =

(
1− rs

r
+
r2
Q

r2

)
c2dt2 −

(
1− rs

r
+
r2
Q

r2

)−1

dr2 +

−r2(dθ2 + sin2θdϕ2) ; (2.19)

where:

• rs is the Schwarzschild radius: of the “massive body” which is related

to its mass M by rs = 2MG/c2 = 2M ;

• rQ is a length-scale corresponding to the electric Q of the mass:

r2
Q =

Q2G

c4
= Q2 . (2.20)
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Note that later this metric will be rewritten as follows:

ds2 =

(
1− 2M

r
+
Q2

r2

)
dt2 −

(
1− 2M

r
+
Q2

r2

)−1

dr2 +

−r2(dθ2 + sin2θdϕ2). (2.21)

In the limit that the charge the length-scale rQ or equivalently the charge Q

goes zero, one recovers the Schwarzschild black hole.

Although charged black holes with rQ � rs are similar to the Schwarzschild

black hole, they have two horizons: the event horizon and a Cauchy horizon[74].

As usual the event horizons for the spacetime are located where gtt diverges,

or (grr)
−1 = 0:

(grr)
−1 = 0 =⇒

(
1− 2M

r
+
Q2

r2

)
= 0; (2.22)

from which it follows that:

r± =
1

2

(
rs ±

√
(r2
s − 4r2

Q)
)

=⇒ r± = M ±
√

(M2 −Q2). (2.23)

There are therefore three cases to consider:

• M < |Q|
If M < |Q| the two horizons disappear and we have a naked singu-

larity. In classical general relativity people have postulated the so-

called cosmic censorship conjecture[78, 25, 27]: spacetime singularities

should always be hidden inside a horizon. The conjecture implies, in

the Reissner-Nordström case, the bound;

M ≥ |Q|;

• M > |Q|
(grr)

−1 = 0 vanishes at r = r+ and r = r−, so metric is singular there,

but these, as in the Schwarzschild case, are coordinate singularities.

The important quantity is the Kretsschmann invariant, which is given
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by[75, 79]:

K = RklijR
klij =

=
8

r12
(6M2r6 − 12MQ2r5 + 7Q4r4); (2.24)

and for the Reissner-Nordström black hole at r = 0 the Kretsschmann

scalar blows up indicating the presence of a singularity, while at r = r+

and r = r− the Kretsschmann invariant does not become infinite.

• M = |Q|
These concentric event horizons becomes degenerate for:

rs = 2rQ =⇒M = Q; (2.25)

which corresponds to an extremal black hole[27]. In particular the

extremal configurations, that is the configurations that saturate the

bound M = |Q|, have some special properties[27, 3]. One is that, in

that case the two horizons r+ and r− coincide and:

r+ = r− =
1

2
rs =⇒ r+ = r− = M, (2.26)

and the region where the metric components charge sign is reduced to

the event horizon

rH ≡ r+ = r− = M = |Q|. (2.27)

Moreover, the extremal Reissner-Nordström configuration, whose met-

ric is conveniently rewritten in terms of the distance from the horizon

r̃ = r − rH :

ds2 =

(
1 +

Q

r̃

)−2

dt2 −
(

1 +
Q

r̃

)2

(dr̃2 + r̃2dΩ2); (2.28)

with dΩ2 = (dθ2 + sin2θdϕ2). Introducing the harmonic function:

H(r̃) =

(
1 +

Q

r̃

)
, (2.29)
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we have

ds2 = H−2(r̃)dt2 −H2(r̃)(d−→x · d−→x ); (2.30)

where r̃2 = −→x · −→x .

As equation (2.28) shows, the extremal Reissner-Nordström configu-

ration may be considered as a soliton of classical general relativity,

interpolating between two vacua of the theory: the flat Minkowski

spacetime, asymptotically reached at spatial infinity r̃ → ∞, and the

Bertotti-Robinson metric (B-R metric)[80, 81], describing the confor-

mally flat geometry AdS2 x S2 near the horizon r̃ → 0[25, 3]:

ds2
B−R =

r̃2

M2
B−R

dt2 −
M2

B−R

r̃2
(dr̃2 + r̃2dΩ2); (2.31)

where:

M2
B−RdΩ

2 (2.32)

is the two-sphere (S2) of radius MB−R and

ds2
AdS2

=
r̃2

M2
B−R

dt2 −
M2

B−R

r̃2
dr̃2 (2.33)

is the metric of the two-dimensional anti-de Sitter (AdS2) spacetime.

Finally, let us note that the condition |Q| = M can be regarded as a

no-force condition between the gravitational attraction Fg = M
r2

and the

electric repulsion FQ = −Q
r2

on a unit mass carrying a unit charge[3].

The electromagnetic potential is

Aα =

(
Q

r
, 0, 0, 0

)
. (2.34)

If magnetic monopoles are included into the theory, then a generalization to

include magnetic charge P is obtained by replacing Q2 by Q2 + P 2 in the

metric and including the term Pcosθdϕ in the electromagnetic potential.
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2.1.3 Kerr black hole

In the two previous subsections we have studied the asymptotically flat, static

and spherically symmetric Schwarzschild and Reissner-Nordström solutions.

To find more solutions, we have to relax these conditions or couple to gravity

more general types of energy-matter, as we will do later on. In Einstein-

Maxwell theory, one possibility is to look for static and axially symmetric

solutions and another possibility is to relax the condition of of staticity and

only ask that solution be stationary, which implies that we have to relax

the condition of spherical symmetry as well and look for stationary and

axisymmetric space-times[82, 83]. In the second case, we find:

• the Kerr black holes with angular momentum but does not include

charges;

• the Kerr-Newman black holes with angular momentum and electric

(and possibly magnetic) charges.

In Einstein’s theory of general relativity, the Kerr vacuum or the Kerr metric

describes the geometry of spacetime around a rotating massive object[82].

According to this metric, such rotating objects should exhibit frame dragging,

a strange prediction of general relativity[62, 1, 2, 7]. In simple terms, this

effect predicts that a body coming close to a rotating mass will be entrained

to participate in its rotation, not because of any applied force or torque that

can be felt, but rather because of curvature of spacetime associated with

rotating bodies. At close enough distances, all bodies even light itself, must

rotate with the object, the region where this holds is the ergosphere[7].

In the polar spherical coordinates, r, θ, ϕ, the Kerr metric describes the

geometry of spacetime in the vicinity of a mass M rotating with angular

momentum J [62, 1, 2, 84]:

ds2 = dτ 2 =

(
1− rsr

ρ2

)
dt2 − ρ2

∆
dr2 − ρ2dθ2 +

−A
ρ2
sin2θdϕ2 +

2rsrαsin
2θ

ρ2
dtdϕ; (2.35)
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where:

• rs = 2M is the Schwarzschild radius;

• the length scales α, ρ2 and ∆ have been introduced for brevity:

α =
J

Mc
=

J

M
(2.36)

represents the specific angular momentum of the source,

ρ2 = r2 + α2cos2θ, (2.37)

∆ = r2 − rsr + α2 = r2 − 2Mr + α2; (2.38)

• A is:

A = (r2 + α2)2 − α2∆sin2θ = (r2 + α2)ρ2 + rrsα
2sin2θ. (2.39)

In the non-relativistic limit where rs goes to zero, the Kerr metric becomes

the orthogonal metric for the oblate spheroidal coordinates:

ds2 = dt2 − ρ2

r2 + α2
dr2 − ρ2dθ2 − (r2 + α2)sin2θdϕ2. (2.40)

We may rewrite this metric in the following form:

ds2 =

(
gtt −

g2
tϕ

gϕϕ

)
dt2 − grrdr

2 − gθθdθ
2 − gϕϕ

(
dϕ− gtϕ

gϕϕ
dt

)
; (2.41)

where gij are the components of the metric tensor. This metric is equivalent

to a rotating reference frame that is rotating with angular speed Ω that

depends on both the radius r and the colatitude θ[85]:

Ω = − gtϕ
gϕϕ

=
rsαr

ρ2(r2 + α2) + rsα2rsin2θ
; (2.42)

in the plane of equator this simplifies to:

Ω =
rsα

r3 + α2r + rsα2
. (2.43)



22 CHAPTER 2. BLACK HOLES AND THERMODYNAMICS

Thus, an inertial reference frame is entrained by the rotating central mass to

participate in the latter’s rotation, this is frame-dragging.

At the center of a Kerr black hole as described by general relativity lies

a gravitational singularity, a region where the spacetime loses meaning. The

Kretsschmann invariant for a Kerr black hole is given by[84]:

K = RklijR
klij

=
48M2(r2 − α2cos2θ)[(r2 + α2cos2θ)2 − 16r2α2cos2θ]

(r2 + α2cos2θ)6
. (2.44)

At r = 0 and θ = π
2

the Kretsschmann scalar blows up, becomes infinite,

indicating the presence of a singularity.

The Kerr metric has two physical relevant surfaces on which it appears

to be singular. The inner surface corresponds to an event horizon similar to

that observed in the Schwarzschild black hole; this occurs where the purely

radius component grr of the metric goes to infinity. Solving the equation:

1

grr
= 0 =⇒ ∆ = r2 − rsr + α2 = r2 − 2Mr + α2 = 0 (2.45)

yields the solution:

rinner± =
rs ±

√
(r2
s − 4α2)

2
=⇒ rinner± = M ±

√
(M2 − α2). (2.46)

Another singularity occurs where the purely temporal component gtt of the

metric changes sign from positive to negative. Again solving a quadratic

equation:

gtt = 0 =⇒
(

1− rsr

ρ2

)
= 0 (2.47)

yields the solution:

router± =
rs ±

√
(r2
s − 4α2cos2θ)

2
(2.48)

or

router± = M ±
√

(M2 − α2cos2θ). (2.49)
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Due to the cos2θ quantity in the square root, this outer surface resembles a

flattened sphere that touches the inner surface at the poles of the rotation

axis, where θ equals 0 or π. The space between router+ and rinner+ surfaces

is called the ergosphere.

A moving physical body experiences a positive proper time along its

worldline, its path through spacetime. However, this is impossible within

the ergosphere, where gtt is negative, unless the physical body is co-rotating

with the interior mass M with an angular speed at least of Ω. Thus, no body

can rotate opposite to the central mass within the ergosphere.

As with the event horizon in the Schwarzschild black hole the apparent

singularities router± and rinner± are coordinate singularities; in fact, the space-

time can be smoothly continued through them by an appropriates choice of

coordinates[2, 86, 84].

A black hole in general is surrounded by a surface, called the event hori-

zon, where the escape velocity is equal to the velocity of light. Within this

surface, no physical body or observer can maintain itself at a constant radius.

It is forced to fall inwards, and so this is sometimes called the static limit.

A rotating black hole has the same static limit at its event horizon but

there is an additional surface outside the event horizon called the “ergosur-

face” given by:

(r −M)2 = (M2 − J2cos2θ) (2.50)

in Boyer-Lindquist coordinates[7, 87], which can be intuitively characterized

as the sphere where “the rotational velocity of the surrounding space” is

dragged along with the velocity of light. Physical bodies falling within the

ergosphere are forced to rotate faster and thereby gain energy. Because they

are still outside the event horizon, they may escape the black hole. The net

process is that the rotating black hole emits energetic particles at the cost of

its own total energy. The possibility of extracting spin energy from a rotating

black hole was first proposed by the mathematician physicist Roger Penrose

in 1969 and is thus called the Penrose process[7, 87].
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We note that for the Kerr metric, the concentric event horizons becomes

degenerate for:

M2 = α2;

which corresponds to an “extreme” condition for the Kerr black hole. In par-

ticular the extremal configurations, that is the configurations that saturate

the bound M = |α|, have some special properties. One is that, in that case

the two horizons r+ and r− coincide and:

r+ = r− =
1

2
rs =⇒ r+ = r− = M,

or

rH ≡ r+ = r− = M = |α|.

2.1.4 Kerr-Newman black hole

The Kerr-Newmann metric, or Kerr-Newmann (K-N) black hole, is a solu-

tion of the Einstein-Maxell equations (2.15) in general relativity, describing

the spacetime geometry in the region surrounding a charged and rotating

mass[87, 2, 7]. In other words, the Kerr-Newmann metric describes the ge-

ometry of spacetime in the vicinity of a rotating mass M with charge Q.

One way to express this metric is by writing down its line element in a

particular set of spherical coordinates (r, θ, ϕ) (in the Boyer-Lindquist coor-
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dinates4)[7, 87]:

ds2 =
∆

ρ2
(dt− αsin2θdϕ)2 − ρ2

∆
dr2 − ρ2dθ2 +

−sin
2θ

ρ2
[(r2 + α2)dϕ− αdt]2; (2.51)

where:

α =
J

Mc
=

J

M
(2.52)

and a representing the specific angular momentum of the source,

ρ2 = r2 + α2cos2θ, (2.53)

∆ = r2 − rsr + α2 +Q2 = r2 − 2Mr + α2 +Q2. (2.54)

The Kerr-Newmann black hole has two coordinate singularities corresponding

to the outer and inner horizon:

r± = M ±
√

(M2 − α2 −Q2). (2.55)

There are therefore three cases to consider:

• M2 < α2 +Q2

If M2 < α2 +Q2 the two horizons disappear and we have a naked sin-

gularity. Using the cosmic censorship conjecture[78, 25, 27], spacetime

singularities should always be hidden inside a horizon. The conjecture

implies, in the Kerr-Newmann case, the bound;

M2 ≥ α2 +Q2; (2.56)

4The coordinate transformation from Boyer-Lindquist coordinates r, θ, ϕ to Cartesian

coordinates x, y, z is given by:

x = (
√

r2 + α2)sinθcosϕ

y = (
√

r2 + α2)sinθsinϕ

z = rcosθ.
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• M2 > α2 +Q2

In this case we have:

r+ = M +
√

(M2 − α2 −Q2) r− = M −
√

(M2 − α2 −Q2)(2.57)

corresponding to the outer and inner horizon for the K-N black hole.

The Kretsschmann invariant is in this case [75]:

K = RklijR
klij =

=
8

(r2 + α2cos2θ)6
[Q4(7r4 − 34α2r2cos2θ + 7α4cos4θ) +

+6M2(r6 − 15α2r4cos2θ + 15α4r2cos4θ − α6cos6θ) +

−12MQ2r(r4 − 10α2r2cos2θ + 5α4cos4θ)]; (2.58)

which clearly reduces to the expected expression for the Schwarzschild

black hole if α and Q are both zero (equation (2.3)). For the Kerr-

Newmann black hole at r = 0 and θ = π/2 the Kretsschmann scalar

blows up, becomes infinite, indicating the presence of a singularity; and

at r = r+ and r = r− the Kretsschmann invariant does not become

infinite, indicating the absence of singularities.

• M2 = α2 +Q2

These concentric event horizons becomes degenerate for:

M2 = α2 +Q2; (2.59)

which corresponds to an “extreme” condition for the Kerr-Newman

black hole. In particular the extremal configurations, that is the con-

figurations that saturate the bound M = |
√

(α2 +Q2)|, have some

special properties. One is that, in that case the two horizons r+ and

r− coincide and:

r+ = r− =
1

2
rs =⇒ r+ = r− = M, (2.60)
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or

rH ≡ r+ = r− = M = |
√

(α2 +Q2)|. (2.61)

In this metric the static solutions (α = 0) the condition (2.56) is guaran-

teed as long as r > r+, r+ being the outer horizon:

r+ = M +
√
M2 −Q2 . (2.62)

and:

r > M +
√
M2 −Q2 − α2 cos2 θ ≡ re (2.63)

where re > r+ defines the external boundary of the ergosphere, where the

component gtt of the metric vanishes, while eq. (2.62) is the radius of the

outer event horizon.

The Kerr-Newman metric is a generalization of other exact solutions in

general relativity:

• Schwarzschild metric if the charge Q and the angular momentum J (or

α) is zero;

• Reissner-Nordström metric if the angular momentum J (or α) is zero;

• Kerr metric if the charge Q is zero;

• Minkowski space if the gravitational constant G is zero.

2.2 Introduction to black hole thermodynam-

ics

In Physics, thermodynamics of black holes is an area of study that seeks

to reconcile the laws of thermodynamics with the existence of black holes

event horizons[61, 1, 2, 25, 63, 51]. The only way to satisfy the second law

of thermodynamics is to admit that black holes have entropy. If black holes
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carried no entropy, it would be possible to violate the second law by throwing

mass into the black hole. The increase of the entropy of the black hole more

than compensates for the decrease of the entropy carried by the body that

was swallowed. Moreover, the notion of black hole entropy is motivated by

two results in general relativity[69, 25, 51]:

1. Area theorem The area theorem, states that the area (A) of a black

hole event horizon never decreases with time:

dA ≥ 0; (2.64)

2. No-hair theorem A stationary black hole is characterized by only three

quantities; mass, angular momentum and charge.

Starting from theorems proved by Stephen Hawking, Jacob Bekenstein con-

jectured that the black hole entropy was proportional to the area of its event

horizon divided by the Planck area. Bekenstein suggested (0.5ln2)/(4π)[88]

as the constant of proportionality, asserting that if the constant was not

exactly this, it must be very close to it. The next year, Hawking showed

that black holes emit thermal Hawking radiation corresponding to a certain

temperature, the Hawking temperature. Using the thermodynamic relation-

ship between energy, temperature and entropy, Hawking was able to con-

firm Bekenstein’s conjecture and fix the constant of proportionality at 1/4,

or[11, 12]:

SBH =
kB
`2p

A

4
; (2.65)

where `2p = G~/c3 is the squared Planck length and kB is Boltzmann’s con-

stant. The subscript BH either stands for “Bekenstein-Hawking” or “black

hole”. The black hole entropy is proportional to the area of its event horizon

A[68, 69, 70, 71].

The four laws of black hole mechanics are physical properties that black

holes are believed to satisfy. The laws, analogous to the laws of thermo-

dynamics, were discovered by Brandon Carter, Stephen Hawking and James
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Bardeen[61]. The laws of black hole mechanics are expressed in natural units,

and they are[61, 63]:

1. The zeroth law. The horizon has constant surface gravity k for a sta-

tionary black hole5.

The zeroth law is analogous to the zeroth law of thermodynamics which

states that the temperature is constant throughout a body in thermal

equilibrium. It suggests that the surface gravity is analogous to tem-

perature. T constant for thermal equilibrium for a normal system is

analogous to k constant over the horizon of a stationary black hole;

2. The first law. We have[89, 90, 23, 50]:

dM =
k

8π
dA+ ΩHdJ + Φdq; (2.66)

where: M is the mass, J is the angular momentum, Φ is the electro-

static potential, q is the electric charge, A is the horizon area, k is the

surface gravity and ΩH is the angular velocity of the black hole. The

generalization to include a magnetic charge p is:

dM =
k

8π
dA+ ΩHdJ + Φdq + χdp; (2.67)

with χ is the magnetic potential.

The left hand side, dM is the change in energy/mass. Although the

first term does not have an immediately obvious physical interpretation,

the second and third terms on the right hand side represent changes

in energy due to rotation and electromagnetism. Analogously, the first

law of thermodynamics is a statement of energy conservation, which

contains on its right hand side the term TdS;

3. The second law. The horizon area is, assuming the weak energy condi-

tion, a non-decreasing function of time,

dA

dt
≥ 0. (2.68)

5See Appendix D.
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This “law” was superseded by Hawking’s discovery that black holes

radiate, which causes both the black hole’s mass and the area of its

horizon to decrease over time. The second law is the statement of

Hawking’s area theorem. Analogously, the second law of thermody-

namics states that the change in entropy of an isolated system will be

greater than or equal to zero for a spontaneous process, suggesting a

link between entropy and the area of a black hole horizon. However,

this version violates the second law of thermodynamics by matter losing

energy as it falls in, giving a decrease in entropy. Generalised second

law introduced as:

total entropy = black hole entropy + outside entropy ;

4. The third law. It is not possible to form a black hole with vanishing

surface gravity. k = 0 is not possible to achieve.

Extremal black hole6 have vanishing surface gravity. Stating that k

can not go to zero is analogous to the third law of thermodynamics

which states, the entropy of a system at absolute zero is a well-defined

constant. This is because a system at zero temperature exists in its

ground state. Furthermore, 4S will reach zero at zero Kelvins, but

S itself will also reach zero, at least for perfect crystalline substances.

No experimentally verified violations of the laws of thermodynamic are

known.

The four laws of black hole mechanics suggest that one should identify the

surface gravity of a black hole with temperature and the area of the event

horizon with entropy, at least up to some multiplicative constants. If one

only considers black holes classically, then they have zero temperature and,

by the no hair theorem, zero entropy, and the laws of black hole mechanics

6In theoretical physics, an extremal black hole is a black hole with the minimal possible

mass that can be compatible with a given charge and angular momentum. In other words,

this is the smallest possible black hole that can exist while rotating at a given fixed constant

speed.
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remain an analogy. However, when quantum mechanical effects are taken

into account, one finds that black holes emit thermal radiation, the Hawking

radiation, at temperature:

TH =
k

2π
; (2.69)

From the first law of black hole mechanics, this determines the multiplicative

constant of the Bekenstein-Hawking entropy which is:

SBH =
kB
`2p

A

4
. (2.70)

Hawking and Page showed that black hole thermodynamics is more general

that black holes, that cosmological event horizons also have an entropy and

temperature[91, 92].
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Chapter 3

Extremal, static and spherically

symmetric black holes in

supergravity

In our study of the black holes in the previous chapter we have mentioned that

some special properties arise when of mass and electric charges are related

to satisfy specific relations.

In this chapter, we present the main features of the physics of extremal,

static and spherically symmetric black holes embedded in supersymmetric

theories of gravitation. In particular, we present a detailed derivation of the

effective one-dimensional Lagrangian, which encodes the dynamics of this

class of solution.

3.1 Static black holes in four-dimensions

Let us recall the main facts about the description of a static and spheri-

cally symmetric black hole in four-dimensions as solution of a Hamiltonian

system[24]. We start from the four dimensional bosonic action of a generic

supergravity theory, describing m scalar fields Φs coupled to nV of vectors

33
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field AΛ
µ [3] 1:

S =

∫ √
−gd4x

(
−1

2
R + IΛΓF

Λ
µνF

Γ|µν+

+
1

2
√
−g

RΛΓε
µνρσFΛ

µνF
Γ
ρσ +

1

2
grs(Φ)∂µΦ

r∂µΦs

)
; (3.1)

where:

• R is the curvature scalar;

• FΛ are field strengths;

• NΛΓ(Φ) is the vector kinetic matrix and it is a complex, symmetric,

nV x nV matrix depending on the scalar field Φ. The imaginary part

ImNΛΓ = IΛΓ is negative definite and generalizes the inverse of the

squared coupling constant appearing in ordinary gauge theories while

its real part ReNΛΓ = RΛΓ is instead a generalization of the theta-

angle of quantum chromodynamics. In supergravity theories it is in

general not a constants, but a function of scalar field. In the presence

of scalar fields, the black hole solutions will be modified with respect

to the solutions described in the previous chapter;

• grs(Φ) with r, s = 1, · · · ,m is the scalar metrix on the σ-model de-

scribed the scalar manifold Mscalar of real dimension m[3, 93]2.

1See Appendix A.
2In quantum field theory, a nonlinear σ-model (which is the “generalization” of a σ-

model) describes a scalar field Φ which takes on values in a nonlinear manifold called the

target manifold T [64, 65, 67, 94].

The tangent manifold is equipped with a Riemannian metric g. Φ is a differentiable map

from Minkowski space M (or some other space) to T . In the coordinate notation, with the

coordinates Φa with a = 1, · · · ,m where m is the dimension of T , the Lagrangian density

is given by:

L = +
1
2
gab(Φ)∂µΦa∂µΦb − V (Φ)

where here, we have used a (+,−,−,−) metric signature. In more than two dimensions,

nonlinear σ-models are nonrenormalizable; this means they can only arise as effective field
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The number of scalars and vectors, namely m and nV , and the geometric

properties of the scalar manifold Mscalar depend on the number N of super-

symmetries.

Using the Euler-Lagrange equation, for the bosonic action (3.1), one ob-

tains the Einstein equations:

−1

2

(
Rµν −

gµν
2
R
)

+
1

2
gab(Φ)∂µΦ

a∂νΦ
b − gµν

2

gab
2
∂Φa∂Φb +

+2F T
µρImNFνρ −

gµν
2
F T ImNF = 0; (3.2)

with:

R = gab(Φ)∂µΦ
a∂µΦb, (3.3)

and

−1

2
Rµν = −1

2
gab(Φ)∂µΦ

a∂νΦ
b +

−2F T
µρImNFνρ +

gµν
2
F T ImNF. (3.4)

We make the following Ansatz for a spherically symmetric and stationary

metric is[37, 95, 38]:

ds2 = a2(r)dt2 − 1

a2(r)
dr2 − b2(r)dΩ2; (3.5)

with dΩ2 = (dθ2 + sin2θdϕ2).

For this metric we have:

• the only non-zero Ri
j Ricci curvature tensor are:

Rt
t =

d

dr

(
a(r)

d

dr
a(r)

)
+

2a(r)

b(r)

(
d

dr
a(r)

)(
d

dr
b(r)

)
, (3.6)

theories.

There is a special class of nonlinear σ-models with the internal symmetry group G. If G

is a Lie group and H is a Lie subgroup, then the quotient space G/H is a manifold (subject

to certain technical restrictions like H being a closed subset) and is also a homogeneous

space of G or in other words, a nonlinear realization of G.
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Rr
r =

d

dr

(
a(r)

d

dr
a(r)

)
+

2a(r)

b(r)

d

dr

(
a(r)

d

dr
b(r)

)
, (3.7)

Rθ
θ = − 1

b2(r)

[
1− d

dr

(
a2(r)b(r)

d

dr
b(r)

)]
, (3.8)

Rϕ
ϕ = Rθ

θ = − 1

b2(r)

[
1− d

dr

(
a2(r)b(r)

d

dr
b(r)

)]
; (3.9)

• the R scalar curvature is:

R = +2
d

dr

(
a(r)

d

dr
a(r)

)
− 2

b2(r)
+

2a2(r)

b2(r)

(
d

dr
b(r)

)2

+

+
4

b(r)

d

dr

(
a2(r)

d

dr
b(r)

)
. (3.10)

In addition to the condition of the equation (3.5), we assume the following

Ansatz for the vector field strengths:

FΛ =
q̃Λ

4πb2
dt ∧ dr +

pΛ

4π
sin(θ)dθ ∧ dϕ. (3.11)

where q̃Λ = (I−1)Σ
Λ(qΣ − RΛΓp

Γ), qΣ and pΛ being the quantized electric and

magnetic charges. This Ansatz is dictated by the general p-brane solution of

supergravity bosons equations in any dimensions[96].

From this last equation we get3:

∗FΛ =
pΛ

4πb2
dt ∧ dr − q̃Λ

4π
sin(θ)dθ ∧ dϕ. (3.12)

and

GΛ ≡ i

2

∂L
∂FΛ

= (−I∗F +RF )Λ =

=
(Iq̃ +Rp)Λ

4π
sin(θ)dθ ∧ dϕ+

(Rq̃ − Ip)Λ

4πb2
dt ∧ dr; (3.13)

where:

I = ImN , R = ReN .

3See Appendix A.
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With any field-strength FΛ we may associate a magnetic charge:∫
S2

FΛ = pΛ, (3.14)

and an electric charge ∫
S2

GΛ = qΛ, (3.15)

where S2 is a spatial two-sphere in the spacetime geometry of the dyonic so-

lution, for instance in Minkowski spacetime the two-sphere at radius infinity

S2
∞. From (3.13) and (3.15) we find:

(Iq̃ +Rp)Λ = qΛ, (3.16)

or

q̃Λ = (I−1)Σ
Λ(qΣ −RΛΓp

Γ); (3.17)

and we assume all scalar fields Φ to be function of r. In the absence of scalar

fields RΛΓ = 0, IΛΓ = −1 and we have that q̃ reduces to the electric charge

q.

The equation of motion for the scalar fields obtained from the bosonic

action (3.1) are:

1√
−g

∂µ
(√
−ggµν∂νΦa

)
+ Γabc∂µΦ

b∂µΦc = − 1

b4
gab∂bVeff , (3.18)

with:

−1

b4
∂aVeff =

[
F T
µρ(∂aI)F

µρ + F T
µρ(∂aR)∗F µρ

]
, (3.19)

and Veff is the effective potential, also called “geodesic potential” or function

Veff [24].

From the equations (3.11), (3.12) and (3.16) we get that the function Veff

has the following form:

Veff =
−1

2

[
QTMQ

]
, (3.20)
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where:

Q =

 pΛ

qΛ

 (3.21)

and

M =

 I +RI−1R −RI−1

−I−1R I−1

 . (3.22)

We have denoted by Q the vector of the quantized magnetic and electric

charges.

If we consider the Einstein equations (3.2), with

−1

2
Rµν = −1

2
gab(Φ)∂µΦ

a∂νΦ
b +

−2F T
µρImNFνρ +

gµν
2
F T ImNF (3.23)

we obtain that:

−1

2
Rtt = − a2

2b4
Veff (3.24)

and

−1

2
Rθθ = − 1

2b2
Veff (3.25)

thus we have:

Rtt =
a2

b2
Rθθ (3.26)

or

Rt
t = −Rθ

θ. (3.27)

But from our Ansatz eq. (3.5), we obtained that:

Rt
t =

d
dr

(
ab2 d

dr
a(r)

)
b2

, (3.28)
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Rθ
θ = − 1

b2

[
1− d

dr

(
a2b

d

dr
b(r)

)]
; (3.29)

for which the condition Rt
t = −Rθ

θ implies:

d
dr

(
ab2 d

dr
a(r)

)
b2

= − 1

b2

[
1− d

dr

(
a2b

d

dr
b(r)

)]
; (3.30)

or:

d2

dr2

(
a2b2

)
= 2. (3.31)

A solution for this differential equation, in the Kallosh notation[27], is:

a2(τ) = e2U(τ) (3.32)

and

b2(τ) =
[
(r − r0)

2 − c2
]
e−2U(τ) (3.33)

where c is the extremality parameter4 and τ is the evolution coordinate and

is related to the radius coordinate r by the following relation:

dr =
c2

sinh2(cτ)
dτ (3.34)

or:

r = −c[coth(cτ)] + r0 → coth(cτ) = −r − r0
c

, (3.35)

so that we have:

b2(τ) = e−2U(τ) c2

sinh2(cτ)
. (3.36)

Note that the dependence of the evolution parameter τ on the radius coor-

dinate r is implicitly given by the equation:

c2

sinh2(cτ)
= (r − r0)

2 − c2, (3.37)

4The extremality parameter should not be confused with the spend of light.
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which in the extremal case c→ 0 can be written as:

τ = − 1

r − r0
. (3.38)

With these results, our Ansatz for a spherically symmetric and stationary

metric eq. (3.5) becomes:

ds2 = e2U(τ)dt2 − e−2U(τ)

[
c4

sinh4(cτ)
dτ 2 +

c2

sinh2(cτ)
dΩ2

]
; (3.39)

which correspond to the general Ansatz for a spherically symmetric static

black hole [51, 50, 3, 97].

Note that the extremality limit at which the two horizons coincide, rH =

r+ = r− = r0 is c → 0. In this case the equation (3.39) takes the following

simple form using the r coordinate:

ds2 = e2Udt2 − e−2U
[
dr2 + (r − rH)2dΩ2

]
. (3.40)

If we require the horizon to have to have a finite area A, the scalar function

U in the near-horizon limit should behave as:

e2U
τ→∞−→ 4π

A

c2

sinh2(cτ)
=

4π

A
(r − r−)(r − r+), (3.41)

such that the near-horizon metric reads:

ds2 =
4π

A
(r − r−)(r − r+)dt2 − A

4π

[
1

(r − r−)(r − r+)
dr2 + dΩ2

]
. (3.42)

This metric coincides with the near-horizon metric of a Reissner-Nordström

(R-N) black hole with horizons located at r±. It is convenient to introduce

the radial coordinate δ defined as:

δ = 2e(cτ), (3.43)

the metric becomes[3]:

ds2 =

(
δc

rH

)2

dt2 − (rH)2
[
dδ2 + dΩ2

]
. (3.44)
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where rH =
√

A
4π

is the radius of the outer horizon. The coordinate δ mea-

sures the physical distance from the horizon in units of rH ; in fact the distance

of a point at some finite δ0 from the horizon is finite:∫ δ0

0

rHdδ = rHδ0. (3.45)

Using this feature, R. Kallosh, N. Sivanandam and M. Soroush in: “The

non-BPS black hole attractor equation”[40], give an intuitive argument in

order to justify the absence of a universal behavior for the scalar fields near

the horizon of a non-extremal black hole: the distance from the horizon is

not “long enough” in order for the scalar fields to “loose memory” of their

initial values at infinity[3].

Consider now the extremal case c = 0. The relation between r and τ is

given by equation (3.38). In order to have a finite horizon area, U should

behave near the horizon as:

e−2U ∼
(

rH
r − rH

)2

. (3.46)

The physical distance from the horizon is now measured in units rH by the

coordinate ω = ln(r − rH) in terms of which the near-horizon metric reads:

ds2 =
e2ω

r2
H

dt2 − r2
H(dω2 + dΩ2). (3.47)

Since now the horizon is located at ω → −∞, the distance of a point at same

finite ω0 from the horizon is always infinite, as opposite to the non-extremal

case: ∫ ω0

−∞
rHdω = ∞. (3.48)

Therefore, as noted in the: 2006 paper by R. Kallosh, N. Sivanandam and

M. Soroush [40], the infinite distance from the horizon in the extremal case

justifies the fact the scalar fields at the horizon “loose memory” of their initial

values at infinity and therefore exhibit a universal behavior[40, 3].
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We end this section by observing that the extremality parameter is related

to the inner and out horizons by:

r± = r0 ± c. (3.49)

In addiction, the extremality parameter is related to the temperature T

and entropy S of the black hole through

c = 2ST. (3.50)

In fact if we consider the Reissner-Nordström (R-N) black hole[76, 77], the

Bekenstein-Hawking entropy-area formula is[27]:

SBH =
A

4
= πr2

+, (3.51)

and the temperature is:

T =
k

2π
, (3.52)

where k is the surface gravity5:

k =

√
M2 −Q2

2M2 −Q2 + 2M
√
M2 −Q2

=
r0
r2
+

, (3.53)

since:

r0 =
r+ − r−

2
, (3.54)

we have:

2ST = 2πr2
+

r0
r2
+

1

2π
= r0 (3.55)

and we find that:

c = 2ST. (3.56)

5See Appendix D.
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Analogously for the Kerr-Newmann (K-N) black hole, we have:

SB−H =
A

4
= πR2

+;

and

T =
k

2π
,

with:

k =

√
M2 −Q2 − J2

M2

2M2 −Q2 + 2M
√
M2 −Q2 − J2

M2

=
r0
R2

+

;

and we get:

2ST = 2πR2
+

r0
R2

+

1

2π
= r0 = c.

3.2 The effective one-dimensional Lagrangian

Let us recall the main facts, presented in the previous two sections, about

the description of a static black hole in four-dimensions as solution of a

Lagrangian system[24]. We start from the four dimensional bosonic action,

equation (3.1), of a generic supergravity theory, describing m scalar fields Φs

coupled to nV of vectors field AΛ
µ [3].

From the Ansatz for a spherically symmetric and static black hole reads,

eq.s (3.5) and (3.11), we have obtained the equation of motion for the scalar

fields:

1√
−g

∂µ
(√
−ggµν∂νΦa

)
+ Γabc∂µΦ

b∂µΦc = − 1

b4
gab∂bVeff , (3.57)

with,

Veff = −1

2

[
QTMQ

]
.
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Since the only variable is r, the radial part of that equation gives:

1

b2
∂r
(
b2grr∂rΦ

a
)

+ Γabc(∂rΦ
b)(∂rΦc) = − 1

b4
gab∂bVeff , (3.58)

with
√
−g =

√
b4sin2θ = b2sinθ. Furthermore from:

ds = dτ =
dr

b2grr
, (3.59)

we obtain:

d2

dτ 2
Φa + Γabc

(
d

dτ
Φb

)(
d

dτ
Φc

)
= gab

∂

∂Φb
Veff ; (3.60)

or better6:

D2

Dτ 2
Φa ≡ Φ̈a + ΓabcΦ̇

bΦ̇c = gab
∂V (Φ, p, q)

∂Φb
e2U(τ), (3.61)

with: Veff ≡ V (Φ, p, q)e2U(τ) and Φ̇b ≡
(
d
dτ

Φb
)
. It may be noted that this

equation corresponds to the traditional equation, of motion for the scalar

fields, that is found in literature[23, 3, 51, 50]; also note that the evolution

variable τ does not describe the temporal evolution but the radial one.

Making use of the ansatz (3.5) and (3.11) the action becomes:

S = α

∫
dr

[
2ab

(
d

dr
a

)(
d

dr
b

)
+ a2

(
d

dr
b

)2

+

−a2b2gab

(
∂

∂r
Φa

)(
∂

∂r
Φb

)
− 1

b2
Veff

]
, (3.62)

where α is a factor of proportionality and Veff is the effective potential[24].

Let us now write down the equations of motion of a(r) and b(r), obtained

from this action:

∂L
∂a

− d

dr

(
∂L
d
dr
a

)
= 0 →

d2

dr2
b

b
= −1

2
gab

(
∂

∂r
Φa

)(
∂

∂r
Φb

)
(3.63)

6Here the dotted quantities are differentiated with respect to the evolution parameter

τ .



3.2. THE EFFECTIVE ONE-DIMENSIONAL LAGRANGIAN 45

and

∂L
∂b
− d

dr

(
∂L
d
dr
b

)
= 0 → −1 +

(
d
dr
a2
) (

d
dr
b2
)

2
+ a2

(
d

dr
b

)2

=

= a2b2gab

(
∂

∂r
Φa

)(
∂

∂r
Φb

)
− 1

b2
Veff , (3.64)

having used the relation:

d2

dr2

(
a2b2

)
= 2; (3.65)

from which we get that:

d2

dr2
b

b
=

1

a2b2

[
+1−

(
d
dr
a2
) (

d
dr
b2
)

2
− a2

(
d

dr
b

)2
]
− 1

a2b4
Veff . (3.66)

But from eq. (3.36), we have:

b(τ) =
[
(r − r0)

2 − c2
] 1

2 e−U(τ); (3.67)

and

d

dr
b(τ) = −b(τ)

(
d

dr
U(τ)

)
+ e−U(τ) (r − r0)

[(r − r0)2 − c2]
1
2

, (3.68)

so that

d2

dr2
b(τ)

b
=

[
−
(
d2

dr2
U(τ)

)
+

(
d

dr
U(τ)

)2
]

+

− 2

(
d

dr
U(τ)

)
(r − r0)

[(r − r0)2 − c2]
− c2

[(r − r0)2 − c2]2
. (3.69)

Comparing this equation with the equation (3.66), we get that:

1

a2b2

[
+1−

(
d
dr
a2
) (

d
dr
b2
)

2
− a2

(
d

dr
b

)2
]
− 1

a2b4
Veff =

=

[
−
(
d2

dr2
U(τ)

)
+

(
d

dr
U(τ)

)2
]

+

−2

(
d

dr
U(τ)

)
(r − r0)

[(r − r0)2 − c2]
− c2

[(r − r0)2 − c2]2
. (3.70)
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Recalling that the evolution coordinate τ is related to the radius coordinate

r by the following relation:

dr =
c2

sinh2(cτ)
dτ =

[
(r − r0)

2 − c2
]
dτ ; (3.71)

we can deduce that:

d

dr
U(τ) =

(
d

dτ
U(τ)

)
dτ

dr
=

(
d

dτ
U(τ)

)
1

[(r − r0)2 − c2]
; (3.72)

and

d2

dr2
U(τ) = −2

(r − r0)

[(r − r0)2 − c2]

d

dr
U(τ) +

+

(
d2

dτ 2
U(τ)

)
1

[(r − r0)2 − c2]2
. (3.73)

Using the constraint:(
d

dτ
U(τ)

)2

+
1

2
gab

(
d

dτ
Φa

)(
d

dτ
Φb

)
− V (Φ, p, q)e2U(τ) = c2 (3.74)

we obtain the following equation of motion for U(τ):

d2

dτ 2
U(τ) ≡ Ü(τ) = V (Φ, p, q)e2U(τ). (3.75)

The equations of motion (3.61) and (3.75) can be associated to a one

dimensional theory whose Lagrangian is:

L =

(
d

dτ
U(τ)

)2

+
1

2
gab

(
d

dτ
Φa

)(
d

dτ
Φb

)
+ V (Φ, p, q)e2U(τ). (3.76)

It may be noted that if we introduce the metric[24]:

Gij =

 2 0

0 gab

 (3.77)

together with the Lagrangian variables qi(τ) = (U(τ),Φa(τ)), the Lagrangian

(3.76) becomes7:

L =
1

2
Gij

(
d

dτ
qi
)(

d

dτ
qj
)

+ V (Φ, p, q)e2U(τ). (3.78)

7Note that here and in the following by abuse of language we adopt the terms Hamil-

tonian and Lagrangian even if the evolution parameter τ does not describe the temporal

evolution but the radial one.
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Once the Lagrangian is known we can proceed with a Hamiltonian approach

using the phase space that stems from the qi(τ) = (U(τ),Φa(τ)) functions,

introducing the conjugate momenta to qi(τ)[24]:

pi(τ) =
∂L
∂q̇i

= Gij q̇
j. (3.79)

In terms of the variables qi and pi the Hamiltonian H(p, q) then reads:

H(p, q) =
1

2
piG

ijpj − V (q)e2U , (3.80)

or

H(p, q) =
1

2
q̇iGij q̇j − V (q)e2U . (3.81)

From these equations we can say that the constraint (3.74) acquires the

meaning of “energy conservation”[24]:

H(p, q) = c2 ↔ 1

2
q̇iGij q̇j − V (q)e2U = c2. (3.82)
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Chapter 4

Hamilton-Jacobi formalism and

static black holes

We have learned in the previous chapter that static and spherically symmet-

ric black holes are conveniently described by an effective one-dimensional

Lagrangian. The above construction works well in the static, rotationally

invariant case where the metric only depends in a non trivial way on the

evolution radial variable τ so that the Einstein Lagrangian can be reduced

to an effective one-dimensional Lagrangian.

The fields equations of the effective theory can be described in terms of

a set of first order equations, the Hamilton formalism. In this chapter we

present the application of the Hamilton-Jacobi equation to the first order

description of four dimensional static and spherically symmetric black holes.

In particular we discuss that there exists a prepotential characterizing the

flow which coincides with the Hamiltonian principal function associated with

the one-dimensional Lagrangian[24].

In the study of black holes solutions in supergravity theories, of partic-

ular relevance is the issue of describing the spatial evolution of the metric

and the scalar fields in terms of a first order dynamical system of equa-

tions written in terms of a fake superpotential, also called a function W or

prepotential[24, 42, 43, 44, 45]. In the case of four dimensional static and

49
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spherically symmetric black holes, if we collectively denote the scalar and

metric degrees of freedom characterizing the solution by qi(τ), the issue has

been of whether it is possible to define a function called fake superpotential

W(qi), depending on the quantized electric and magnetic charges and of qi,

such that the radial evolution of qi is solution to a system of equation[24]:

dqj

dτ
≡ q̇j = Gij

(
∂W
∂qi

)
with Gij being a non-degenerate metric. These equations are suitable for

studying the attractors mechanism[50, 20, 98, 22, 99, 39] of black holes

solutions[41, 100] as well as higher dimensional black brane solutions[101].

4.1 Introduction: Hamilton-Jacobi formalism

In theoretical physics, the Hamilton-Jacobi formalism is a necessary con-

dition describing extremal geometry in generalizations of calculus of vari-

ational problems; while in physics, the Hamilton-Jacobi equation is a re-

formulation of classical mechanics and, thus, equivalent to other formula-

tions such as Newton’s laws of motion, Hamiltonian mechanics and La-

grangian mechanics[102, 103]. The Hamilton-Jacobi equation is particu-

larly useful in identifying conserved quantities for mechanical systems, which

may be possible even when the mechanical problem itself can not be solved

completely[102].

The Hamilton-Jacobi equation is also the only formulation of mechanics

in which the motion of particle can be represented as a wave. In this sense,

the Hamilton-Jacobi formalism fulfilled a long-held goal of theoretical physics

of finding an analogy between the propagation of light and the motion of a

particle. The wave equation followed by mechanical systems is similar to,

but not identical with, Schödinger’s equation; for this reason, the Hamilton-

Jacobi formalism is considered the “closed approach” of classical mechanics

to quantum mechanics[102, 7].
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The Hamilton-Jacobi equation is a first order, non-linear partial differen-

tial equation for a function:

S = S(qi; t) (i = 1, . . . , N) (4.1)

called Hamilton’s principal function; with qi are the Lagrangian variables (or

generalized coordinates) and t is the time1. This equation may be derived

from Hamiltonian mechanics by treating S as the generating function for a

canonical transformation of the classical Hamiltonian:

H = H(qi; pi; t) (i = 1, . . . , N) (4.2)

with pi are the conjugate momenta (or generalized coordinates) to qi[102,

103]. The conjugate momenta correspond to the first derivatives of S with

respect to the generalized coordinates:

pi =
∂S

∂qi
. (4.3)

Principal function as solved from the equation from N + 1 undetermined

constants, the last being from integrating ∂S
∂t

, and the first N denoted as

α1, α2, . . . , αN−1, αN . The relationship then between pi and qi describes the

orbit in phase space in terms of these constants of motion, and

βi =
∂S

∂αi
. (4.4)

are also constants of motion and can be inverted to solve qi.

Any canonical transformation involving a tipe-2 generating function

G2(q
i;Pi; t) leads to the relations[102, 103]:

pi =
∂G2

∂qi
Qi =

∂G2

∂Pi
K = H +

∂G2

∂t
. (4.5)

To derive the Hamilton-Jacobi equations, we choose a generating function

S(qi;Pi; t) that makes the new Hamiltonian K identically zero. Hence, all

its derivatives are also zero, and Hamilton’s equations become trivial:

dPi
dt

=
dQi

dt
= 0; (4.6)

1For a general discussion of canonical transformations see for example[102, 103].
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i.e., the new generalized coordinates and momenta are constants of motion;

also the new generalized momenta Pi are usually denoted α1, α2, . . . , αN−1, αN

i.e. αi = Pi.

The equation for the transformed Hamiltonian K is:

K = H +
∂S

∂t
; (4.7)

let:

S(qi;αi; t) = G2(q
i;αi; t) + A, (4.8)

where A is a arbitrary constant, then S satisfies Hamilton-Jacobi equation:

H

(
qi;

∂S

∂qi
; t

)
+
∂S

∂t
= 0, (4.9)

since:

pi =
∂G2

∂qi
=
∂S

∂qi
,

and with K = 0, we have:

H

(
qi;

∂S

∂qi
; t

)
+
∂G2

∂t
= 0 −→ H

(
qi;

∂S

∂qi
; t

)
+
∂S

∂t
= 0.

The new generalized coordinates Qi are also constants, typically denoted

as β1, β2, . . . , βN−1, βN . Once we have solved for S(qi;αi; t), these also give

useful equations:

Qi = βi =
∂S(qi;αi; t)

∂αi
. (4.10)

Ideally, these N equations can be inverted to find the original generalized

coordinates qi as a function of the constants αi and βi, thus solving the

original problem.

Both Hamilton principal function S and characteristic function are closely

related to action; in fact, the time derivative of S is:

dS

dt
=
∂S

∂t
+
∑
i

∂S

∂qi
∂qi

∂t
= −H +

∑
i

∂S

∂qi
∂qi

∂t
= L; (4.11)
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therefore:

S =

∫
L(qi;

∂qi

∂t
; t)dt, (4.12)

so S is actually classical action plus an undetermined constant.

When H does not explicitly depend on time, one can introduce:

W (qi;αi) = S(qi;αi; t) + Et, (4.13)

where W is usually called Hamilton’s characteristic function.

4.2 Hamilton-Jacobi equation and static black

holes

Once the Lagrangian (3.78) is known we can proceed with a Hamiltonian

approach using the phase space that stems from the qi(τ) = (U(τ),Φa(τ))

Lagrangian variables, introducing the conjugate momenta to qi(τ)[24]:

pi(τ) =
∂L
∂q̇i

= Gij q̇
j. (4.14)

In terms of the variables qi and pi the Hamiltonian H(p, q) then reads:

H(p, q) =
1

2
q̇iGij q̇

j − V (q)e2U =
1

2
piG

ijpj − V (q)e2U , (4.15)

From these equations we can say that the constraint (3.74) acquires the

meaning of “energy conservation”[24]:

H(p, q) = c2 ↔ 1

2
q̇iGij q̇

j − V (q)e2U = c2. (4.16)

Let us recall how the solution of the equations of motion can be obtained

by applying the theory of the Hamilton-Jacobi formalism. We consider the

principal Hamiltonian function S(qi;Pi; τ) depending on: qi, new constant

momenta Pi and evolution parameter τ . It is defined by the set of first order

equation[24]:

H = −∂S
∂τ
, pi =

∂S

∂qi
, Qi =

∂S

∂Pi
, (4.17)
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where Qi, Pi are new constant canonical variables which can be expressed in

terms of the initial values of qi and pi. From the general theory of canonical

transformations it is known that the above transformation generated by S

always exists locally in the qi and pi space, in a neighborhood of any point

which is not critical, namely in which[102, 103]:(
∂H

∂q
,
∂H

∂p

)
6= ( 0 , 0 ). (4.18)

From the first two relations of eq. (4.17) we have:

S(qi, τ) = W(qi)− c2τ, (4.19)

pi =
∂W
∂qi

, (4.20)

and from the Hamiltonian constraint (4.16), we obtain:

H(p, q) =
1

2

(
∂W
∂qi

)
Gij

(
∂W
∂qj

)
− V (q)e2U = c2. (4.21)

this last equation defines the Hamilton-Jacobi equation for the superpotential

W [46, 47], usually called Hamiltonian’s characteristic function.

From eq. (4.14) and eq. (4.20) we have:

q̇j = Gijpj = Gij

(
∂W
∂qj

)
. (4.22)

This shows that, provided a solution to the equations (4.19) - (4.21) is found,

the evolution of the scalar fields and metric can be described in terms of a

dynamical system of the form (4.22)[24].

It may be noted that the functions S in equation (4.19) generalizes the ex-

pression for the prepotential conjectured in [42] for the general non-extremal

case. To make contact with the proposal in[42], let us consider the following

expression for the principal function S(qi;U ; τ):

S(qi;U ; τ) = 2e2U(τ)W (qi; τ) + c2τ = W(U ; qi)− c2τ. (4.23)
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This equation reproduces the first order expressions for the superpotential

as given in[42, 43]:

d

dτ
U(τ) ≡ U̇(τ) = WeU , (4.24)

and

dΦa

dτ
≡ Φ̇a = 2eUGab

(
∂W
∂qb

)
, (4.25)

together with the condition found in[42] for the non-extremal case:

∂W

∂τ
= −c2e−U . (4.26)

We observe that the solution of the set of differential equations (4.17)

- (4.21) in terms of Hamiltonian’s principal functions S is formally given

by[104]:

S(q, τ) = S0 +

∫ q,τ

q0,τ0

L(q, q̇)dτ, (4.27)

where the integral is performed along the solution of Hamiltonian’s equations,

i.e. the characteristic trajectory γ = qi(τ), such that:

qi(τ) = qi qi(τ0) = qi0. (4.28)

The above formula provides, in the most general case, only a local defini-

tion of S: local in τ , to avoid multivaluedness of S[104], and local in the

configuration space with coordinates qi’s, being S defined only on the points

qi, for fixed (qi0, τ0), for which the interpolating characteristic trajectory, sat-

isfying the equations (4.28), exists. In fact locally in the neighborhood of

a non-critical point in the phase space, there always exist a complete solu-

tion S(qi;Pi, τ) to the Hamilton-Jacobi equation and it has the form (4.27),

where Pi can be seen as a complete set of integration constants[104]. In what

follows, we shall use equation (4.27) bearing its local validity in mind.

In our conditions, we can use the Hamiltonian constraint to find the

expression of the principal function in terms of the potential as follows:

S(q, τ) = S0 +

∫ q,τ

q0,τ0

(
2V (q)e2U + c2

)
dτ, (4.29)
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so that, using the equations (3.78) and (4.16), the function W is given by:

W(q, τ) = W0 +

∫ q,τ

q0,τ0

(
L(q, q̇) + c2

)
dτ, (4.30)

or

W(q, τ) = W0 + 2

∫ q,τ

q0,τ0

(
V (q)e2U + c2

)
dτ. (4.31)

Actually the above equation can also be derived from direct integration of

formula (4.21)[24]. Indeed the eq. (4.21) has the form of the eikonal equation

for a wave front W = const. propagating in a medium of reflective index n

n =
√

2 (V (q)e2U + c2) : (4.32)

n2 =

(
∂W
∂qa

)
Gab

(
∂W
∂qb

)
. (4.33)

From equation (4.22) we get that ∂aW is tangent to the “light rays” namely

the characteristics γ = qi(τ). Introducing the proper distance s along a

characteristic:

ds =
√
q̇aGabq̇bdτ =

√
2 (V (q)e2U + c2)dτ, (4.34)

using the eq. (4.22), we have got:

dW
ds

=
∂W
∂qa

dqa

ds

dτ

ds

=

(
∂W
∂qa

)
Gab

(
∂W
∂qb

)
dτ

ds

=
√

2 (V (q)e2U + c2), (4.35)

that is:

dW =
√

2 (V (q)e2U + c2)ds = 2
(
V (q)e2U + c2

)
dτ. (4.36)

We can observe, from the above equation follows it that dW/dτ along γ is a

monotonic increasing function of τ along a solution[24] and the same is true

for the principal functions S, since the Lagrangian is non-negative.
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Before we finish this section, let us review the construction of function

W for the Reissner-Nordström (R-N) black holes[105]. The qa variables now

consist of the function U alone. This is for instance a solution to N = 2

pure supergravity. With respect to the only vector field of the theory, the

graviphoton, the solution can have in general a magnetic and an electric

charge p, e. The geodesic potential reads[24]:

V = Q2e2U ; (4.37)

and

Q2 =
1

2
(e2 + p2). (4.38)

The Hamilton-Jacobi equation and the Hamilton constraint read:

(U̇(τ))2 =
∂W
∂U

=
(
Q2e2U + c2

)
. (4.39)

We can then apply equation (4.31) to find, upon changing variables from τ

to U :

W(q, τ) = W0 + 2

∫ U,τ

U0,τ0

(
Q2e2U + c2

)
dτ

= W0 + 2

∫ U

U0

(
Q2e2U + c2

) 1

U̇
dU

= W0 + 2

∫ U

U0

√
(Q2e2U + c2)dU (4.40)

whose solution is:

W(q, τ) = W0 + 2

{√
(Q2e2U + c2)− c

2
ln

(√
(Q2e2U + c2) + c√
(Q2e2U + c2)− c

)}
.(4.41)

4.3 The W superpotential and duality

Let us now consider an extended supergravity theory in four dimensions. It is

known that the global symmetries of the Bianchi identities and the equations

of motion are encoded in the isometry of group G of the scalar manifold,
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whose action on the scalar fields is associated with a simultaneous linear

symplectic action on the field strengths FΛ and their duals GΛ[106, 30, 107].

The duality action of group G is defined by an embedding D of G inside the

group Sp(2nV , R)[24, 46]:

g ∈ G :


Φa → Φa′ = g ? Φa FΛ

GΛ

→ D(g) ·

 FΛ

GΛ

 (4.42)

where D(g) is the 2nV x 2nV symplectic matrix associated with g and g? is

the non-linear action of g on the scalar fields.

We are going to prove that the function W(q) is invariant under the

duality action of G. Recalling that the metric, and therefore the function U ,

is dual invariant field[46, 24], we define:

(g ? qi) ≡ (U, g ? Φa). (4.43)

The on-shell global invariance of the four dimensional theory under G means

that, if γ = (qj(τ)) is a characteristic trajectory of the Lagrangian system:

L =
1

2
Gij

(
d

dτ
qi
)(

d

dτ
qj
)

+ V (Φ, p, q)e2U(τ) (4.44)

with electric e magnetic charge parameters Q = (pΛ, qΛ) then

g ? γ = (g ? qi(τ)) (4.45)

is a trajectory of the Lagrangian system (4.45) with charge parameters D(g) ·
Q.

Now we evaluate the dependence of the geodesic potential V e2U on the

electric and magnetic charges explicit by writing V (q,Q)e2U . From general

properties of the symplectic matrix M(Φ), defined in equation (3.22), we

have got:

M(g ? q) = D(g)−TM(q)D(g)−1. (4.46)
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From this is follows that the effective potential V e2U , or equivalently V , is

duality invariant, in the sense that:

V e2U(g ? q,D(g) ·Q) = V e2U(q,Q); (4.47)

or equivalently

V (g ? q,D(g) ·Q) = V (q,Q). (4.48)

The group G is then a global symmetry group of the one-dimensional La-

grangian L in equation (4.44) and thus of both Hamilton’s principal and

characteristic functions S(q, τ ;Q) and function W(q;Q)[24]. In fact, from

the equations (4.31) and (4.47) we have:

W(q;Q) = W0 + 2

∫ q,τ

q0,τ0

(
V (q)e2U + c2

)
dτ

= W0 + 2

∫ g?q,τ

g?q0,τ0

{
V (g ? q,D(g) ·Q)e2U + c2

}
dτ

= W(g ? q,D(g) ·Q). (4.49)

We can assert that a duality transformation g ∈ G maps a black hole

solution (U(τ),Φa(τ)) with electric and magnetic charges Q = (pΛ, qΛ) into a

new solution (U
′
(τ) = U(τ),Φ

′a(τ) = g ?Φa(τ)) with charges Q
′
= D(g) ·Q.

More accurately, if U(τ),Φa(τ) is defined by the boundary condition Φ0 for

the scalar fields U
′
(τ) = U(τ) , Φ

′a(τ) is the unique solution, within our

class, with charges Q
′
= D(g) ·Q defined by the boundary condition Φ

′
0(τ) =

g ? Φ0[46]:

g ∈ G :


U(τ ; Φ0)

Φ(τ,Φ0)

Q

→


U

′
(τ ; g ? Φ0) = U(τ,Φ0)

Φ
′
(τ ; g ? Φ0) = g ? Φ(τ,Φ0)

Q
′
= D(g) ·Q

(4.50)

We now show that the superpotential W shares with W the same symmetry

property (4.48), namely that it is G-invariant as well:

W (q;Q) = W (g ? Φ, D(g) ·Q). (4.51)



60 CHAPTER 4. HAMILTON-JACOBI AND STATIC BLACK HOLES

This is shown using the equations (4.50) and the general form of the function

W :

W (g ? Φ0, D(g) ·Q) =

∫ 0

−∞

[
e2U

′
(τ ;g?Φ0)V (Φ

′
(τ ; g ? Φ0);D(g) ·Q)

]
dτ =

=

∫ 0

−∞

[
e2U(τ,Φ0)V (Φ(τ,Φ0);Q)

]
dτ =

= W (Φ0, Q). (4.52)

Recalling that the ADM mass can be expressed in terms of W function, it is

a G-invariant quantity as well:

MADM(Φ0;Q) = MADM(g ? Φ0, D(g) ·Q). (4.53)

Extremal black holes can be grouped into orbits with respect to the du-

ality action, eq.s (4.50), of G. These orbits are characterized in terms

of G-invariant functions of the quantized charges and scalar fields, which

are expressed in terms of H-invariant functions of the matter and central

charges[46]. One of these is the scalar-independent quartic invariance I4(Q)

of G which defines the area of the horizon for large black holes. Small black

holes are characterized by vanishing horizon area, in other words, belong to

the orbits in which I4(Q) = 0.



Chapter 5

Rotating black holes and first

order formalism

As we have learned in the previous three chapters, a formalism was developed

to interpret the first-order description of static and spherically symmetric

black holes in terms of Hamilton-Jacobi theory. In particular, the Hamilton

characteristic function was shown to coincide with the fake superpotential

W = e2UW [42, 24] where W is the Hamilton characteristic function.

In this chapter we consider axisymmetric black holes in supergravity

and address the general issue of defining a first order description for them.

The natural setting where to formulate the problem is the De Donder-Weyl-

Hamilton-Jacobi theory associated with the effective two-dimensional sigma-

model action describing the axisymmetric solutions[59]. We write the general

form of the two functions Sm defining the first-order equations for the fields.

It is invariant under the global symmetry group G(3) of the sigma-model.

We also discuss the general properties of the solutions with respect to these

global symmetries, showing that they can be encoded in two constant matri-

ces belonging to the Lie algebra of G(3), one being the Nöether matrix of the

sigma model, while the other is non-zero only for rotating solutions. These

two matrices allow a G(3)-invariant characterization of the rotational prop-

erties of the solution and of the extremality condition. We also comment on

61
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extremal, under-rotating solutions from this point of view1.

5.1 Introduction to Rotating black holes,

global symmetry and first order formal-

ism

There has been a considerable progress in the knowledge of static black holes

in supergravity, both from the point of view of finding solutions and of their

classification[9, 10, 108, 109, 3], in four and higher dimensions.

A relevant role in these developments was played by the use of a first order

formalism, corresponding to the introduction of a fake-superpotential[43, 44,

42, 100, 24, 47, 48, 49, 46] that was recognized to be strictly related to the

Hamilton characteristic function in a mechanical problem where the evolution

is in the radial variable τ [42, 24, 46]. The latter approach naturally applies

to both extremal and non-extremal static, single center black holes.

As far as more general solutions, such as stationary and/or multicenter

black holes[110, 111, 112, 113, 114, 115], are concerned, a similar compre-

hensive study is still missing. In particular, the use of a first order formalism

has not been much exploited except in very particular cases[116, 117, 118].

A peculiarity of static, spherically symmetric solutions is that one can ex-

ploit the symmetries to reduce the Lagrangian to a one-dimensional effective

one, where the evolution variable is the radial one [23, 50]. However, when

considering four dimensional solutions with less symmetries, in particular

stationary solutions where only the time-like Killing vector ∂t is present, an

effective three-dimensional Lagrangian can be obtained upon compactifica-

tion along the time coordinate [51, 52, 53, 54, 21, 55, 56, 57]. The fields in the

effective Lagrangian now depend on the three space variables xi, (i = 1, 2, 3).

1The basis reference, for this chapter, is the paper “Rotating black holes, global symme-

try and first order formalism” by Laura Andrianopoli, Riccardo D’Auria, Paolo Giaccone

and Mario Trigiante[59].
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In particular, for stationary axisymmetric solutions, the presence of an az-

imuthal angular Killing vector ∂ϕ allows a further dimensional reduction to

two dimensions.

The problem of extending the Hamilton-Jacobi formalism from mechan-

ical models, whose degrees of freedom depend on just one variable, to field

theories where the degrees of freedom depend on two or more variables, was

addressed and developed in generality from several points of view (a useful

review is given by [58, 59]).

Our main aim in the present chapter is to apply such extended formalism

in the study of black holes. We will adhere to the so-called De Donder-Weyl-

Hamilton-Jacobi theory, hereafter referred to as DWHJ, which is the simplest

extension of the classical Hamilton-Jacobi approach in mechanics[58, 59].

One important difference with respect to the case of classical mechanics con-

sists in the replacement of the Hamilton principal function S, directly related

to the fake-superpotential of static black holes, with a Hamilton principal 1-

form, that is with a covariant vector Si.

As it is usual in the three dimensional approach, by using Hodge-duality

in three dimensions all the fields of the parent four dimensional theory are

described by three dimensional scalars [51] and their interaction is given by

gravity coupled to a σ-model. Correspondingly, the equations of motion

give a set of conserved currents. A particularly interesting case is when the

σ-model is a symmetric space G(3)/H
∗, where H∗ denotes a suitable non-

compact maximal subgroup of G(3) [51]. Note that the effective geodesic

Lagrangian is invariant under the three-dimensional isometry group G(3) (we

will also refer to it as the three-dimensional duality group). One of the main

results of our paper is to give a manifestly duality invariant expression for

the Hamilton principal vector Si, thus extending the results obtained for the

Hamilton characteristic function W in the static case [24].

For pure Einstein-Maxwell (E–M) stationary configurations, the three-

dimensional σ-model turns out to be SU(1, 2)/U(1, 1). As is well known in

General Relativity, in the presence of a time-like Killing vector Einstein-
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Maxwell theory is very efficiently described in terms of the so-called Ernst

potentials E , Ψ[119, 120], which are complex functions of the SU(1, 2) com-

plex triplet of fields U = (WE, VE, UE). We found particularly useful, outside

the ergosphere, to parametrize the coset SU(1, 2)/U(1, 1) with the homoge-

neous fields UE, VE,WE, or more precisely with their inhomogeneous coun-

terpart (u = UE/WE, v = VE/WE), corresponding to four real scalar degrees

of freedom[59].

In the present chapter we will give general results on stationary axisym-

metric solutions of four dimensional supergravity and then focus on the first-

order formulation of the Kerr-Newman solution and its extension in the pres-

ence of a NUT charge. Besides finding a duality invariant Si, we will also

express the conserved charges of the black hole [2] in terms of the conserved

charges of the σ-model G(3)/H
∗. Actually, the Nöether charges associated

with G(3) global symmetry do not include the angular momentum Mϕ. The

latter can nevertheless be expressed in terms of quantities which are intrin-

sic to the σ-model. This is achieved by introducing a new G(3)-covariant

constant matrix, besides the Nöether charge one Q̃, defined as follows:

Qψ = − 3

8π

∫
S∞2

ψ[i Jj] dx
i ∧ dxj ,

Ji being the Nöether current with value in the Lie algebra of G(3) and ψ = ∂ϕ

is the azimuthal angle Killing vector. From straightforward application of the

general four-dimensional expression for the angular momentum one finds that

its squared value, for the Kerr-Newmann solution, can be written as the ratio

of two G(3) invariants Tr(Q2
ψ) and Tr(Q̃2), and thus can be given a description

which is invariant with respect to the global symmetry of the σ-model and

is straightforwardly generalizable to more general models with D = 4 scalar

fields[59]. This analysis also provides a G(3)-invariant characterization of

the extremality parameter (and thus of the extremality condition), see eq.s

(5.127), (5.128), so that the cosmic-censor condition for Kerr black holes,

M4
ADM ≥M2

ϕ, can be recast for the generic regular axisymmetric solution, in
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a G(3)-invariant way as:

[Tr(Q̃2)]2 ≥ 2

k
Tr(Q2

ψ) ,

k being a G(3) representation-dependent constant. In particular we show that

in the extremal “ergo-free” solutions [121, 122, 123, 124, 114], both matrices

Q̃, Qψ are nilpotent, the former having a larger degree of nilpotency of the

latter. The first-order formalism and the functions Sm for for under-rotating

solutions were derived in paper “Multi-Centered Black Hole Flows” by A.

Yeranyan[117].

A description of the global symmetry properties of axisymmetric solutions

should then include at least the two independent, mutually orthogonal ma-

trices Q̃, Qψ belonging to the Lie algebra of the global symmetry group[59].

5.2 Hamilton-Jacobi formalism for field the-

ory

We have learned in previous two chapter a formalism was developed to in-

terpret the first-order description of static and spherically symmetric black

holes in terms of Hamilton-Jacobi theory. In particular, the Hamilton char-

acteristic function W was shown to be related, for extremal solutions, to the

“fake” superpotential W = e2UW [42, 24]. The above construction works

well in the static, rotationally invariant case where the metric only depends

in a non-trivial way on the evolution radial variable τ so that the Einstein

Lagrangian can be reduced to an effective one-dimensional Lagrangian. For

more general black holes with a lower number of isometries we have to extend

the Hamilton-Jacobi formalism to a more general setting. In particular, for

stationary black holes corresponding to the existence of a Killing vector asso-

ciated to time translations ∂
∂t

[51], the metric can be reduced to the following

the general form[59]:

ds2 = e2U(dt−Bidx
i)2 − e−2Ug3

ijdx
idxj (5.1)
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where the field U , Bi and the 3D metric tensor g3
ij depend on the space

coordinates xi, i = 1, 2, 3.

In the static, spherically symmetric case, the Hamilton-Jacobi equations

arise in a classical mechanical effective model where the evolution variable

τ plays the role of time. A first-order formulation for a more general black-

hole solution requires the extension of the Hamilton-Jacobi description from

classical mechanics to a field theory depending on two or more variables,

see, for example, [58] and references therein. In this setting the Hamilton-

Jacobi description has to be generalized to the so-called De Donder-Weyl-

Hamilton-Jacobi theory, hereafter referred to as DWHJ, which amounts to

the following. Let L(za, vai , x
i) be the Lagrangian density of the system,

where za (a = 1, · · · , n) are the field variables which become functions of

the xi, za = ξa(x), on the extremals, while vai = ∂iξ
a on the extremals.2

The canonical momenta are defined by πia = ∂L
∂va

i
, and the invariant Hamilton

density function is:

H = πma v
a
m − L. (5.2)

The DWHJ equation is a first-order partial differential equation for the func-

tions Si(z, x)[58, 59]:

∂iS
i(z, x) +H(z, x, π) = 0 , (5.3)

where

πia = ∂aS
i(z, x). (5.4)

The functions

Si =
1
√
g
gijS

j

may be thought of as the components of a one-form S(1) ≡ Sidx
i.3

2With an abuse of notation, we will often use ∂iz
a to denote the va

i .
3We observe that, in the presence of a gravitational field, which is the case we will deal
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In the field-theory case the issue of integrability is more involved than in

mechanics since, even if a complete integral Si can be found, solutions to the

Euler-Lagrange equations can be constructed if the integrability conditions,

which are trivial in mechanics:

∂[iv
a
j] = 0 (5.5)

are satisfied. Taking into account that:

vai (π, z, x) = vai

(
∂S

∂z
, z, x

)
this imposes severe constraints on the solutions Si(z, x). From now on we will

mainly focus on the two dimensional case, which is relevant when discussing

axisymmetric black holes for which two Killing vectors exist, associated with

time translations ∂
∂t

and rotations about an axis ψ = ∂
∂ϕ

. Note however that

the extension of the formalism from systems depending on two independent

variables to systems with three or more independent variables is straightfor-

ward and does not bring anything conceptually new[58]. We will denote the

independent variables for the two-dimensional case by xm, m = 1, 2. The 3D

metric in this case takes the form:

gijdx
idxj = γmndx

mdxn + ρ̂2dϕ2 (5.6)

where ϕ denotes the azimuthal angle about the rotation axis, and the fields

γmn, ρ̂ depend on xm.

If one introduces the two-form Lagrangian

Ω0 = −Hdxm ∧ dxn + πma dξ
a ∧ dxnεmn (5.7)

then the Hamilton–Jacobi equations are given by the condition

dΩ0 = 0, (5.8)

with, (5.3) should be modified to contain the covariant divergence ∇iS
i. However, defining

the contravariant vector density Si ≡ √
ggijSj , Sj being a true covariant vector, makes

it possible to trade the covariant derivatives for ordinary ones, so that the equations are

formally the same as in flat space. In this case, however, by H we mean the Hamiltonian

density including the factor
√
|g|.
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which implies that, locally, there exist two functions Sm in terms of which

Ω0 can be written in the following form:

Ω0 = dSm ∧ dxnεmn, (5.9)

so that4:

∂mS
m = −H, (5.10)

∂Sm

∂za
= πma . (5.11)

5.2.1 Solving DWHJ equations

In the present subsection we discuss in a general setting a possible way to

solve the DWHJ equations. Then, in the next sections we will apply this

procedure to the study of axisymmetric black holes and their Taub-NUT

extensions5. We will give here a constructive recipe to find solutions to the

field equations by solving the DWHJ equations, following a general procedure

given in the literature[58] 6.

As already anticipated, in field theory the expression for Sm is strongly

restricted by the integrability constraints (5.5). In particular, as opposed

to the one-dimensional classical-mechanics case, it is not always possible to

find an expression for Sm valid in an open neighborhood of the extremals

za = ξa(x) in the space of fields and coordinates. When this is possible,

one says that the extremals za = ξa(x) are strongly embedded in the wave

fronts Sm(z, x). In many cases, however, the solution Sm satisfies equations

4We denote with ∂m the derivative with respect to explicit xm dependence, while total

derivative with respect to xm is denoted by d
dxm :

d

dxm
f(ξ, x) ≡ ∂mξa ∂f

∂ξa
+ ∂mf

5See Appendix C.
6See for example [58] and references therein.
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(5.10) and (5.11) only on the extremals za = ξa(x). One then says that the

extremals are weakly embedded in Sm(z, x).

A possible solution which is weakly embedded in Sm is found by choosing

one of the xm, say x1, as the evolution variable[59]:

Sm = (za − ξa(x))πma (ξ, x) +

+δm1

∫ x1

dx1′L(ξ(x′), ∂mξ, x
′) +O[(za − ξa(x))2] . (5.12)

Indeed, from (5.12) we find, using (5.2)

∂aS
m|z=ξ = πma (5.13)

∂mS
m|z=ξ = −∂mξaπma + L(ξ(x′), ∂mξ, x

′) = −H(ξ(x′), ∂mξ, x
′) . (5.14)

Note that equation (5.12) can be understood as a linear approximation of

the Taylor expansion of Sm in the neighborhood of the extremal.

5.3 Dimensional “reduction” of D = 4, N = 2

supergravity

In this section we describe the dimensional reduction of D = 4, N = 2 super-

gravity theory to three dimensions relevant for stationary black hole config-

urations, leading to a non-linear sigma models for coset manifold SU(1,2)
U(1)×SU(1,1)

and discuss some group theoretical points connected with its particular struc-

ture. Furthermore we construct the two dimensional theories describing sta-

tionary and axially symmetric solutions. In order to find these solutions, we

use the techniques developed in the 1988 paper by P. Breitenhner, D. Maison

and G. W. Gibbons[51].

5.3.1 Dimensional “reduction” of four dimensional from

four to three dimensions (time-reductions)

Four-dimensional rotating black holes depend on a number of degrees of

freedom which includes, besides the metric and scalars, also the degrees of
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freedom corresponding to the gauge potential. It is then natural to extend

the phase space to include as further degrees of freedom the electric and

magnetic potentials together with their conjugate momenta. This approach

was pioneered in[125] in the case of double extremal black holes.

As it is well known, this approach is equivalent to a time reduction of

the four dimensional field theory[51]. In this subsection, we describe the

dimensional “reduction” of D = 4, N = 2 supergravity to a non-linear sigma

model coupled to gravity in D = 3.

The metric of Kerr-Newmann (KN) black hole, with mass M , electric charge

Q and magnetic charge P , can be written in the form:

ds2 = gtt[dt−B(r, θ)dϕ]2 + grrdr
2 + gθθdθ

2 + gϕϕdϕ
2; (5.15)

with:

B(r, θ) =
α
(

(Q2+P 2)
2

− 2Mr
)
sin2(θ)

∆̃

B(r, θ) =
α(∆̃− ρ2)sin2(θ)

∆̃
, (5.16)

and

∆ = r2 − rsr +
(Q2 + P 2)

2
+ α2; (5.17)

∆̃ = r2 − rsr +
(Q2 + P 2)

2
+ α2cos2(θ); (5.18)

ρ2 = r2 + α2cos2θ; (5.19)

α =
J

Mc
=

J

M

where α representing the specific angular momentum J of the source and gij

are the components of the metric tensor; and we have:

ds2 = −e2U [dt−B(r, θ)dϕ]2 + e−2Uds2
3 (5.20)
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with:

e2U = −gtt; (5.21)

and the 3-metric ds2
3 is:

ds2
3 = −gtt

(
grrdr

2 + gθθdθ
2 + gϕϕdϕ

2
)

= g(3)
ijdx

idxj; (5.22)

where xi, i = 1, 2, 3 are the coordinates of the final Euclidean space.

Similarly we decompose the vector fields:

A = Aµdx
µ = A0dt+ Aϕdϕ = A0V + A3; (5.23)

with:

A0 = − [Qr − αPcos(θ)]

ρ2
, (5.24)

and

Aϕ =
[αQrsin2(θ)− (r2 + α2)Pcos(θ)]

ρ2
, (5.25)

into A0 and A3, from which the 3−D field strengths can be computed.

We start from the four dimensional bosonic action of a generic supergravity

theory, describing m scalar fields Φs coupled to nV of vectors field ÂΛ
µ [3]:

S4 =

∫ √
−g(4)d4x

(
+

1

2
R̂ +

1

4
IΛΓF̂

Λ
µ̂ν̂F̂

Γ|µ̂ν̂+

+
1

8
√
−g(4)

RΛΓε
µ̂ν̂ρ̂σ̂F̂Λ

µ̂ν̂F̂
Γ
ρ̂σ̂ −

1

2
grs(φ)∂µ̂φ

r∂µ̂φs

)
; (5.26)

where the gauge field-strength two-form is defined as F̂ Γ = dÂΓ and RΛΓ, IΛΓ

are the real and imaginary part of the complex kinetic matrix NΛΓ(Φ), with

the convention that IΛΓ < 0. Note that we have adopted a notation in which

four-dimensional indices are denoted with a hat. For the fields themselves

a similar notation is used, except for the scalar fields, as their reduction is

trivial.

For the vector fields on the other hand, the following ansatz is used:

ÂΓ
µ = AΓ

µ + AΓ
0V ; (5.27)
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ÂΓ
0 = V. (5.28)

Using the above equations, one obtains the following Lagrangian in three

dimensions:

L(3d) = e(3)

[
1

2
R− (dU)2 +

e4U

8
F (0)
µν F

(0)µν − 1

2
grs(φ)∂iφ

r∂iφs+

+
e2U

4
IΛΓF

Λ
ijF

Γ|ij − e−2U

2
∂iA

Λ
0 IΛΓ∂

iAΓ
0 +

1

2e(3)
εijkRΛΓF

Λ
ij∂kA

Γ
0

]
,(5.29)

with R ≡ R(3). The above Lagrangian still contains the three-dimensional

vector fields. In three dimensions however, vectors are dual to scalar fields;

thus one can obtain a Lagrangian where only metric and the scalar fields are

present. In order to dualize the vectors, we add the Lagrange multipliers AΓ

and ã to L(3d) by writing:

L(mult) =
εijk

2

[
−F Γ

ij∂kAΓ +
1

2
F

(0)
ij ∂kã

]
. (5.30)

Considering:

L = L(3d) + L(mult) (5.31)

and imposing:

∂L
∂FΛ

µν

= 0, (5.32)

∂L
∂F

(0)
µν

= 0 (5.33)

the following duality relations are obtained:

FΛ
ij = e(3)e

−2UεijkI
−1|ΛΓ

(
∂kAΓ −RΓΣ∂

kAΣ
0

)
, (5.34)

and

F
(0)
ij = −e(3)e−4Uεijk

(
∂kã+ 2A

Γ|T
0 ∂kAΓ

)
(5.35)
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with:

ã = a− A
Γ|T
0 AΓ (5.36)

and

∂kã = ∂ka− ∂kA
Γ|T
0 AΓ − A

Γ|T
0 ∂kAΓ . (5.37)

We have:

F
(0)
ij = −e(3)e−4Uεijk

(
∂ka+ ZTC∂kZ

)
(5.38)

where C being the antisimmetric 2nV x 2nV Sp(2nV , R)-invariant metric, for

which we shall use the following invariant metric[24, 46]:

C =

 0 1

−1 0

 . (5.39)

In this theory all the vectors are dualized to scalar fields so as to obtain

a sigma model coupled to gravity. Let us introduce the nv three dimensional

scalars ζΛ = AΛ
0 which, together with the scalars ζ̃Λ, dual in D = 3 to the

vectors AΛ
i , form the symplectic vector of electric and magnetic potentials

ZM = (ζΛ, ζ̃Λ). Finally we shall denote by a the axion dual in D = 3 to the

Kaluza-Klein vector A0
i [24]. The final D = 3 action reads:

S3 =

∫ √
|g(3)|d3x

(
+

1

2
R3 −

1

2
GIJ(Φ)∂µΦ

I∂µΦJ

)
; (5.40)

where: g(3) ≡ det(g(3)), ΦI = (U, φr, a,ZM), and the sigma model metric

reads:

1

2
GIJ(Φ)dΦIdΦJ =

(dU)2 +
1

2
grs(φ)dφrdφs +

e−4U

4
(ω)2 +

e−2U

2
dZTMdZ; (5.41)

with

M≡M(4) =

 I +RI−1R −RI−1

−I−1R I−1

 . (5.42)
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and the one-form ω is defined as:

ω = da+ ZTCdZ; (5.43)

where C is the antisimmetric 2nV x 2nV Sp(2nV , R)-invariant metric.

In the Kerr-Newmann case, we have that:

• I = −1 and R = 0;

• A and A0 are two scalars;

• the axion dual a is:

a =
α(2M + CP )cos(θ)− CQr

ρ2
+ cost; (5.44)

where C is a constant, and taking C = 0 we have:

a =
2αMcos(θ)

ρ2
+ cost. (5.45)

Here, all the propagating degrees of freedom have been reduced to scalars

by 3D Hodge-dualization[51]. In particular, a is the Hodge-dual of the 3D

graviphoton Bi and the scalars ZM = (ZΛ,ZΛ) include the electric compo-

nents AΛ
0 of the 4D vector fields together with the Hodge dual of their mag-

netic components AΛ
i (i = 1, 2, 3). Finally, M(4)(φ) is the negative-definite

symmetric, symplectic matrix depending on 4D scalar fields introduced in

[126, 127].

The isometry group G(3) of the σ-model metric Gab(ξ) contains as non

trivial subgroups the 4-dimensional U-duality group G(4) times the group

SU(1, 2) under which the degrees of freedom of the 4d metric transform.

The latter factor is universal and actually it is the 3D isometry group of any

4D Einstein–Maxwell gravitational theory with a single Killing vector. In

this case the 3D σ-model is in fact the coset manifold SU(1,2)
U(1)×SU(1,1)

, describing

a non-compact version of the universal hypermultiplet, the universal pseudo-

hypermultiplet.
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5.3.2 Dimensional “reduction” from three to two di-

mensions

Stationary and axisymmetric black holes of the four-dimensional theory are

characterized by their invariance under two commuting Killing vectors, cor-

responding to time translations ∂
∂t

and rotations ∂
∂ϕ

[51]. Since we want to

make use of the sigma model obtained for the three-dimensional theory after

suitable dualizations we prefer to employ a two step procedure. First we

use one Killing vector to reduce from four to three dimensions and then the

second one to do the step to two dimensions.

For Kerr-Newmann (K-N) black holes the metric can be reduced to the

following the general form:

ds(4)
2 = e2U(dt−Bdϕ)2 − e−2U

(
γmndx

mdxn + ρ̃2dϕ2
)

(5.46)

where ϕ denotes the azimuthal angle about the rotation axis, while the scalar

fields U,B, ρ̃ and the 2D metric tensor γmn depend on the space-time coordi-

nates xm, m = 1, 2. Hence an effective description can be given in terms of a

two dimensional theory, where the evolution variables are now xm. According

to a general procedure in General Relativity one can perform a coordinate

transformation such that the field ρ̃ is chosen as one of the new harmonic

coordinates, the second coordinate z being defined by dz = −?dρ̃ 7. In

these new variables xm = (ρ̃, z), named Weyl-coordinates, the 2D metric is

conformally flat[120, 51]:

γmn = λ2δmn , (5.47)

with:

λ2 = ∆̃ , (5.48)

and

ρ̃2 = ∆sin2(θ), (5.49)

7Here ? denotes Hodge-dualization in two dimensions.
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z = (r −M)cos(θ). (5.50)

Similarly we decompose the vector fields A(3)|Γ into pieces AΓ
m and AΓ

ϕ, with

m = 1, 2, perpendicular and parallel to ∂
∂ϕ

, respectively. We have that, for

the two-dimensional electromagnetic potential:

A(2)
m = 0, (5.51)

and

A(2)
ϕ = − [P∆cos(θ)− αQrsin2(θ)]

∆̃
; (5.52)

the corresponding field strengths is:

F (2) = F (2)
mndx

m ∧ dxn

= F (2)
rϕ dr ∧ dϕ+ F

(2)
θϕ dθ ∧ dϕ (5.53)

with:

F (2)
rϕ =

2r

ρ4
+

2(M − r)[
ρ2 − 2Mr + (Q2+P 2)

2

]2 , (5.54)

and

F
(2)
θϕ =

α2sin(2θ)[2ρ2 − 2Mr + (Q2 + P 2)]2

ρ4
[
ρ2 − 2Mr + (Q2+P 2)

2

]2 . (5.55)

In this case one may further reduce the 3D Lagrangian to two dimensions

by compactification on ϕ. The resulting 2D Lagrangian takes the form:

L(2) =
√
|g(2)|ρ̃

(
R(2)

2
− 1

2
Gab(z)∂mz

a∂mzb +
∂mρ̃ ∂

mλ

λρ̃

)
, (5.56)

with g(2) = det(γmn). The dynamics of the fields za(xm) is totally captured

by the σ-model effective action:

Seff =

∫
d2x

√
|g(2)| ρ̃

2
Gab(z)∂mz

a∂mzb , (5.57)

where ρ̃(xm) is a harmonic function in the subspace spanned by xm. The

metric on this space can be made conformally flat by a suitable choice of

the xm and the conformal factor absorbed in the definition of λ, so that the

equations for za and ρ̃ can be written in a flat 2D space, with R(2) = 0

spanned by xm[51].
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5.4 The 2D Effective Lagrangian and its Field-

Theoretical DWHJ description

In the presence of a time-like Killing vector ∂t, the vielbein V a (a = 0, 1, 2, 3)

of space-time can be put in the form:

V 0 = eU(dt+ B̃) = eUD0 ; V i = e−UDi (5.58)

where Di (i = 1, 2, 3) are 3D vielbein. The time-reduced 3-dimensional

Lagrangian describing a stationary 4D black hole in the presence of a given

number of scalars φr and gauge fields AΛ has the following form8[59]:

1√
|g(3)|

L(3) =
1

2
R− 1

2
Gab(z)∂iz

a∂izb =

=
1

2
R− 1

2
GIJ(Φ)dΦIdΦJ =

=
1

2
R−

[
(dU)2 +

1

2
grs(φ)dφrdφs +

e−4U

4
(ω)2 +

e−2U

2
dZTM(4)dZ

]
,(5.59)

where g(3) ≡ det(g(3)). Here, all the propagating degrees of freedom have been

reduced to scalars by 3D Hodge-dualization[51]. In particular, the scalars

Z = (ZΛ,ZΛ) = {ZM} include the electric components AΛ
0 of the 4D vector

fields together with the Hodge dual of their magnetic components AΛ
i (i =

1, 2, 3) and a is related to the Hodge-dual of the 3D graviphoton ωi. More

precisely,

AΛ
(4) = AΛ

0D
0 + AΛ

(3) , AΛ
(3) ≡ AΛ

i D
i , (5.60)

FM
(4) =

 FΛ
(4)

GΛ(4)

 = dZM ∧D0 + e−2UCMNM(4)NP
∗dZP , (5.61)

da = −e4U ∗dω − ZTCdZ , (5.62)

8For the D = 4 supergravity theory we use the units ~ = c = 8πG = 1 and the

normalization of the vector fields as in[3, 59].
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where:

FΛ
(4) = dAΛ

(4) , GΛ(4) = −1

2
∗

(
∂L

∂FΛ
(4)

)
(5.63)

andM(4)(φ) is the negative-definite symmetric, symplectic matrix depending

on 4D scalar fields introduced in [126, 127].

The isometry group G(3) of the σ-model metric Gab(z) contains as non

trivial subgroups the 4-dimensional U-duality group G(4) times the group

SL(2,R), the Ehlers group, under which the degrees of freedom of the 4D

metric transform. The simplest 3D model is the one originating form a

pure 4D Einstein–Maxwell gravitational theory with a single time-like Killing

vector. In this case G(4) = U(1) and the 3D σ-model has the homogeneous-

symmetric target space SU(1,2)
U(1)×SU(1,1)

. Its field content consists of four scalars

belonging to a pseudo-Riemannian version of the universal hypermultiplet,

dubbed the universal pseudo-hypermultiplet. We will discuss in more detail

the properties of this theory in the following subsection 5.5.

We will mainly focus our attention on stationary axisymmetric solutions

admitting the two Killing vectors ∂t and ∂ϕ. In this case, as pointred one

may further reduce the 3D Lagrangian to two dimensions by compactification

along ϕ. The fields now depend on the space coordinates xm, m = 1, 2, and

we assume that the three-dimensional space metric can be expressed in block-

diagonal form as:

g(3) =

 λ2hmn 0

0 ρ̂2

 . (5.64)

The resulting 2D Lagrangian takes the form[51, 59]:

L(2) =
√
h ρ̂

(
R(2)

2
− 1

2
Gab(z)∂mz

a∂mzb +
∂mρ̂ ∂

mλ

λρ̂

)
, (5.65)

with h ≡ det(hmn). As shown in[51, 59], the dynamics of the fields za is

totally captured by the σ-model effective action:

Seff =

∫
d2x

√
h ρ̂

2
Gab(z)∂mz

a∂mzb , (5.66)
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where ρ̂(xm) is a harmonic function in the subspace spanned by xm.9 The

metric on this space can be made conformally flat by a suitable choice of

the xm and the conformal factor absorbed in the definition of λ, so that the

equations for za and ρ̂ can be written in a flat 2D space, with R(2) = 0,

spanned by xm, with metric hmn. As we shall show in Sect. 5.5.1, in suitable

coordinates,

√
h ρ̂ = sin θ . (5.67)

The equation for λ can then be solved once the solutions to the σ-model are

known [51].

We shall restrict our analysis to symmetric supergravities in which the

scalar manifoldMscal of theD = 3 theory, spanned by the za, is homogeneous

symmetric, i.e. of the form:

Mscal =
G(3)

H∗ . (5.68)

We shall use for this manifold the solvable Lie algebra parametrization by

identifying the scalar fields za with parameters of a suitable solvable Lie alge-

bra. Let us recall the main points [60]. The isometry group G(3) of the target

space is the global symmetry group of the Seff and H∗ is a suitable non-

compact semisimple maximal subgroup of it. The scalars za = {U, a, φr, Z}
correspond to a local solvable parametrization, i.e. the corresponding patch,

to be dubbed physical patch U , is isometric to a solvable Lie group generated

by a solvable Lie algebra Solv:

Mscal ⊃ U ≡ eSolv , (5.69)

Solv is defined by the Iwasawa decomposition of the Lie algebra g of G(3) with

respect to its maximal compact subalgebra H. The solvable parametrization

9According to a general procedure in General Relativity one can perform a coordinate

transformation such that the field ρ̂ is chosen as one of the new harmonic coordinates,

the second coordinate z being defined by dz = −?dρ̂. Here ? denotes Hodge-dualization

in two dimensions. In these new variables xm = (ρ̂, z), named Weyl-coordinates, the 2D

metric is conformally flat γmn = λ2δmn [120, 51].
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za can be defined by the following exponential map:

L(za) = exp(−aT•) exp(
√

2ZM TM) exp(φr Tr) exp(2UT0) , (5.70)

where the generators T0, T•, Tr, TM satisfy the equations (5.81). We can use

for the generators of g a representation in which the generators of H∗, the Lie

algebra of H∗, are invariant under the involution σ : M → −ηM †η, where

η ≡ (−1)2T0 . The vielbein P and connection W̃ 1-forms on the manifold are

computed as the odd and even components, respectively, of the left-invariant

one-form with respect to σ:

L−1dL = P + W̃ , (5.71)

P = ηP †η = −σ(P ), W̃ = −ηW̃ †η = σ(W̃ ). In terms of P the metric on the

manifold reads:

dS2
(3) = Gab(z)dz

a dzb = kTr(P 2) , (5.72)

where k = 1/(2Tr(T 2
0 )) is a representation-dependent constant. It is also

useful to introduce the hermitian, H∗-invariant matrix M:

M(z) ≡ LηL† = M† (5.73)

in terms of which we can write the geodesic Lagrangian as:

L(2)eff =
1

2
ρ̂
√
hGab(z)∂mz

a ∂mzb

=
k

8
ρ̂
√
hTr

[
M−1∂mMM−1∂mM

]
(5.74)

with a canonically conjugate momentum

πma =
∂L

∂∂mza

=
k

4
ρ̂
√
hTr

[
M−1(z)∂aM(z)M−1(z)∂bM(z)

]
∂mzb . (5.75)

The corresponding equations of motion are:

∂m

(√
h ρ̂hmnJn

)
= 0 , (5.76)

where:

Jm ≡
1

2
∂mξ

aM−1∂aM . (5.77)
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5.4.1 Conserved quantities

We shall restrict our analysis to symmetric supergravities in which the scalar

manifold Mscal of the D = 3 theory, spanned by the ξa, is homogeneous

symmetric, i.e. of the form:

Mscal =
G(3)

H∗ . (5.78)

The isometry group G(3) of the target space is the global symmetry group of

the theory and H∗ is a non-compact semisimple maximal subgroup of it. The

scalars za = {U, a, φr, Z} correspond to a local solvable parametrization, i.e.

the corresponding patch, to be dubbed physical patch U , is isometric to a

solvable Lie group generated by a solvable Lie algebra Solv:

Mscal ⊃ U ≡ eSolv , (5.79)

Solv is defined by the Iwasawa decomposition of the Lie algebra g of G(3) with

respect to its maximal compact subalgebra H. The solvable parametrization

za in can be defined by the following exponential map:

L(φI) = exp(−aT•) exp(
√

2ZM TM) exp(φr Tr) exp(2UT0) , (5.80)

where the generators T0, T•, Tr, TM satisfy the following commutation rela-

tions:

[T0, TM ] =
1

2
TM ; [T0, T•] = T• ; [TM TN ] = CMN T• ,

[T0, Tr] = [T•, Tr] = 0 ; [Tr, TM ] = Tr
N
M TN ; [Tr, Ts] = −Trss

′
Ts′ (5.81)

and Tr
N
M representing the symplectic representation of Tr on contravariant

symplectic vectors dZM . We can use for the generators of g a representation

in which the generators of H∗, Lie algebra of H∗, are invariant under the

involution:

σ : M → −ηM †η , (5.82)
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where η ≡ (−1)2T0 . The vielbein P and connection W̃ 1-forms on the man-

ifold are computed as the odd and even components, respectively, of the

left-invariant one-form with respect to σ:

L−1dL = P + W̃ , (5.83)

P = ηP †η = −σ(P ) , (5.84)

W̃ = −ηW̃ †η = σ(W̃ ) . (5.85)

In terms of P the metric on the manifold reads:

dS2
(3) = Gab(z)dz

a dzb = kTr(P 2) , (5.86)

where

k = 1/(2Tr(T 2
0 )) (5.87)

is a representation-dependent constant. It is also useful to introduce the

hermitian, H∗-invariant matrix M:

M(z) ≡ LηL† = M† , (5.88)

in terms of which we can write the Nöether currents:

Jm ≡
1

2
∂mξ

aM−1∂aM . (5.89)

The quantity J = Jm dx
m is a 1-form with value in g and the equations of

motion can be cast in the form:

∂m

(√
det(γmn) ρ̃γ

mnJn

)
= 0 , (5.90)

which imply that the integral:

Q̃ =
1

2

∫ √
det(γmn) ρ̃γ

rrJrdθ , (5.91)

in an r-independent matrix in g.
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Using the notation of[60, 56] and from it we may derive the set of Nöether

currents JAm and the corresponding constants of motion Q̃A characterizing

the solution at radial infinity:

JAm ≡ kTr
(
T †A Jm

)
, (5.92)

Q̃A = kTr
(
T †A Q̃

)
=

1

4π

∫
S2

∗3JA

=
1

2

∫ √
h ρ̂hrr JArdθ (5.93)

which consist in the ADM mass M (TA = T0), the NUT charge ` (TA = T•),

the D = 4 scalar charges Σr (TA = Tr) and the electric-magnetic charges ΓM

(TA = TM). The currents JAm read:

J•m = k
2
Tr(T †•M−1∂mM) = −1

2
e−4U (∂ma+ ZTC∂mZ) , (5.94)

J0m = k
2
Tr(T †0M−1∂mM) = ∂mU + 1

2
e−2U ZTM∂mZ− a J•m , (5.95)

JMm =
k

2
Tr(T †MM

−1∂mM) =
1√
2
e−2UM(4)MN ∂mZN +

+
√

2 CMN ZN J•m , (5.96)

Jsm =
k

2
Tr(T †sM−1∂mM)

=
1√
2

L4 s
ŝ′ V4 s′′

ŝ′∂mφ
s′′ + e−2U ZTTsM ∂mZ +

− TsMNZMZN J•m , (5.97)

where L4 s
ŝ′ is the coset representative of the symmetric scalar manifold in

four-dimensions in the solvable parametrization, as a matrix in the adjoint

representation of the solvable group, V4 s
ŝ′ is the vielbein of the same manifold

and the hat denotes rigid indices.
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The conserved quantities are then obtained as the flux of the currents

across the 2-sphere at infinity, according to eq.s (5.92) and (5.93):

M =
1

4π

∫
S2

∗3J0 ; (5.98)

` = − 1

4π

∫
S2

∗3J• ; (5.99)

ΓM =

√
2

4π
CMN

∫
S2

∗3JN , (5.100)

Σs = 1
4π

∫
S2

∗3Js . (5.101)

The other conserved quantity characterizing the axisymmetric solution is

the angular momentum Mϕ along the rotation axis Z. The expression of the

angular momentum in terms of a conserved current can be found in standard

textbooks (see for instance [2, 128] and [59]). Here we would like to give

an expression of it in terms of quantities which are intrinsic to the D = 3

effective action: the Killing vector field ψ = ∂ϕ and J•. To this end we start

from the representation of Mϕ as the integral over the sphere at infinity S∞2

of a suitable 2-form, as given in [2]:

Mϕ = 1
16π

∫
S∞2

J (2) ; (5.102)

with:

J (2) ≡ √g εµνρσ∇ρψσ dxµ ∧ dxν . (5.103)

The above integral can also be written in the form:

Mϕ =
1

8π

∫
S∞2

√
g gµ [t Γr]µϕ dθdϕ

=
1

8π

∫
S∞2

√
g gµ [t gr]ν∂[µgν]ϕ dθdϕ =

=
1

8π

∫
S∞2

√
g(3)

[
1

2
grr(3)g

ϕϕ
(3)

(
∂rωϕg

(3)
ϕϕ − ωϕ ∂rg

(3)
ϕϕ+

+ e4U ω2
ϕ∂rωϕ +4ωϕ g

(3)
ϕϕ ∂rU

)]
dθdϕ . (5.104)
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Using the asymptotic behavior of the metric for axisymmetric solutions [128]:

ωϕ =
2Mϕ

r
sin2(θ) +O

(
1

r2

)
; (5.105)

g(3)
rr = 1 +O

(
1

r2

)
; (5.106)

g
(3)
θθ = r2

(
1 +O

(
1

r

))
; (5.107)

g(3)
ϕϕ = r2 sin2(θ)

(
1 +O

(
1

r

))
; (5.108)

e2U = 1− 2M

r
+O

(
1

r2

)
; (5.109)

we see that only the first two terms in the integral (5.104) survive the asymp-

totic limit and yield contributions which are both proportional to Mϕ, the

second term contributing twice the first to the asymptotic limit. The first

contribution in particular can be expressed in terms of ψ, J•, so that we can

write:

Mϕ = − 3

8π

∫
S∞2

ψ[i J•j] dx
i ∧ dxj

= − 3

4π

∫
S∞2

ψ[θ J•ϕ] dθ dϕ =

=
3

8π

∫
S∞2

ψϕ J•θ dθ dϕ , (5.110)

where ψϕ = g
(3)
ϕϕ.

G(3)-invariant characterization of the angular momentum

Let us define a new constant g-matrix as follows[59]:

Qψ = − 3
8π

∫
S∞2

ψ[i Jj] dx
i ∧ dxj = 3

8π

∫
S∞2

ψϕ Jθ dθ dϕ ∈ g . (5.111)
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In the asymptotic limit r → ∞ the components of Jm have the following

behavior:

Jr =
Q̃

r2
+O

(
1

r3

)
; (5.112)

Jθ =
Qψ

r2
sin θ +O

(
1

r3

)
. (5.113)

According to the general formula (5.110), the angular momentum can be

written as:

Mϕ = kTr(T †• Qψ) . (5.114)

As pointed out earlier, G(3) is the global symmetry group of the three-

dimensional effective theory[59]. As an isometry group, its elements have

a non-linear action on the coordinates:

g ∈ G(3) : za −→ zag = zag (z) , (5.115)

where zag (z) are non-linear functions of the za, depending on the parameters

of the transformation g. The same transformation, being a global symmetry,

maps a solution ξa(x) into an other one of the same theory ξag (x). The

asymptotic limit r →∞, for the scalar fields, defines a single point ξ0 = (ξa0)

on the scalar manifold[59]:

lim
r→∞

ξa(x) = ξa0 . (5.116)

Since the action of G(3) on the scalar manifold is transitive, we can always

map the point at infinity to the origin O(ξa0 ≡ 0). Once we fix ξ0 = O, we can

only act on the solutions by means of the stability group H∗ of the origin.

From the definition (5.73) we deduce the transformation property of the

matrix M(z) under an isometry g:

M(z) −→ M(zg) = gM(z) g† , (5.117)
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where, with an abuse of notation, we have used the same symbol g to denote

the matrix form of g in the representation of M. The g-valued current

Jm = Jm(ξ(x)) therefore transforms under an isometry g by conjugation:

Jm(ξ) −→ Jm(ξg) = (g†)−1 Jm(ξ) g† , (5.118)

and so do the g-valued constant matrices Q̃ and Qψ:

Q̃(ξ) −→ Q̃(ξg) = (g†)−1 Q̃(ξ) g† ; (5.119)

Qψ(ξ) −→ Qψ(ξg) = (g†)−1Qψ(ξ) g† . (5.120)

Generic axisymmetric stationary solutions are distinguished from the static

ones by the following G(3)-invariant property[59]:

axisymmetric solutions ⇒ Qψ 6= 0. (5.121)

In particular for solutions in the same G(3)-orbit as the Kerr-Newmann-Taub-

NUT (KN-Taub-NU) one, Tr(Q2
ψ) 6= 0. In the universal model originating

from Einstein-Maxwell supergravity in four dimensions, see Sect. 5.5, G(3) =

SU(1, 2), and we can evaluate on the KN-Taub-NUT solutions Q̃ and Qψ

explicitly. Using the covariant expression for the matrix M in terms of

UE, VE,WE, given in Appendix B and eq.s (5.176) - (5.178) introduced in

Section 5.5 we find[59]:

Q̃ =


0 0 (M − i `)

0 0 − Q+iP√
2

(M + i `) Q−iP√
2

0

 , (5.122)

Qψ = α


0 0 (`+ iM)

0 0 −i (Q+ iP )/
√

2

(`− iM) −i (Q− iP )/
√

2 0

 . (5.123)
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Then:

Tr(Q̃2) =
2

k
(M2 + `2 − P 2 +Q2

2
) , (5.124)

Tr(Q2
ψ) =

2α2

k
(M2 + `2 − P 2 +Q2

2
) , (5.125)

where α ≡ Mϕ/M and k = 1 in the fundamental representation of SU(1, 2),

so that[59]: (
Mϕ

M

)2

= α2 =
Tr(Q2

ψ)

Tr(Q̃2)
. (5.126)

We wish to stress here that the above formula, although derived in the uni-

versal model, holds in all supergravity theories admitting the KN-Taub-NUT

solution. This is a G(3)-invariant characterization of the angular momentum,

which holds for all solutions in the same G(3)-orbit as the KN-Taub-NUT one.

Using this result, we can write the extremality parameter in a G(3)-invariant

fashion[59]:

c2 = M2 + `2 − P 2 +Q2

2
− α2 =

k

2
Tr(Q̃2)−

Tr(Q2
ψ)

Tr(Q̃2)
, (5.127)

so that the extremality condition becomes:

c2 = 0 ⇔ Tr(Q̃2) =
2

k

Tr(Q2
ψ)

Tr(Q̃2)
, (5.128)

from which it is apparent that, as opposed to the static case, extremality does

not imply nilpotency of Q̃, as noted in [57, 59]. Equation (5.128) provides a

G(3)-invariant characterization of extremality[59]. There is a class of extremal

rotating solutions for which both sides of this equation vanish separately.

These are the “ergo-free” (under-rotating) solutions constructed in [59, 122,

123, 124] and further generalized in [114] within cubic supergravity models.

Below we shall comment on some general G(3)-invariant properties of these

solutions in terms of the matrices Q̃ and Qψ[59].



5.4. FIELD-THEORETICAL DWHJ DESCRIPTION 89

Under-rotating solutions.

In [59, 122, 123, 124] under-rotating solutions were constructed within the

Kaluza-Klein theory originating from pure gravity in D = 5, as a limit of

a dilatonic rotating black hole. In order to perform a similar limit in the

context of supergravity, we need to consider a model which is larger than

the universal one, but which contains it as a consistent truncation. The

simplest choice is the N = 2 t3-model in four dimensions, which consists of

supergravity coupled to one vector multiplet, whose complex scalar field t

parametrizes a special Kähler manifold with prepotential F(t) = t3. Upon

time-like reduction to D = 3 we end up with an Euclidean sigma-model with

target space G2(2)/[SL(2)× SL(2)] and global symmetry group G(3) = G2(2).

Extremal solutions to this model were studied in [53, 129, 57].

We shall not enter into the mathematical details of model but limit our-

selves to illustrate the procedure for generating an extremal under-rotating

solution from a non-extremal rotating one. The scalar fields originating from

the D = 4 vector fields are four (ZM) = (Z0, Z1, Z0, Z1), parametrizing

the solvable generators (TM) = (T0, T1, T
0, T 1). Adopting a suitable rep-

resentation of G2(2) for the generators (for example the fundamental real

7 representation), we can consider two commuting generators of Harrison

transformations[59]:

K0 ≡
1

2
(T0 + T †0 ) ; (5.129)

K1 ≡
1

2
(T 1 + T 1 †) , (5.130)

and “boost” the Kerr solution with parameters M, α using the Harrison

transformation[59]:

O ≡ elog(β1M)K0+log(β2M)K1 . (5.131)

The resulting solution is a non-extremal axion-dilaton rotating black hole

with ADM-mass, electric-magnetic and scalar charges and angular momen-

tum depending on the Kerr parameters M, α and encoded in the g2(2)-valued
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matrices[59]:

Q̃ = O−1Q(K)O ; (5.132)

Qψ = O−1Q
(K)
ψ O ; (5.133)

Q(K) and Q
(K)
ψ being the matrices corresponding to the original Kerr solution.

We shall give the complete solution elsewhere, focussing here only on the

characteristic quantities at radial infinity. Redefining α = ΩM = Mϕ/M ,

these quantities read[59]:

MADM =
1

8

(
M2(β1 + 3β2) +

1

β1

+
3

β2

)
; (5.134)

p1 =
√

3
M2β2

2 − 1

2
√

2β2

; (5.135)

q0 = −M
2β2

1 − 1

2
√

2β1

; (5.136)

Σ = i

√
3 (−M2β2β

2
1 +M2β2

2β1 + β1 − β2)

8β1β2

; (5.137)

Mϕ =
(β1β

3
2M

4 + 3β2(β1 + β2)M
2 + 1) Ω

8
√
β1β

3/2
2

; (5.138)

while p0 = q1 = ` = 0. Taking the the M → 0 limit while keeping β1, β2 and

Ω fixed, the above quantities remain finite:

MADM =
1

8

(
1

β1

+
3

β2

)
; (5.139)

p1 = −
√

3

2
√

2β2

; (5.140)

q0 =
1

2
√

2β1

; (5.141)
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Σ = i

√
3 (β1 − β2)

8β1β2

; (5.142)

Mϕ =
Ω

8
√
β1β

3/2
2

. (5.143)

Inspection of the full solution shows that, as M → 0, the ergo-sphere disap-

pears and the three dimensional spatial part of the metric becomes confor-

mally flat.

This limit corresponds to taking a singular Harrison transformation O
(log(β1M), log(β2M) → −∞) and at the same time a singular limit of the

Kerr parameters (M, α → 0). As a result the matrices Q̃, Qψ remain finite

but become nilpotent. In particular Q̃ is a step-3 nilpotent matrix while

Q̃ψ is step 2. The fact that Qψ has a lower degree of nilpotency than Q̃ is

consistent with the fact that[59]:

lim
M→0

Tr(Q̃2) = 0 ; (5.144)

lim
M→0

Tr(Q2
ψ)

Tr(Q̃2)
= 0 ; (5.145)

and the extremality condition (5.128) is satisfied. This is consistent with the

classification of extremal solutions of [55, 57] in terms of suitable nilpotent

subalgebras N of g. In this case the matrices Q̃ and Qψ would correspond to

characteristic generators of N.

5.4.2 A duality invariant expression for the DWHJ

vector Sm

Let us now apply the construction of section 5.2 to our specific effective La-

grangian (5.74). The direct application of eq. (5.12) to our specific geodesic

model is possible but lacks the property of being manifestly invariant under

the isometry group G(3). However, the use of the G(3)-valued matrix M in-

troduced in (5.73) makes it possible to write an alternative expression for Sm
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which does exhibit manifest duality invariance (provided we transform both

the off-shell fields za and their on-shell expression on a given background

ξa(x)). The expression is the following:

Sm = −k
4
ρ̂
√
hTr

[
M−1(z)∂mM(ξ)

]
+ δmr

∫ r

dr′L(ξ(x′), ∂mξ, x
′) .(5.146)

Indeed, from (5.146) we find:

∂Sm

∂za
=
k

4
ρ̂
√
hTr

[
M−1(z)

∂M
∂za

M−1(z)∂mM(ξ)

]
. (5.147)

so that, for a weakly embedded solution z = ξ, we reproduce the on-shell

expression of the conjugate momentum (5.75). Correspondingly we also find,

using the field equations:

∂mS
m|z=ξ =

(
L − k

4
ρ̂
√
hTr

[
M−1(z)∂mM(ξ)M−1(ξ)∂mM(ξ)

])
z=ξ

= −H|z=ξ . (5.148)

One may ask what the relation between the solution (5.146) and the gen-

eral relation (5.12) is. The answer can be found by realizing that a Taylor-

expansion of Sm given in (5.146) in powers of z − ξ, taking into account

(5.70) and (5.73), exactly reproduces (5.12). It is important to stress that

Sm, as defined above, is G(3)-invariant provided we simultaneously transform

za and ξa(x) in its expression, as it follows from the transformation property

(5.117) of the matrix M:

g ∈ G(3) : Sm(z, ξ) −→ Sm(zg, ξg) = Sm(z, ξ) , (5.149)

An important property of the DWHJ construction is that one can compute

the conserved currents of the theory by varying Sm with respect to the param-

eters which it depends on [58]. In particular, we can reproduce the conserved

Nöether currents ρ̂Jm of (5.77) by performing an infinitesimal isometry trans-

formation on Sm, at fixed background ξa(x), and then by varying Sm with

the corresponding symmetry parameters. If we set:

g = 1 + εαTα , (5.150)



5.5. APPLICATION TO E–M AXISYMMETRIC SOLUTIONS 93

the isometry transformed matrix is:

M(zg) = g · M(z) · g† ' 1 + εα
(
Tα · M+M ·T†

α

)
, (5.151)

On the g-transformed Sm we get:

∂Sm(zg)

∂εα

∣∣∣∣
z=ξ

= −k
4
ρ̂
√
h
[(
M−1(z)∂mM(ξ)

)
i
j(Tα)j

i+

+
(
M−1(z)∂mM(ξ)

)j
i(Tα)

i
j

]
= −2 ρ̂

√
h Tr[T †α · Jm] . (5.152)

5.5 Application to Einstein–Maxwell axisym-

metric solutions

In the absence of four dimensional scalar fields (∂iφ → 0, M(4) → 1(4)), the

geodesic part of the Lagrangian (5.59) reduces to[59]:

1√
|g(3)|

L(3) = (dU)2 +
e−4U

4
(ω)2 +

e−2U

2
dZTMdZ

=
1

2
Gab(z)dz

adzb, (5.153)

where Gab(z) is now the metric of the manifold:

SU(1, 2)

U(1)× SU(1, 1)
(5.154)

which is a pseudo-Kähler manifold, that is a non compact version of the

Kähler manifold CP (2).

As it is well known in General Relativity, the simplest and most useful

way to describe such theory is the use of the so-called Ernst potentials E ,

ψ[120, 119, 59] defined as:

E = e2U − |Ψ|2 + i a ; (5.155)

Ψ =
1√
2
(Z0 + iZ0) . (5.156)
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In terms of the Ernst potentials the metric (5.72) reads[59]:

ds2
(3) =

e−4U

2
|dE + Ψ̄dΨ|2 − e−2U |dΨ|2 (5.157)

The group SU(1, 2) acts non-linearly on the potentials E , ψ. However, one can

introduce homogeneous complex coordinate fields (WE, VE, UE) transforming

in the 3 of SU(1, 2), in terms of which the Ernst potentials can be written as

follows[59];

E =
UE −WE

UE +WE

; ψ =
VE

UE +WE

. (5.158)

Going to inhomogeneous variables u = UE/WE, v = VE/WE, they take the

form

E =
u− 1

u+ 1
; Ψ =

v

u+ 1
. (5.159)

The scalar manifold SU(1,2)
U(1)×SU(1,1)

can then be described in terms of the complex

fields za = (u, v) (where a = 1, 2).

We notice that the manifold (5.154) is a non-compact version of the mini-

mal model SU(1,2)
U(1)×SU(1,1)

, which describes a particular case of a symmetric space

of N = 2 special geometry in four dimensional supergravity. Accordingly, we

can say that the variables (u, v) are “special coordinates” in terms of which

the upper components of the corresponding holomorphic symplectic section

(XΛ, FΛ) read[59]10:

XΛ =


WE

UE

VE

 = WE


1

u

v

 , (5.160)

while the lower components FΛ are given in terms of the holomorphic ho-

mogeneous degree two prepotential F (XΛ), as FΛ = ∂F
∂XΛ . The holomorphic

prepotential in terms of the inhomogeneous coordinates reads:

F =
F (XΛ)

W 2
E

=
ı

4
(1− u2 − v2) , (5.161)

10See Appendix E.
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and the Kähler potential K has the following form:

K = − log
[
ı
(
2 (F − F̄)− (za − z̄a)(∂aF + ∂āF̄)

)]
= − log

[
|u|2 + |v|2 − 1

]
, (5.162)

where za = (u, v).

The coordinate patch u, v is defined by the condition:

|u|2 + |v|2 > 1 , (5.163)

whose physical meaning will be given in the next subsection.

The σ-model metric in the special coordinates has the form[59]:

dS2
(3) = 2 gab̄ dz

a dz̄b ; (5.164)

gab̄ = ∂a∂b̄K = e2K

(1− |v|2) ū v

v̄ u (1− |u|2)

 = e2K (δab̄ − zaz̄b̄) , (5.165)

gāb = −e−K (δāb − z̄āzb) ; (5.166)

where za ≡ εab z
b The eigenvalues of gab̄ are: −1/(|u|2 + |v|2 − 1) , 1/(|u|2 +

|v|2 − 1)2 and, if |u|2 + |v|2 > 1, gab̄ has the correct signature (−,−,+,+).

5.5.1 Relation to known black-hole solutions

For stationary, axisymmetric, asymptotically flat solutions admitting the two

Killing vectors ∂t and ∂ϕ, the most general case of complex scalar fields u, v

corresponds to a Kerr–Newman solution with NUT-charge11, whose metric

reads [120, 130, 131, 132, 59]:

ds2 =
∆̃

|ρ|2
(dt+ B̄)2 − |ρ|

2

∆̃

(
∆̃

∆
dr2 + ∆̃dθ2 + ∆ sin2 θdϕ2

)
, (5.167)

where:

∆ = (r −M)2 − c2 (5.168)

11See Appendix C.
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∆̃ = ∆− α2 sin2 θ (5.169)

ρ = r + ı (`+ α cos θ) , (5.170)

B̄ =

(
α sin2 θ

|ρ|2 − ∆̃

∆̃
+ 2` cos(θ)

)
dϕ (5.171)

with:

c2 = M2 + `2 − 1

2
(Q2 + P 2)− α2 (5.172)

as given in (5.127) in terms of the Boyer–Lindquist coordinates (r, θ), of the

electric and magnetic charges (Q,P ) and of the ADM-mass and NUT charge

(M, `). The parameter α is related to the angular momentum J = Mϕ

of the solution by α = Mϕ/M . Here the metric field U(r, θ) is given by

e2U = ∆̃
|ρ|2 [59]12. For this solution the fields λ, ρ̂ and the flat 2D metric hmn

read:

λ2 = ∆̃ ; ρ̂ =
√

∆ sin θ ; hmn

 1/∆ 0

0 1

 , (5.173)

so that
√
h ρ̂ = sin(θ). The latter expression holds, in suitable coordinates,

for all axisymmetric solutions. The Ernst potentials are then[59]:

E =
r − 2M + ı (α cos θ − `)

r + ı(α cos θ + `)
(5.174)

Ψ =
−Q+ ı P

r + ı (α cos θ + `)
(5.175)

and the corresponding homogeneous coordinates can be chosen as[59]:

UE = r −M + ı α cos θ; (5.176)

12The Kerr-Newman solution with NUT-charge, eq. (5.98), include for vanishing NUT

charge ` = 0 the Kerr-Newman black hole in Boyer–Lindquist coordinates, eq. (5.17).
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VE =
1√
2
(−Q+ ı P ); (5.177)

WE = M − ı `. (5.178)

Let us observe that only an SU(1, 1) subset of the SU(1, 2) invariance is

realized on the four dimensional fields, under which the ”charges” (WE, VE)

form a doublet while U is a singlet. The Kerr-Newmann solution is retrieved

by setting ` = 0 in eq.s (5.174) and (5.175), the Reissner-Nordström electric-

magnetic solution by further setting α = 0 and finally the Schwarzschild

solution is obtained from Reissner-Nordström when Q = P = 0[59].

Let us relate the explicit expressions for the Ernst potentials here with the

σ-model description given above. The metric function ∆̃ in (5.169) appears

to be related to the SU(1, 2)-invariant Kähler potential K in (5.162)[59]:

∆̃ = |UE|2 + |VE|2 − |WE|2 = |WE|2e−K. (5.179)

According to the identification (5.176)-(5.178) the condition (5.163) acquires

a precise physical meaning. In the static solutions (α = 0) the condition

(5.163) is guaranteed as long as r > r+, r+ being the outer horizon:

r+ = M +

√
M2 + `2 − P 2 +Q2

2
. (5.180)

On the other hand, the Kerr-Newmann case (` = 0) it gives:

r > M +

√
M2 − Q2 + P 2

2
− α2 cos2 θ ≡ re (5.181)

where re > r+ defines the external boundary of the ergosphere, where the

component g00 of the metric vanishes, while:

r+ = M +

√
M2 − Q2 + P 2

2
− α2 (5.182)

is the radius of the outer event horizon. Then we see that the special-

coordinate patch described by u, v breaks down on the ergosphere.
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If we cross the ergosphere surface ∆̃ = 0 we are bound to change the

coordinate patch. The new patch can be described by the CP(2) riemannian

space SU(1, 2)/U(2), with Kaehler potential:

K = − log(1− |u|2 − |v|2). (5.183)

The universal model considered here, and the KN-Taub-NUT solution

thereof, can be embedded in more general supergravity models (for instance

in all N = 2 symmetric supergravity models, dimensionally reduced to D =

3) and thus it is interesting to consider the G(3)-invariant properties of this

solution[59]. In light of the discussion at the end of Sect 5.4, the description

of such properties should take into account, aside from the Nöether charge

matrix Q̃, also the constant matrix Qψ.

5.6 Kerr-Newmann Solution from

Schwarzschild

In this section we give an alternative way to generate the Hamilton principal

1-form S(1) corresponding to the Kerr-Newmann solution. It makes use of

duality symmetry and general coordinate transformations starting from the

Schwarzschild solution.

We will proceed in two steps. We first need an explicitly SU(1, 2)-duality

invariant expression for the W3 of the Reissner-Nordström solution in 3D.

This can be achieved by using the generating technique of SU(1, 2) to gener-

ate solutions in 3D. In particular, starting from Schwarzschild field variables:

UE = r −M, (5.184)

VE = 0, (5.185)

WE = M, (5.186)
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the action of the SU(1, 2) Harrison and Ehlers transformations generate elec-

tric, magnetic and in general also a NUT charge, thus leading to a Reissner-

Nordström-NUT (RN-NUT) solution. Next, as a second step we use a pro-

cedure first introduced by Clément[133, 134, 59] allowing the generation of

a Kerr-Newmann solution from Reissner-Nordström by an appropriate se-

quence of SU(1, 2) and coordinate transformations.

5.6.1 W3 for the RN-NUT Solution

Let us recall that in the static case the prepotential W3 provides a first order

description of D = 3 static solutions[59, 24]:

dz̄ā

dτ
= gāb ∂bW3 (5.187)

satisfying the Hamilton-Jacobi equation:

∂āW3 g
āb ∂bW3 = c2 (5.188)

c being the extremality parameter.

Quite generally a static solution is completely defined by a point P of the

scalar manifold representing the values of the scalars at radial infinity τ = 0,

and the tangent vector to the geodesic, which is an object transforming

under H∗. Here H∗ is the isotropy group of the coset G/H∗, G being the

3D isometry group. Since the action of G/H∗ on P is transitive over the

scalar manifold, we can always fix P to be the origin O at which all fields

vanish, and study the geodesic solutions corresponding to various choices of

the velocity vector at infinity. In this way we break G to the little group H∗

of the origin and we expect the W3 describing the family of solutions with

P = O to be an H∗-invariant function[59].

In our case we have:

G

H∗ =
SU(1, 2)

U(1)× SU(1, 1)
(5.189)
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and we shall prove that the Reissner-Nordström-NUT (RN-NUT) solutions

are described by a solution to the Hamilton-Jacobi equation of the form:

W3 = −c log

(
|UE|+

√
|WE|2 − |VE|2

|UE| −
√
|WE|2 − |VE|2

)

= −c log

(
|u|+

√
1− |v|2

|u| −
√

1− |v|2

)
(5.190)

The above function is clearly H∗ = U(1, 1)-invariant since both |UE| and

|WE|2 − |VE|2 are[59].

Let us recover the expression (5.190) for the W3 describing the most gen-

eral static (non-extremal) black hole in our model, from the one-parameter

W(S)
3 of the Schwarzschild solution by a duality (isometric) continuation of it

on the whole σ-model. By duality continuation we mean defining the value

of W3 out of the one-dimensional submanifold on which W(S)
3 is defined by

means of an isometry transformation on the σ-model. Of course here we are

restricting to H∗ transformations only and the resulting prepotential will be,

by construction, H∗-invariant and still a solution to (5.188) being the latter

duality invariant.

The geodesic corresponding to the Schwarzschild black hole is defined by

the following prepotential:

W(S)
3 (s) = −c log

(
s+ 1

s− 1

)
, (5.191)

defined on the submanifold:

u = ū = s ; v = 0 . (5.192)

It is straightforward to check thatW(S)
3 (s) satisfies the Hamilton-Jacobi equa-

tion:

∂sW(S)
3

∂s

∂z̄ā
gāb

∂s

∂zb
∂sW(S)

3 =
(s2 − 1)2

4

(
∂sW(S)

3

)2

= c2 , (5.193)

where we have written:

s =
(u+ ū)

2
and za = (u, v) . (5.194)
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Next we apply to the Schwarzschild fields a generic H∗-transformation h∗.

The latter can be written as the product of a Harrison transformation, a

Ehlers U(1)E-transformation and a second U(1)-transformation (which cor-

responds to theD = 4 duality group). Referring to the notations of Appendix

B we have:

h∗ = Harrison hE h , (5.195)

Harrison a = ea1 J1+a2 J2 =


cosh(a) −eiσ sinh(a) 0

−e−iσ sinh(a) cosh(a) 0

0 0 1

 ,(5.196)

hE = eαJ• = diag(e−iα, 1, eiα) ; (5.197)

h = eβ J = diag(e−iβ, e2iβ, e−iβ) (5.198)

where we have written:

a eiσ = a1 + ı a2 (5.199)

If we apply h∗ to the Schwarzschild fields described by:

(WE(s), VE(s), UE(s)) = (1, 0, s) (5.200)

we find: 
WE

VE

UE

 = h∗


1

0

s

 , (5.201)

that is:

u =
UE
WE

= e2iα
s

cosh(a)
; v =

UE
WE

= −e−iσ tanh(a) . (5.202)
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From the above relations we find s in terms of the duality-transformed vari-

ables u, v:

s =
|u|√

1− |v|2
. (5.203)

Then we define W3 by duality continuation of W(S)
3 :

W(RN)
3 (u, v, ū, v̄) = W(S)

3 (s(u, v, ū, v̄)) = −c log

(
|u|+

√
1− |v|2

|u| −
√

1− |v|2

)
,(5.204)

thus obtaining (5.190).

We may check our result by solving the corresponding first order equations

(5.187)[59]:

dū

dτ
= cū

(
|u2| − k2

|u| k

)
, (5.205)

k2 = 1− |v|2 > 0 , (5.206)

dv

dτ
= 0 . (5.207)

From the first we derive:

d|u|
dτ

= c
|u2| − k2

k
⇒ |u| = k

Ae2cτ + 1

1− Ae2cτ
. (5.208)

where A is an arbitrary constant that the take equal to one. The second

equation is telling us that v is an arbitrary complex constant which we can

set to:

v = −Q− iP√
2M

eiα ⇒ k = c/M . (5.209)

Being the phase of u a constant, the general solution can be written as follows:

u = k
e2cτ + 1

1− e2cτ
e2iα . (5.210)

Setting the arbitrary constant A = 0 and using the relation between τ and

r:

τ =
1

2c
log

(
r −M − c

r −M + c

)
, (5.211)
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we find:

u =
c

M

2r − 2M

2c
e2ıα =

r −M

M
e2ıα ; (5.212)

v = −Q− ıP√
2M

eıα , (5.213)

which defines the Reissner-Nordström-NUT solution where M,P,Q are the

parameters of a Reissner-Nordström solution and α is the effect of a Ehler

U(1)-transformation. The Nöether charge matrix reads:

Q̃ = M−1 d

dτ
M =


0 0 2eıαM

0 0 −ı
√

2(P − ıQ)

2e−ıαm
√

2(Q− ıP ) 0

 . (5.214)

The fields are obtained by the general formulas:

U =
1

2
log

(
|u|2 + |v|2 − 1

|1 + u|2

)
; (5.215)

Ψ =
v

1 + u
; (5.216)

a = −i u− ū

|1 + u|2
. (5.217)

Using the generators of the solvable algebra of SU(1,2)
U(1)×SU(1,1)

13 we can compute

the physical charges in terms of the parameters of the solution. The ADM

mass M̂ and NUT charge read[59]:

M̂ = Tr(H†
0 Q̃) = M cos(2α) ; (5.218)

` = −Tr(G† Q̃) = −M sin(2α) . (5.219)

13See Appendix B.
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while the complex charge Q̂+i P̂√
2

is:

Q̂+ i P̂√
2

= −Tr((T1 + iT2)
† Q̃) =

Q+ i P√
2

eiα . (5.220)

Using the above identifications, the matrix Q̃ in (5.214) reduces to the

Nöether charge matrix in the first of eq.s (5.123), identifying hatted with

un-hatted quantities. This represents the fact that the Nöether charge ma-

trix Q̃ is the same for the KN-Taub-NUT and the RN-Taub-NUT solutions.

The difference resides in the matrix Qψ which vanishes in the latter solution.

Since the Maxwell-Einstein theory is a consistent truncation of a generic

N = 2 model, the above procedure for constructing a manifestlyH∗-invariant

W3 for the generic solution in the same G(3)-orbit as the Schwarzschild one,

from a duality completion of W(S)
3 , applies to a generic N = 2, D = 4 su-

pergravity. In this case the Nöether charge Q̃ of a generic representative of

the Schwarzschild orbit, is a diagonalizable matrix in the space K, orthogo-

nal complement of H∗ in g (the point at infinity ξ0 is always set to coincide

with the origin O), and transforms under the adjoint action of H∗ in a char-

acteristic H∗-representation. In particular Q̃ can be diagonalized using an

H∗-transformation. The modulus s in W(S)
3 is a function of the eigenval-

ues of Q̃, and thus is an H∗-invariant function of the parameters QA of Q̃:

s = f(QA). These parameters also provide a parametrization of the coset

G(3)/H
∗ ≡ eK and, in the physical patch U , can be expressed in terms of the

scalar fields za, so that we can locally express s as a H∗-invariant function

of za: s = f(QA(za)) = s(za). A duality completion procedure, analogous to

the one illustrated above, allows then to determine the followingH∗-invariant

expression for W3 for the Schwarzschild orbit[59]:

W3 = −c log

(
s(za) + 1

s(za)− 1

)
. (5.221)

In the case of the universal model s(za) was given in eq. (5.203).
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5.6.2 The Clément Generating Technique

Having at our disposal a duality invariant W3 for the Reissner-Nordström

solution, we may now apply a procedure, introduced in [133, 134], to relate

static and rotating black-hole solutions. In this way we shall arrive at the

explicit expression of the UE, VE,WE variables (5.176) - (5.178) for the Kerr-

Newmann solution[133, 134, 59]. We shall apply to the Reissner-Nordström

set of homogeneous variables associated to (5.212) and (5.213), which for

definiteness we choose to be[59]:

UE = r −M ; (5.222)

VE =
1√
2
(Q− ı P ); (5.223)

WE = M + ı `. (5.224)

the transformation Π ·R · Π, where:

Π = {UE → VE, VE → UE,WE → −WE} (5.225)

is a SU(1, 2) involution, and R is the following 4D space-time coordinate

transformation:

R :

 dϕ = dϕ′ + γΩdt′

dt = γdt′
(5.226)

relating the original reference frame to one rotating with constant angular

velocity Ω. The constant time-rescaling factor γ will be fixed in the following

to have the standard expression for the Ernst potentials of the Kerr-Newmann

solution[59].

The first involution Π gives rise to the following new potential:

E ′ = U ′
E −W ′

E

U ′
E +W ′

E

=
− 1√

2
(Q− ıP ) +M − ı`

− 1√
2
(Q− ıP )−M + ı`

, (5.227)
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ψ′ =
V ′
E

U ′
E +W ′

E

=
r −M

− 1√
2
(Q− ıP )−M + ı`

(5.228)

One can readily see that the new solution corresponds to a Bertotti-Robinson

space time (BR metric)[80, 81, 59], with radius:

RBR ≡ |VE −WE| =

√
(
Q√
2

+M)2 + (
P√
2

+ `)2 . (5.229)

The coordinate transformation R induces the following transformation of the

4D static metric and gauge fields:

R :


e2Ũ

′
= γ2

(
e2U

′ − e−2U ′ ρ̂2Ω2
)

ω̃ = ρ̂2Ω

γ(e4U′−ρ̂2Ω2)

˜̂ρ = γρ̂

(5.230)

where

e2U
′
=
|UE|2 + |VE|2 − |WE|2

R2
BR

≡ ∆

R2
BR

(5.231)

â′ = a′ =
(V̄EWE − VEW̄E)

R2
BR

=
2( Q√

2
`− P√

2
M)

R2
BR

(5.232)

We have introduced here the SU(1, 2) invariant ∆̃, which, in the coordinates

(5.222) - (5.224), is:

∆̃ = (r −M)2 − c2RT , (5.233)

where:

c2RT ≡ |WE|2 − |VE|2 = M2 + `2 − 1√
2
(Q2 + P 2), (5.234)

is the extremality parameter of the dyonic Reissner-Nordström-NUT solu-

tion. Note that c2RT = k
2
Tr[Q̃2] (see eq.s (5.124) and (5.125)).

The redefinition of the metric implies a transformation of the gauge field-

strengths, that corresponds to the following transformation on the gradient

of the Ernst potential ψ (here xm = (r, θ))[59]:

∂mψ̂
′ = γ

[
∂mΨ′ − ρ̂Ωe−2U ′ (?(2)∂mΨ′)

]
. (5.235)
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The integration of equation (5.235) is easily performed by observing that:

?(2)∂rψ̂′ = 0 (5.236)

since ψ′ = ψ′(r) is only function of the radial variable. Further observing

that:

∂rψ
′ = − γ

R2
BR

[
(
Q√
2

+M) + ı(`+
P√
2
)

]
(5.237)

the final result is[59]:

ψ̂′ = γ{ψ′(r) + ı(VE −WE)Ω cos θ}

=
γ

R2
BR

{
(r −M)(V̄E − W̄E) + ıα cos θ

}
(5.238)

together with

Ê ′ = e2Û
′ − |ψ̂′|2 + ıâ′

= − γ2

R2
BR

(
c2RT + α2

)
+
ı (V̄EWE − VEW̄E)

R2
BR

(5.239)

where we have defined α ≡ (ΩR2
BR).

We may give a simpler expression to the Ernst potentials by fixing the

time rescaling γ as:

γ2 =
c2RT

c2RT + α2
. (5.240)

With this redefinition we obtain[59]:

Ê ′ = Û ′
E − Ŵ ′

E

Û ′
E + Ŵ ′

E

=
VE +WE

VE −WE

(5.241)

ψ̂′ =
V̂ ′
E

Û ′
E + Ŵ ′

E

=
γ(UE + ıα cos θ)

VE −WE

. (5.242)

implying the following transformation on the homogeneous variables:

R · Π :


Û ′
E = VE

V̂ ′
E = γ(UE + ıα cos θ)

Ŵ ′
E = −WE

(5.243)
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Performing again the transformation Π as given in eq. (5.225), we finally

obtain the Kerr-Newmann (TaubNUT) fields in terms of the corresponding

variables of the Reissner-Nordström (TaubNUT) solution[59]:

Π ·R · Π :


Û ′′
E = γ(UE + ıα cos θ)

V̂ ′′
E = VE

Ŵ ′′
E = WE

(5.244)

corresponding to the potentials:

Ê ′′ = γ(UE + ıα cos θ)−WE

γ(UE + ıα cos θ) +WE

, (5.245)

ψ̂′′ =
VE

γ(UE + ıα cos θ) +WE

. (5.246)

They correspond to the standard Kerr-Newmann potentials [119, 59]:

EKN = 1− 2M

r + ıα cos θ
(5.247)

ψKN =

−1√
2
(Q− ıP )

r + ıα cos θ
. (5.248)

if we set, besides ` = 0;

r → γ(r −M) +M , α→ γα . (5.249)

For the Kerr-Newmann solution, the field a appearing in (5.59) is given by

the imaginary part of E [59],

a = 2
Mα cos θ

|ρ|2
. (5.250)

5.7 The DWHJ principal 1-form for the

Kerr-Newmann solution

Let us explicitly compute the DWHJ principal functions Sr, Sθ for the Kerr-

Newmann solution[59].
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We recall, from section 5.5.1, that the two-dimensional metric is:

hmn =

 1/∆ 0

0 1

 . (5.251)

We have:

∂aS
m = πma = sin(θ) gab̄(z)h

mn ∂nz̄
b̄ (5.252)

that is:

πra = sin(θ) gab̄(z) ∆ ∂rz̄
b̄ , (5.253)

πθa = sin(θ) gab̄(z) ∂θz̄
b̄ . (5.254)

Equation (5.252), recalling (5.12), admits the weakly embedded solution[59]:

Sm = 2< [(za − ξa(x)πma (x))] + δmr

∫ r

dr̂L(ξ, ∂ξ, x̂) (5.255)

Using (5.165), if we denote by ξu, ξv the on-shell values of the field u, v[59]:

ξu =
r −M + ı α cos θ

M + ı `
; (5.256)

ξv =
−Q+ ı P√
2(M + ı `)

; (5.257)

we find:

Sr(z, x) =

+2 sin(θ)(M2 + `2)2 ∆(x)

∆̃2(x)
<
[
(u− ξu)(v − |ξv|2) + (v − ξv)ξuξ̄v

]
+

+

∫ r

dr̂L(ξ, ∂ξ, x̂) ; (5.258)

Sθ(z, x) =

−2α sin2(θ)
(M2 + `2)2

∆̃2(x)
=
[
(u− ξu)(v − |ξv|2) + (v − ξv)ξuξ̄v

]
.(5.259)

In this chapter we have addressed the issue of the first order description

of generic, not necessary extremal, asymmetric solutions. This was done by

working out the general form of the principal functions Sm associated with

the corresponding effective 2D sigma-model in the DWHJ setting.
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Chapter 6

Conclusions

In this thesis we have addressed the issue of the first order description of

generic axisymmetric black holes in supergravity. An important issue in my

research work was to extend the Hamilton-Jacobi formalism from mechani-

cal models, whose degrees of freedom depend on just one variable, to field

theories where the degrees of freedom depend on two or more variables. This

problem was addressed and developed in generality in field theory[58, 59],

but not much was known in the context of gravitational field theories. An

important issue in the this thesis was to apply such extended formalism to

the study of black holes.

We have worked with the so-called De Donder-Weyl-Hamilton-Jacobi

(DWHJ) theory, which is the simplest extension of the classical Hamilton-

Jacobi approach in mechanics[58, 59]. One important difference with respect

to the case of classical mechanics consists in the replacement of the Hamil-

ton principal function S, directly related to the fake-superpotential of static

black holes, with a Hamilton principal 1-form, that is with a covariant vector

Si.

In the first part of in my thesis I reported the description of static and

spherically symmetric black holes in a Lagrangian and Hamiltonian frame-

work, where the prepotential characterizing the flow has a natural interpre-

tation as Hamilton principal function.
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A first achievement in my thesis is to formulate the physics of rotating

black holes in terms of an effective two dimensional Lagrangian, whose in-

dependent variables are the radial variable r and the angular variable θ. It

was particularly useful to formulate the theory in such a way that all the

propagating degrees of freedom have been reduced to scalars, by use of 3D

Hodge-dualization [51]. In this way, the effective 3-dimensional Lagrangian

has the form of a non linear sigma model, whose scalars include the de-

grees of freedom of the space-time metric and of the electric and magnetic

components of the gauge vectors.

In chapter five, of this thesis, we have addressed the issue of the first or-

der description of generic (not necessarily extremal) axisymmetric solutions.

This was done by working out the general form of the principal functions Sm

associated with the corresponding effective 2D sigma-model in the DWHJ

setting. We have also given a characterization of the general properties of

such solutions with respect to the global symmetry group of the effective

2D sigma-model which describes them. This was done by introducing, aside

from the Nöether charge matrix, a further characteristic constant matrix Qψ,

in the Lie algebra of G(3), associated with the rotational motion of the black

hole.

As a direction for further investigation it would be interesting to gener-

alize this analysis to more general stationary solutions, including (non nec-

essarily extremal) multicenter black holes, which requires the extension from

2D to 3D. In this respect there is virtually no conceptual obstruction in gen-

eralizing the DWHJ construction and the general formula for Sm, which we

have mainly used here within a 2D effective sigma-model description, to the

full 3D effective description of stationary solutions. It would moreover be in-

teresting to analyze the axisymmetric solutions to symmetric supergravities

from the point of view of the integrability of the corresponding effective 2D

sigma-model, which we have not exploited here. This latter property being

related to the presence in a gravity/supergravity theory, once dimensionally

reduced to D = 2, of an infinite dimensional global symmetry group, general-
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izing the Geroch group of pure Einstein gravity (see for instance [135, 136]).
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Appendix A

Duality in supersymmetric

theories

In this appendix we present the concept of duality in supersymmetric theo-

ries. Duality is an invertible map between two theories sending states into

states, while preserving the interactions, amplitudes and symmetries. Two

theories that are dual to one and another can in some sense be viewed as

being physically identical[64, 65, 8, 66, 67].

A.1 Duality in field theory

In this section we give some information on duality in field theory and super-

gravity. In particular, we start by briefly reviewing the early idea of duality

in field theory, from the Dirac work on monopoles to its extensions in the

context of spontaneously broken symmetry, and then introduce the concept

of duality in extended supersymmetric theories.

A.1.1 The duality of electricity and magnetism

A magnetic monopole is a hypothetical particle in particle physics that is

magnet with only one magnetic pole. A magnetic monopole would then

have a net “magnetic charge”. Modern interest in the concept stems from

115
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particles theories, notably the grand unification and superstring theories,

which predict their existence[137, 67, 138].

The magnetic monopole was first hypothesized by Pierre Curie in 1894,

but the quantum theory of magnetic charge started with a paper by the

physicist Paul A. M. Dirac in 1931[139]. In this paper, Dirac showed that

the existence of magnetic monopoles was consistent with Maxwell’s equations

only if electric charges are quantized, which is always observed. Since then,

several systematic monopole searches have been performed. Experiments in

1975[140] and 1982[141] produced candidate events that were initially inter-

preted as monopoles, but are now regarded as inconclusive[142].

The equations governing the electromagnetic field are Maxwell’s equations[64,

65, 8, 66, 67],

∇ · E = ρ ∇∧B− ∂tE = j, (A.1)

∇ ·B = 0 ∇∧ E + ∂tB = 0, (A.2)

where: E and B are the electric and magnetic field and

jµ = (ρ, j), (A.3)

is the electric current four-vector, j, is the current density. These equations

can be written in the compact relativistic notation[64, 143, 65, 67],

∂νF
µν = −jµ, (A.4)

∂ν
∗F µν = 0, (A.5)

where F µν is the electromagnetic field tensor:

F 0i = −Ei F 0i = −εijkBk, (A.6)

and ∗F µν is the dual tensor of F µν ,

∗F µν =
1

2
εµνρσFρσ, (A.7)
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which may obtained formally from F µν by replacing E by B and B by −E[64,

65, 67]1.

In vacua, where jµ vanishes, the Maxwell equations are symmetric under

the “duality” transformation:

F µν → ∗F µν , ∗F µν → −F µν , (A.8)

or, equivalently,

E→ B, B→ −E, (A.9)

which, roughly speaking, interchanges electricity with magnetism. Could

such a symmetry be valid even in the presence of matter. In such a theory

we would have to introduce a magnetic current

jµ(m) = (p,k), (A.10)

on the right hand side of equations (A.2) and (A.5), giving the new field

equations:

∂νF
µν = −jµ, (A.11)

∂ν
∗F µν = −jµ(m). (A.12)

The equations (A.11) and (A.12) are symmetric under the duality transfor-

mation of equations (A.8) augmented by:

jµ → jµ(m), jµ(m) → −jµ. (A.13)

If the electric and magnetic currents result from point particles at space-

time points xi, as we shall suppose,

jµ =
∑
i

qi

∫
dxµi δ4(x− xi) (A.14)

1We use the conventions that εµνρσ is totally antisymmetric with ε0123 = 1 and Greek

indices take the values 0, 1, 2, 3 whilst Latin indices only take the values 1, 2, 3.
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and

jµ(m) =
∑
i

pi

∫
dxµi δ4(x− xi) (A.15)

where the integral over xi is taken along the world line of the i-th particle

whose electric and magnetic charges are qi and pi respectively. In conven-

tional electrodynamics the Lorentz force law for particle of (electric) charge

q and rest mass leads to the equation of motion,

m
d2xµ

dτ 2
= qF µν dxν

dτ
. (A.16)

In a duality theory this equation would be generalised to

m
d2xµ

dτ 2
= (qF µν + p∗F µν)

dxν
dτ

. (A.17)

where p is the particle’s magnetic charge. The equations (A.11), (A.12),

(A.14), (A.15) and (A.17) completely specify the dynamics of a classical, i.e.

non-quantum mechanical, system of electrically and magnetically charged

particles interacting with the electromagnetic field in such a way that it

possess the dual symmetry of equations (A.8) and (A.13).

In discussing further whether nature might indeed possess such a duality

it is natural to ask at this point whether it is consistent with quantum the-

ory. Actually Dirac was lead naturally to a theory possessing this symmetry

by considering a quantum mechanics in which the wave function had a non-

integrable, or path-dependent, phase factor. Dirac’s work pointed out the

profound theoretical consequences of the existence of magnetic monopoles at

the quantum level. One can see immediately that quantization may not be

straightforward since this procedure usually exploits the canonical, Hamil-

tonian, formalism. Now the canonical variables for the electromagnetic field

are not the components of F µν but rather the components of the four vector

potential (Aµ) = (Φ,A), whose defining property is

F µν = ∂µAν − ∂νAµ. (A.18)
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This equation implies the vanishing of

∂µ
∗F µν = 0 (A.19)

and, consequently, of the magnetic current, jµ(m), destroying the dual symme-

try.

Dirac was able to circumvent this difficulty, showing that a dually sym-

metric electromagnetic theory could be quantized, provided that for any elec-

tric charge q and magnetic charge p in theory, the condition

qp

4π~
=
n

2
, n an integer (A.20)

was satisfied[143, 144]. This is the celebrated Dirac quantization condi-

tion. The occurrence of the modified Planck constant, ~, emphasises that, in

Dirac’s approach, it is quantum mechanical in origin.

A.1.2 The ’t Hooft-Polyakov monopole

In theoretical physics, the ’t Hooft-Polyakov monopole is a topological solu-

tion similar to the Dirac monopole but without any singularities. It was first

found independently by Gerard ’t Hooft[145] and Alexander M. Polyakov[146].

Dirac introduced the notation of magnetic charge in field theory. The

Dirac monopole is a localized source corresponding to a singularity of the

theory; later ’t Hooft-Polyakov extended that notation by shounning the ex-

istence of non-singular solitonic2 monopole, like solutions in the effective ac-

tion of non Abelian gauge theories coupled to scalar fields[145, 146, 143, 144].

The monopole solutions appears looking for finite energy configurations, the

2In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet

or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by

a cancellation of nonlinear and dispersive effects in the medium. “Dispersive effects” refer

to dispersion relations between the frequency and the speed of the waves. Solitons arise

as the solutions of a widespread class of weakly nonlinear despersive partial differential

equations describing physical systems[145, 146, 143, 144].
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magnetic charge being a topological charge, p satisfying the Dirac quantita-

tion condition:

p = −4π

q
nm, (A.21)

Due to this fact, in the ’t Hooft-Polyakov monopole, the relativistic mass

M of the soliton is fixed in terms of fields in terms of the topological charge

and is a Bogomol’nyi bound[147, 148];

M ≥ ap, , (A.22)

where a is a parameter characterizing the configuration and has an interpre-

tation in supergravity theory[147, 148].

We now consider not only particles carrying either an electric or magnetic

charge, but particles that carry both types of charges (e, p), they are called

dyons3 . For a system composed by two dyons of charges (e1, p1) and (e2, p2),

it is possible to show that the charge quantization gets generalized to the

“Dirac-Schwinger-Zwanziger” relation[149]:

e1p2 − e2p1 = 2πn n ∈ N ; (A.23)

and that the general solution is:

e = e0

(
ne +

θ

2π
nm

)
; (A.24)

p = nmp0 = nm
2πn0

e0
; (A.25)

where nm, ne ∈ Z and n0 ∈ N . This solution is equivalent to:

e+ ip = e0(ne +Nnm); (A.26)

with:

N ≡
(
θ

2π
+ i

2πn0

e20

)
. (A.27)

3In physics, a dyon is a hypothetical particle in four-dimensional theories with both

electric and magnetic charges. A dyon with a zero electric charge is a magnetic monopole.
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From the shape of the solution (A.26) we say that the physical states of

charges (e, p) = e + ip are located on a discrete two dimensional lattice of

periods e0 and N e0 and represented by a vector of the lattice (ne, nm); and

given a lattice, related to each other by the action of SL(2, Z). Hence, the

duality transformations:

F ↔ ∗F ; (A.28)

e↔ p; (A.29)

should belong to the discrete group SL(2, Z).

For dyons the Bogomolnyi bound (A.22) can be generalized in this way:

M(e, p) ≥ a|e+ ip|; (A.30)

and the mass of BPS states:

M(e, p) = a|e+ ip|. (A.31)

Note that from this relation one recovers the right expression for the masses

of all particles in the spontaneously broken gauge theory. Indeed it is exact

both for elementary excitations, like gauge bosons of change (e, 0), whose

mass is given by the Higgs mechanism, and for solitons, like the monopoles

discussed above, of change (0, p), in which case it coincides with (A.22). This

given evidence for the Montonen-Olive conjecture is an exact symmetry.

A.2 Supersymmetry algebras

that include topological charges

Let us now turn to duality in gauge theories with extended supersymmetry

where this concept can be implemented in a natural way. Indeed a crucial

ingredient for the existence of ’tHooft-Polyakov monopoles like solution in

electric-magnetic duality is the presence in the theory of Higgs field trans-

forming in the adjoint representation of the gauge group U .
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This requirement is always satisfied in N -extended supersymmetric the-

ories [6, 7, 8]. Indeed the supersymmetry algebra for N ≥ 2 prescribes

that vector supermultiplet includes stolei fields. This fact has the effect that

the conditions for the existence of ’tHooft-Polyakov monopoles are always

present, so that duality arises in a very natural way in these theories.

The solitonic configurations, if present, are directly related to the struc-

ture of the supersymmetry algebra, with profound implications on the spec-

trum of states and on the quantum validity of the solution, at least for BPS

states[147, 148, 150, 6, 151].

In this section, we shall show that in supersymmetric theories with soli-

tons, the usual supersymmetry algebra include the topological quantum num-

bers as central charges[150, 6, 151].

A.2.1 Extended supersymmetry

Supersymmetry is, by definition, a symmetry between fermions and bosons[6].

A supersymmetric field theoretical model consists of a set of quantum field

and a Lagrangian for them which exhibit such a symmetry. A supersymmet-

ric model which is covariant under general coordinate transformations or a

model which posses local (“gauged”) supersymmetry is called a supergravity

model[6, 7, 8].

In theoretical physics, extended supersymmetry is supersymmetry whose

supersymmetry generators Qαi carry not only a spinor index α, but also an

additional index i = 1, 2, · · · , N where N ≥ 2 is integer[152, 150, 6, 153]4.

Extended supersymmetry is also called N = 2, N = 4 supersymmetry for

example. The more extended supersymmetry is, the more it constrains physi-

cal observables and parameters. The minimal (un-extended) supersymmetry

is a realistic conjecture for particle physics, but extended supersymmetry

is very important for analysis of mathematical properties of quantum field

theory and superstring theory.

4Any Qαi is a generator of supersymmetry.
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Two particularly important examples of these spectra are the N = 4

Yang-Mills multiplet with λ0 = −1 and the N = 8 supergravity multiplet

with λ0 = −2, where λ0 being the minimal value of helicity of the represen-

tation:

N = 4
helicity: -1 −1

2
0 1

2
1

states: 1 4 6 4 1
;

N = 8
helicity: -2 −3

2
-1 −1

2
0 1

2
1 3

2
2

states: 1 8 28 56 70 56 28 8 1
.

The bosonic generators are thus the four momenta Pµ and the six Lorentz

generators Mµν , plus a certain number of Hermitian internal symmetry gen-

erators Br. The following equations summarise the supersymmetry algebra:

[Pµ, Pν ] = 0; (A.32)

[Pµ,Mρσ] = i(ηµρPσ − ηµσPρ); (A.33)

[Mµν ,Mρσ] = i(ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ); (A.34)

[Br, Bs] = icrs
tBt; (A.35)

[Br, Pρ] = 0; (A.36)

[Br,Mρσ] = 0; (A.37)

[Qαi, Pµ] = 0; (A.38)
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[Q̄i
α̇, Pµ] = 0; (A.39)

[Qαi,Mµν ] =
1

2
(σµρ)α

βQβi; (A.40)

[Q̄i
α̇,Mµν ] = −1

2
Q̄i

β̇(σ̄µν)
β̇
α̇; (A.41)

[Qαi, Br] = (br)i
jQαj; (A.42)

[Q̄i
α̇, Br] = −Q̄j

α̇(br)j
i; (A.43)

{Qαi, Q̄j
β̇} = 2δji (σ

µ)αβ̇Pµ; (A.44)

{Qαi, Qβj} = 2εαβZij; (A.45)

with

Zij = arijBr; (A.46)

{Q̄i
α̇, Q̄

j
β̇} = −2εα̇β̇Z

ij with Zij = (Zij)
†; (A.47)

[Zij, anything] = 0. (A.48)

The Zij are the central charges, and the Br are the internal symmetry gen-

erators.

We can choose a basis in our representation space where the Zij are

skew-diagonal and represented by complex numbers zij. These form an an-

tisymmetric N x N matrix which can be brought into a standard form with

the help of a unitary matrix U :

z̄ij = Uk
i U

l
jzkl. (A.49)
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The standard form is, for even N ,

z̄ =

 0 D

−D 0

 (A.50)

where D is a real, diagonal matrix with non-negative eigenvalues:

0 ≤ z(r); r = 1, . . . ,
N

2
. (A.51)

If N is odd, there is an additional row and column in (A.84) with all zeros:

z̄ =


0 D 0

−D 0 0

0 0 0

 .

We use the unitary matrix U to redefine our Q’s,

U j
iQαj → Qαj; Q̄j

α̇(U
−1)ij → Q̄i

α̇,

and introduce double-indices i = (a, r) compatible with the obvious from

(A.84), i.e. a = 1, 2 and r = 1, 2, . . . , N
2
. Again, for odd N , the last charge

QαN .is not touched by this.

The algebra of the Q’s is now:

{Qαar, Q̄
bs
β̇
} = 2δbaδ

s
r(σ

µ)αβ̇Pµ; (A.52)

{Qαar, Qβbs} = 2εαβεabδrszr; (A.53)

{Q̄ar
α̇ , Q̄

bs
β̇
} = 2εα̇β̇ε

abδrszr. (A.54)

For odd N , we also have:

{QαN , Qβi} = 0; (A.55)

{QαN , Q̄j
β̇} = 2δiN(σµ)αβ̇Pµ. (A.56)
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Let us first consider the massless case. We find in the standard frame:

Pµ = (E, 0, 0, E) (A.57)

that Q2i = 0. This implies, through (A.87), that all zr = 0 and we conclude

that:

massless particle representations represent central charges trivially.

For the massive case, we introduce linear combinations:

A±αr =
1

2
(Qα1r ± Q̄α̇2r); (A.58)

and their Hermitian adjoints. We notice how dotted and undotted Lorentz

indices are mixed in such a way that covariance under the rotation subgroup

is maintained since Qα and Qα̇ transforms in the same way under it, see

technical appendix.

In terms of A±, the rest-frame algebra, from (A.52) to (A.56), now reads:

{A±, A±} = {A±, A∓} = {A±, (A∓)†} = 0; (A.59)

{A±αr, (A∓βs)
†} = 2δαβδrs(m± z(r)); (A.60)

and we conclude immediately, from the positivity of the left-hand side of the

last equation, that:

|z(r)| ≤ m. (A.61)

Let us assume that this bound is satisfied for a number n0 of eigenvalues z(r)

of the central charges. Then the corresponding A− are represented trivially,

and after rescaling the remaining generators:

q±αr =
A±αr√

(m± z(r))
. (A.62)

qαN =
QαN√
m

(if N odd), (A.63)



A.2. SUSY THAT INCLUDE TOPOLOGICAL CHARGES 127

we have the Clifford algebra for 2(N − n0) fermionic degrees of freedom. As

far as the spectrum is concerned, we have the same situation as without cen-

tral charges, except that:

N is effectively reduced by n0, the number of central charges that satisfy the

bound m = z.

The simplest representation with central charge, theN = 2 hypermultiplet[152,

150, 6] has one central charge which saturates the bound, and the spectrum

is a doubled version of the massive Wess-Zumino model.

A.2.2 Supersymmetry and topological chages

Let us now to duality in gauge theories with includes supersymmetry where,

as we will see, this concept can be implement in natural way. Indeed, as

it was pointed out above, a crucial ingredient for the existence of ’t Hooft-

Polyakov monopole is a topological solutions in non Abelian gauge theories,

and therefore for having electric-magnetic duality is the presence in the the-

ory of Higgs fields transforming in the adjoint representation of the gauge

group U [6, 7, 8].

We show that in supersymmmetric theories with solitons, the usual su-

persymmetry algebra include the topological quantum numbers as central

charges[151].

It is the electric and magnetic charges and their generalizations that will

appear as central charges[151]. We do not usually thing of the electric charge

as a boundary term, but using Gauss’s law it can be written as one:

q =

∫
d3x∂iF0i; (A.64)

for the magnetic charge we would write:

p =

∫
d3x∂iε

0ijkFjk. (A.65)

The supersymmetric algebra in four dimensions is:

{Qαi, Q̄βj} = δij(γ
µ)αβPµ; (A.66)
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The Haag-Lopuszanski-Sohnius theorem[154] showed that this equation can

be modified to include central charge; the most general form is:

{Qαi, Q̄βj} = δij(γ
µ)αβPµ + δαβUij + (γ5)αβVij; (A.67)

where the central charges U and V satisfy:

Uij = −Uji and Vij = −Vji. (A.68)

We will consider here the four dimensional model in which boundary terms

enter as central charges. It is the N = 2 Yang-Mills theory, with Lagrangian:

L =

∫
d4x

[
−1

4
[F a
µνF

a
µν ] + i

1

2
(ψ̄αi γ

µDµψ
α
i ) +

1

2
(DµA

aDµA
a)+ (A.69)

+
1

2
(DµB

aDµB
a) +

1

2
(g2Tr[A,B][A,B])+

+ i
1

2
gεijTr([ψ̄

i, ψj]A+ [ψ̄i, γ5ψ
j]B)

]
;

where:

• ψi, i = 1, 2 are two Majorana fermion;

• g is a coupling constant;

• A is a scalar field;

• B is a pseudoscalar field,

all in the adjoint representation of gauge group.

The most important property of this Lagrangian is that the vacuum en-

ergy is independent of the values of B and A in certain directions in field

space. As long as B and A commute, the vacuum energy is classically zero.

This consideration persists quantum mechanically because of the supersym-

metry spontaneously broking some of the gauge symmetries, and therefore

B and A may have nonzero vacuum expectation values.

In the gauge group O(3), B and A to commute and:
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• the vacuum expectation value of B may be set to zero by chiral rotation;

• a nonzero vacuum expectation value of A will spontaneously break O(3)

down to U(1).

The supersymmetry current for the Lgrangian (A.69) is:

Sµi = Tr
(
σαβFαβγµψi + εijDaAγ

aγµψj+

+εijDaBγ
aγ5ψj + gγµγ5[A,B]ψi) . (A.70)

Witten and Olive have calculated from (A.70) the supersymmetry charges

and their anticommutators[151] and have founded that the following opera-

tors appear in the supersymmetry algebra:

U =

∫
d3x∂i

(
AaF a

0i +
1

2
BaεijkF

a
jk

)
; (A.71)

V =

∫
d3x∂i

(
1

2
AaεijkF

a
jk +BaF a

0i

)
. (A.72)

The supersymmetry algebra becomes

{Qαi, Q̄βj} = δij(γ
µ)αβPµ + εij

(
δαβU + (γ5)αβV

)
; (A.73)

U and V can be nonvanishing iff the vacuum expectation value 〈A〉 or 〈B〉
is nonzero.

From the equations (A.70)-(A.73) we can say that:

• One can derive inequality for the masses; the eq. (A.73) implies that,

for each particle state, the values of U and V and the mass M are

related by:

M2 ≥ U2 + V 2. (A.74)

The proof of the validity of that report was made by Witten and

Olive[151];
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• To make the meaning of eq. (A.74) more clear, let us consider the spe-

cial case of an O(3) gauge theory, the “Georgi-Glashow” model5[155].

〈B〉 may by assumed to vanish while a nonzero 〈A〉 spontaneously

breaks O(3) down to U(1).

The expression of electric charges q in Higgs theory is:

q =
1

〈A〉

∫
d3x∂i(A

aF a
0i); (A.75)

for the magnetic charge g we have:

p =
1

〈A〉

∫
d3x∂iε

0ijk(AaF a
jk). (A.76)

Comparing equation (A.71) and (A.75), we see that:

U = 〈A〉q; (A.77)

and comparing (A.72) and (A.76), we have:

V = 〈A〉p. (A.78)

Equation (A.74) becomes:

M ≥ 〈A〉
√
q2 + p2; (A.79)

5In particle physics, the “Georgi-Glashow” model is a particular grand unification the-

ory (GUT) proposed by Howard Georgi and Sheldon Glashow in 1974. In this model the

standard model gauge groups SU(3) x SU(2) x U(1) are combined into a single simple

gauge group SU(5). The unified group SU(5) is then thought to be spontaneously broken

to the standard model subgroup at some high energy scale called the grand unification

scale[155].

Since the “Georgi-Glashow” model combines leptons and quarks into single irreducible

representations, there exist interactions which do not conserve baryon number, although

they still conserved B − L. This yields a mechanism for proton decay, and the rate of

proton decay can be predicted from the dynamics of the model. However, proton decay

has not yet been observed experimentally, and the resulting lower limit on the lifetime of

the proton contradicts the predictions of this model. However, the elegance of the model

has led particle physicists to use it as the foundation for more complex models which yield

longer proton lifetimes[155].



A.2. SUSY THAT INCLUDE TOPOLOGICAL CHARGES 131

• Photon, Higgs particles, fermions, W and Z0 and magnetic monopoles

thay all satisfy M =
√
U2 + V 2 or for O(3) M = 〈A〉

√
q2 + p2. For

example, in O(3) theory, the W+ boson has magnetic charge p = 0

and electric charge q = +e. So equation (A.79) if exactly realized

MW = e〈A〉 and this is the well-known Higgs formula for the W+

mass;

• An irreducible representation of equation (A.73) has 22N states for

nonzero mass, but 2N (helicity) states for zero mass. For example

with N = 2 an irreducible representation of eq. (A.73) has sixteen

states if mass is nonzero, but four states if mass is zero.

Looking at eq. (A.73), written in the rest frame:

{Qα, Q̄β} = δαβγ
0M + CUαβ + γ5Vαβ; (A.80)

one can extract the crucial relation:

M2 ≥ 1

N

(
UαβUαβ + V αβVαβ

)
=

1

N
|Uαβ + iVαβ|2 ≥ |ZM |2; (A.81)

where ZM denoted the maximum skew-eigenvalue of the complex central

charge:

Zαβ = Uαβ + iVαβ. (A.82)

From equation (A.81), when written for an N = 2 system, where:

Uαβ = εαβU, Vαβ = εαβV ; (A.83)

it is easy to recognize the Bogomol’nyi bound (A.22):

M ≥ |ZM |2 = 〈A〉|q + ip|2; (A.84)

One striking consequence is that, in four dimensional theories, we can

determine the exact quantum mechanical mass spectrum; for example, in a

certain supersymmetric form of the ‘Georgi-Glashow”[155], with O(3) broken
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down U(1) by the Higgs phenomenon: the mass of any particle is the vacuum

expectation value of the Higgs field times:√
q2 + p2; (A.85)

where q and p being the electric and magnetic charges of that particle.

A.3 Supergravity action in four-dimensions

In this section we will apply the concept of duality discussed in the previous

two sections to the study of the general structure of an Abelian theory of

scalars and vectors displaying covariance under a group of duality rotations,

in D = 4. To this aim we first have to present the main features of four di-

mensional N -extended supergravities. These theories contain in the bosonic

sector: the metric, a number nV of vectors and m of real scalar fields. The

relevant bosonic action has the following form[3, 22, 20, 98, 99]:

S =

∫ √
−gd4x

(
−1

2
R + ImNΛΓF

Λ
µνF

Γ|µν+

+
1

2
√
−g

ReNΛΓε
µνρσFΛ

µνF
Γ
ρσ +

1

2
grs(Φ)∂µΦ

r∂µΦs

)
; (A.86)

where:

• R is the curvature scalar;

• FΛ are field strengths;

• NΛΓ(Φ) is the vector kinetic matrix and it is a complex, symmetric,

nV x nV matrix depending on the scalar fields Φs. The imaginary part

ImN is negative definite and generalizes the inverse of the squared

coupling constant appearing in ordinary gauge theories while its real

part ReN is instead a generalization of the theta-angle of quantum

chromodynamics;
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• grs(Φ) with r, s = 1, · · · ,m is the scalar metrix on the σ-model de-

scribed the scalar manifold Mscalar of real dimension m[3, 93]6.

The number of scalars and vectors, namely m and nV , and the geometric

properties of the scalar manifold Mscalar depend on the number N of super-

symmetries and are resumed in the following table:

N Duality group G isotropy H Mscalar nV m

3 SU(3, n) SU(3, n)xU(n) SU(3,n)
S(U(3,n)xU(n))

3 + n 6n

4 SU(1, 1)
⊗

SO(6, n) U(4)xSO(n) SU(1,1)
U(1)

⊗ SO(6,n)
SO(6)xSO(n)

6 + n 6n+ 2

5 SU(1, 5) U(5) SU(1,5)
S(U(1)xU(5))

10 10

6 SO∗(12) U(6) SO∗(12)
U(1)xSU(6)

16 30

7 E7(7) SU(8)
E7(7)

SU(8)
28 70

8 E7(7) SU(8)
E7(7)

SU(8)
28 70

In this table, nV stands for the number of vectors and m for the number

6In quantum field theory, a nonlinear σ-model (which is the “generalization” of a σ-

model) describes a scalar field Φ which takes on values in a nonlinear manifold called the

target manifold T [64, 65, 67, 94].

The tangent manifold is equipped with a Riemannian metric g. Φ is a differentiable map

from Minkowski space M (or some other space) to T . In the coordinate notation, with the

coordinates Φa with a = 1, · · · ,m where m is the dimension of T , the Lagrangian density

is given by:

L = +
1
2
gab(Φ)∂µΦa∂µΦb − V (Φ)

where here, we have used a (+,−,−,−) metric signature. In more than two dimensions,

nonlinear σ-models are nonrenormalizable; this means they can only arise as effective field

theories.

There is a special class of nonlinear σ-models with the internal symmetry group G. If G

is a Lie group and H is a Lie subgroup, then the quotient space G/H is a manifold (subject

to certain technical restrictions like H being a closed subset) and is also a homogeneous

space of G or in other words, a nonlinear realization of G.
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of real scalar fields. In all the cases the duality group G is embedded in

Sp(2nV , R) .

In supergravity theories, the vector kinetic matrix N is in general not a

constant, its components being functions of the scalar fields. However, in

extended supergravity, N ≥ 2, the relation between the kinetic matrix N
and scalar geometry has a very general and universal form. Such a lift is

necessary because of supersymmetry since vectors and scalars generically be-

long to the same supermultiplet and must rotate coherently under symmetry

operations. This problem has been solved in a general non supersymmetric

framework[156] by considering the possible extension of the Dirac electric-

magnetic duality to more general theories involving scalars. In the second

part of this section we review this approach and in particular we show how

enforcing covariance with respect to such duality rotations leads to a deter-

mination of the kinetic matrix N .

Note that the Euler-Lagrange equation:

∂L
∂Φa

− ∂µ

(
∂L

∂(∂µΦa)

)
= 0

for the bosonic action (A.86), one gets the Einstein equations:

−1

2

(
Rµν −

gµν
2
R
)

+
1

2
gab(Φ)∂µΦ

a∂νΦ
b − gµν

2

gab
2
∂Φa∂Φb +

+2F T
µtImNFνt −

gµν
2
F T ImNF = 0; (A.87)

with:

R = gab(Φ)∂µΦ
a∂µΦb, (A.88)

and

−1

2
Rµν = −1

2
gab(Φ)∂µΦ

a∂νΦ
b +

−2F T
µtImNFνt +

gµν
2
F T ImNF. (A.89)
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Let us review the general structure of an abelian theory of scalars and

vectors displaying covariance under a group of duality rotations, in D = 4.

The basis references are: the 1981 paper by Gaillard and Zumino[156] and

the book “Supergravity and Superstrings. A Geometric Perspective. Vol. 1

Mathematical foundations” by L. Castellani, R. D’Auria and P. Frè[152].

We consider a theory of nV abelian gauge fields AΛ
µ in a four dimension

spacetime with Lorentz signature. They correspond to a set of nV differential

1−forms:

AΛ = AΛ
µdx

µ (Λ = 1, · · · , nV ). (A.90)

The corresponding field strengths are:

FΛ ≡ dAΛ ≡ FΛ
µνdx

µ ∧ dxν (A.91)

with

FΛ
µν =

1

2

(
∂µA

Λ
ν − ∂νA

Λ
µ

)
(A.92)

and their Hodge duals are defined by:

(∗FΛ)µν =

√
−g
2

εµνρσF
Λ|ρσ (A.93)

The dynamics of a system of abelian gauge fields coupled to scalars in a

gravity theory is encoded in the equation (A.86) for the Lagrangian density.

Introducing self-dual and antiself-dual combinations:

F± =
1

2
(F ± i∗F ) , (A.94)

∗F± = ∓iF±, (A.95)

the vector part of the bosonic action defined by eq. (A.86) can be rewritten

in the form:

S =

∫ √
−gd4xLvec, (A.96)
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with:

Lvec = i
[
F−T N̄F− − F+TNF+

]
. (A.97)

Introducing further the new tensors:

∗GΛ|µν ≡ 1

2

∂L
∂FΛ

µν

= ImNΛΣF
Σ
µν +ReNΛΣ

∗FΛ|µν ; (A.98)

and introducing self-dual combinations:

G±
Λ|µν ≡ ±

i

2

∂L
∂F±Λ

µν

. (A.99)

In terms of FΛ and GΛ the Maxwell equations read:

∇µ∗FΛ
µν = 0, (A.100)

∇µ∗GΛ|µν = 0; (A.101)

or equivalent

∇µImF±Λ
µν = 0, (A.102)

∇µImG±
Λ|µν = 0; (A.103)

i.e. these are the Bianchi identities and field equations associated with the

Lagrangian (A.86). This suggests that we introduce the 2nV column vector:

V =

 ∗F

∗G

 . (A.104)

and that we consider general linear transformations on such a vector: ∗F

∗G


′

=

 A B

C D


 ∗F

∗G

 . (A.105)
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For any constant matrix:

S =

 A B

C D

 ∈ GL(2nV , R) (A.106)

the new vector of electric and magnetic field-strengths

V
′
= S · V (A.107)

satisfies the some equations (A.100) and (A.101) as the old one. In a con-

densed notation we can write:

∂ V = 0 ↔ ∂ V
′
= 0. (A.108)

Separating the self-dual and antiself-dual parts:

F =
(
F+ + F−) , (A.109)

G =
(
G+ +G−) , (A.110)

and taking into account that we have:

G+ = NF+ (A.111)

and

G− = N̄F− (A.112)

the duality rotation of equation (A.105) can we rewritten as: F+

G+


′

=

 A B

C D


 F+

NF+

 (A.113)

and  F−

G−


′

=

 A B

C D


 F−

N̄F−

 . (A.114)
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Now, let us note that, since in the bosonic action (A.86) we are considering

the gauge fields are coupled to the scalar sector via the scalar dependent

kinematic matrix N (Φ), when a duality rotation is performed on the vector

field strengths and their duals, we have to assume that the scalars get trans-

formed correspondingly, through the action of some diffeomorphism on the

scalar manifold Mscalar. In particular, the kinetic matrix N transforms un-

der a duality rotation. Then, a duality transformation ξ acts in the following

way on a supersymmetric system[3]:

ξ :


V → V

′∓
= SξV

∓

Φ → Φ
′
= ξ(Φ)

N (Φ) → N ′
(ξ(Φ))

. (A.115)

Thus, the transformation laws of equations of motion of matrix Sξ, and of

kinetic matrix N (Φ), will be introduced by a diffeomorphism of the scalar

fields.

Consider in particular on the first relation in the equation (A.115), that

explicitly reads:  F±′

G±′

 =

 AξF
± +BξG

±

CξF
± +DξG

±

 , (A.116)

we note that contains the magnetic field strengthG± introduced in eq. (A.98)

which is defined as a variation of the Kinetic Lagrangian. Under the trans-

formations (A.115) the lagrangian transforms in the following way:

L′
= i
[
(Aξ +BξN )Γ

Λ(Aξ +BξN )Σ
∆N

′

ΛΣF
+ΓF+∆+

−(Aξ +BξN )Γ
Λ(Aξ +BξN )Σ

∆N
′

ΛΣF
−ΓF−∆−

]
. (A.117)

We observe that the equation (A.115) must be consistent with the defi-

nition of G± as a variation of the Lagrangian (A.117):

G
′+
Λ =

(
Cξ +DξN )ΓΛF

+Γ

≡ −1

2

∂L′

∂F ′+Λ
= (Aξ +BξN )∆

ΣN
′

ΛΣF
+Σ; (A.118)
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that implies:

N ′

ΛΣ(Φ
′
) =

[
(Cξ +DξN ) · (Aξ +BξN )−1

]
ΛΣ
. (A.119)

The condition that the matrix N is symmetric, and that this property must

be true in the duality transformed system, gives the constraint:

S ∈ Sp(2nV , R), (A.120)

that is:

S TC S = C, (A.121)

where C is the symplectic invariant 2nV x 2nV matrix:

C =

 0 −1

1 0

 . (A.122)

It is useful to rewrite the symplectic condition (A.121) in terms of the nV x

nV blocks defining S : 
ATC − CTA = 0

BTD −DTB = 0

ATD − CTB = 1

(A.123)

The above observation has important implications on the scalar manifold

Mscalar. Indeed, it implies that on the scalar manifold the following homo-

morphism is defined:

Diff(Mscalar) → Sp(2nV , R). (A.124)

In particular, the presence on the manifold of a function of scalars transform-

ing with a fractional linear transformation under a duality rotation on the

scalars, induces the existence on Mscalar of a linear structure inherited from

the vectors; and this may be rephrased by saying that the scalar manifold is
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endowed with symplectic bundle[3]. As the transformation functions of this

bundle are given in terms of the constant matrix S , the symplectic bundle

is flat. In particular for N = 2 four dimensional theory this implies that

the scalar manifold be a special manifold, that is Kähler-Hodge manifold

endowed with a flat symplectic bundle[3, 157].

If one is interested in the global symmetries of the theory, i.e. global

symmetries of the field equations and Bianchi identities, we will need to re-

strict the homomorphysm in (A.124) to the isometries of the scalar manifold,

which leave the scalar sector of the action invariant. The transformations

in equation (A.115), which are duality symmetries of the system Bianchi-

identities/field-equations, cannot be extended in general to the symmetries

of the Lagrangian. The vector part of the boson action (A.86) is in general

not invariant under the action of the isometry group of the metric grs, but

the scalar part is invariant. The transformed lagrangian under the action of

S ∈ Sp(2nV , R) can be rewritten:

Im(F−ΛG−
Λ) → Im(F

′−ΛG
′−
Λ )

= Im
[
F−ΛG−

Λ + 2(CTB)Λ
Σ
F−ΛG−

Σ+

+ (CTA)ΛΣF
−ΛF−Σ + (DTB)ΛΣG−

ΛG
−
Σ

]
. (A.125)

One can conclude that:

• It is evident from the latter relation that only the transformation with

B = C = 0 are symmetries;

• If C 6= 0 and B = 0 the Lagrangian varies for a topological term:

(CTA)ΛΣF
Λ
µν
∗FΣ|µν (A.126)

corresponding to a redefinition of the function ReNΛΣ; such a trans-

formation being a total derivative it leaves classical physics invariant,

but it is relevant in the quantum theory;

• For B 6= 0 neither the action nor the perturbative partition function

are invariant. Let us observe that in this case the transformation law
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(A.119) of the kinetic matrix N (Φ) contains the transformation:

N (Φ) → 1

N (Φ)
(A.127)

that is it exchanges the strong and weak coupling regimes of the theory.

One may then think of such a quantum field theory as being described

by a collection of local Lagrangians, each defined in a local patch. They

are all equivalent once one defines for each of them what is electric and

what is magnetic. Duality transformations map this set of Lagrangians

one into the other.

At this point we observe that the supergravity bosonic action (A.86) is ex-

actly of the form considered in this section as far as the matter content is

concerned, so that we may apply the above considerations about duality ro-

tations to the supergravity case. In particular, the duality acts in all theory

with N ≥ 2 supersymmetries, where the vector supermultiplets contain both

scalars and vectors. For N = 1 supergravity, instead, scalars and vectors are

still present but they are not related by supersymmetry, and as a consequence

they are not related by U -duality rotations, so that the previous formalism

does not necessarily apply. There are however N = 1 models where the

scalar moduli space is given by a special-Kähler model. This is the case for

the example for the compactification of the heterotic theory on Calabi-Yan

manifolds[3, 157].
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Appendix B

The su(2, 1)-Algebra

Let us choose the SU(2, 1)-invariant and the H∗ = U(1, 1)-invariant metrics

η and η̄, respectively, to be:

η = diag(−1, 1, 1) ; η̄ = diag(−1, 1,−1) , (B.1)

where the latter defines the coset generators. The solvable Lie algebra Solv

defining the Iwasawa decomposition of su(2, 1) with respect to u(2) is gener-

ated by:

Solv = span(H0, T1, T2, T•) ,

H0 =


0 0 1

2

0 0 0

1
2

0 0

 ; T1 =


0 −1

2
0

−1
2

0 1
2

0 −1
2

0

 ; T2 =


0 − i

2
0

i
2

0 − i
2

0 − i
2

0

 ,

T• =


− i

2
0 i

2

0 0 0

− i
2

0 i
2

 . (B.2)

The H∗ algebra u(1, 1) is generated by the compact component K• of T•, the

non-compact components K1, K2 of T1, T2, respectively, and the compact
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D = 4 duality generator J :

u(1, 1) = span(K1, K2, K•, K) ,

K• = T• − T †• =


−i 0 0

0 0 0

0 0 i

 ; K1 = T1 + T †1 =


0 −1 0

−1 0 0

0 0 0

 ,

K2 = T2 + T †2 =


0 −i 0

i 0 0

0 0 0

 ; K =


−i 0 0

0 2i 0

0 0 −i

 . (B.3)

The SU(2, 1)/U(1, 1)-coset representative describing the physical patch of the

manifold is:

L = e−aT• e
√

2(Z0 T1+Z0 T2) e2UH0 . (B.4)

The matrix M = Lη̄L† has the following simple form:

M = Lη̄L† = η − 2

I2
ηU UTη , (B.5)

where

U ≡


WE

VE

UE

 , I2 ≡ UTηU = |UE|2 + |VE|2 − |WE|2 . (B.6)



Appendix C

The Taub-NUT solution

The asymptotically flat, static, spherically Schwarzschild and Reissner- Nord-

ström black holes solutions that we have studied in this thesis. To find more

solutions, we have to relax these conditions or couple to gravity more general

“types of matter”. If we stay with the Einstein-Maxwell theory, one possibil-

ity is to look for static, axially symmetric solutions and another possibility is

to relax the condition of staticity and only ask that the solution be station-

ary, which implies that we have to relax the condition of spherical symmetry

as well and look for stationary and axisymmetric space-times[83]. In the

first case one finds solutions like those in Weyl’s family[83]. In the second

case, we find the Kerr-Newman black holes with: electric and/or magnetic

charge, angular momentum and also the Taub-Newman-Unti-Tambourino

(Taub-NUT) solution, which may but need not include charges[158, 159].

The Taub-NUT solutions does not describe a black holes because it is not

asymptotically flat. In fact, the only stationary, axially symmetric black

holes of the Einstein-Maxwell theory belong to the Kerr-Newman family of

solutions[160, 161].

The Taub-NUT solutions has a number of features that are particularly

interesting for us, which we are going to discuss in this appendix. In par-

ticular, it carries a new “type of mass”, NUT charge, with is of topological

nature and can be viewed as “gravitational magnetic charge”, so the solu-
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tion is a sort “mass dyon” and its Euclidean continuation is the solution

call as a Kaluza-Klein monopole. This is a important solution with inter-

esting properties such as the self-duality of its curvature and its relation

to the Belaving-Polyakov-Schwarz-Tyupkon (BPST) instanton[83] and the ’t

Hooft-Polyakov monopole[145, 146].

C.1 Properties of the Taub-NUT solution

In general, for stationary axisymmetric, metrics corresponding to the exis-

tence of two Killing vectors, associated to time translations ∂
∂t

and rotations
∂
∂ϕ

[51]; a general ansatz, in D = 4, for these space-times has the form:

ds2 = gttdr
2 + 2gtϕdtdϕ+ grrdr

2 + gθθdθ
2 + gϕϕdϕ

2, (C.1)

where all the components may dependent on θ and r. The new interesting

terms is the component gtϕ. If the metric is asymptotically flat for r → ∞
and gtϕ has the asymptotic behavior:

gtϕ ∼ 2J
sin2(θ)

r
(C.2)

then this equation describes a space-time with angular momentum J in the

direction of the z axis. The only vacuum solution of the kind is the Kerr’s,

which in Boyer–Lindquist coordinates takes the form:

ds2 = dτ 2 =
(
1− rsr

Σ

)
dt2 − Σ

∆
dr2 − Σdθ2 +

−A
Σ
sin2θdϕ2 +

2rsrαsin
2θ

Σ
dtdϕ; (C.3)

where:

α =
J

Mc
=

J

M
Σ = r2 + α2cos2θ, (C.4)

∆ = r2 − rsr + α2 = r2 − 2Mr + α2; (C.5)

A = (r2 + α2)2 − α2∆sin2(θ) = (r2 + α2)Σ + rrsα
2sin2θ. (C.6)
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If M2 ≥ α2 this solution describes rotating black holes with mass M and

angular momentum J = Mα.

If, the metric (C.1) asymptotically,

gtϕ ∼ 2`cos(θ) , (C.7)

the solution describes a body with NUT charge `. We will discuss soon the

meaning of this new charge. The simplest vacuum solution with this kind of

charge is the Taub-NUT solution[158, 159]:

ds2 = f(r)(dt+ 2`cos(θ)dϕ)2 − 1

f(r)
dr2 + (r2 + `2)dΩ2, (C.8)

where:

f(r) =
(r − r+)(r − r−)

(r2 + `2)
r± = M ± r0, (C.9)

r0 = M2 + `2 dΩ2 = dθ2 + sin2(θ)dϕ2, (C.10)

which is a generalization of the Schwarzschild metric with NUT charge and

reduces to it when ` = 0.

Let us list some properties of this solution:

• the space-time is non-trivial in the M → 0 limit, in which it may be

interpreted as the gravitational field of pure “spike” of spin[162, 163];

• the Newtonian gravitational potential is given in this approximation

by;

ΦN ∼
(gtt − 1)

2
= −M

r
. (C.11)

The Taub-NUT metric has other non-zero components of the metric

the gtϕ term; or we see that the Taub-NUT gravitational field has, as

non-zero element of the gravitomagnetic potential:

Φϕ = gtϕ = 2`cos(θ) . (C.12)
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This is essentially the electromagnetic field of magnetic monopole of

charge proportional to `. Thus, the NUT charge ` can be considered

as a sort of “magnetic mass”[164] and so the Taub-NUT metric can be

interpreted as a gravitational dyon[165];

• this metric, eq. (C.8), is not asymptotically flat but defines its own class

of asymptotic behavier, the asymptotically Taub-NUT space-times, la-

beled by `, which is associated with the non-zero at infinity of the

off-diagonal gtϕ term of the metric and, as we are going to see, with

the periodicity of the time coordinate;

• this metric, eq. (C.8), does not have curvature singularities and is

perfecttly regular at r = 0; however, it has the so-called “wire singu-

larities” at θ = 0 and θ = π where the metric fails to be invertible.

These point singularities can not be cured simultaneously[166]. Mis-

ner, in[166], found a way to make the metric regular everywhere by

introducing two coordinate paches;

• the metric function f(r) has two zero at r+ and r−, furthermore the

metric has coordinate singularities there. For r < r− and r > r+

the metric has closed time-like curves. Thus, although the form of

the metric is equivalent to the Reissner-Nordström metric; and the

extremality parameter c = r0 vanishes only for M = ` = 0;

• in the region r− < r < r+ the coordinate r is time-like and t is space-

like. This region describes a non-singular, anisotropic and closed cos-

mological model. It can be thought of as a closed universe containing

gravitational radiation having the longest possible wavelength[167];

• there is no known generalization to higher dimensions. The NUT charge

seems to be an intrinsically 4-dimensional charge[168].
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C.2 Charged Taub-NUT solution and IWP

solutions

Let us consider stationary, axially symmetric solutions of the Einstein-Maxwell

system; some of them are the result of adding electric and/or magnetic

charges to vacuum solutions.

The metric of Kerr-Newmann (KN) black hole, with mass M , electric

charge Q and magnetic charge P , could be written in the form:

ds2 =
∆

ρ2
(dt− αsin2θdϕ)2 − ρ2

∆
dr2 − ρ2dθ2 +

−sin
2θ

ρ2
[(r2 + α2)dϕ− αdt]2; ; (C.13)

with:

∆ = r2 − rsr +
(Q2 + P 2)

2
+ α2; (C.14)

ρ2 = r2 + α2cos2θ; α =
J

Mc
=

J

M
; (C.15)

where α representing the specific angular momentum J of the source.

The electrically and/or magnetically Taub-NUT solution was found by

Brill in [167] and is:

ds2 = f(r)(dt+ 2`cos(θ)dϕ)2 − 1

f(r)
dr2 + (r2 + `2)dΩ2, (C.16)

where:

f(r) =
(r − r+)(r − r−)

(r2 + `2)
r± = M ± r0, (C.17)

r0 = M2 + `2 − Q2 + P 2

2
dΩ2 = dθ2 + sin2(θ)dϕ2, (C.18)

which it reduces to the Reissner-Nordström solution when we the NUT charge

to zero (` = 0).
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In contrast to the Taub-NUT solution, the charged Taub-NUT metric

does have an extremal limit:

M2 + `2 =
Q2 + P 2

2
, (C.19)

in which the extremality parameter c = r0 vanishes and the two zeros of the

term f(r) coincide. In this case, by shifting the radial coordinate to:

r′ = r +M, (C.20)

and defining Cartesian coordinates such that r′ = |−→x 3|, we find a simple

form of the solution[120]1:

ds2 =
1

|H1|2
(dt+ A)2 − |H1|2d−→x 2

3, (C.21)

with:

H = 1 +
M + ı`

|−→x 3|
, (C.22)

and the 1−form A is defined by patches so it is regular everywhere:

A = Aidx
i , εijk∂

iAj = ±Im(H̄1∂kH1) , (C.23)

At = 2Re(eıαH1) , Ãt = 2Im(eıαH1) (C.24)

As in some of the other extreme solution that we have found so for2, it turns

out that we obtain a equation for any complex harmonic function H1(
−→x 3).

By including the complex phase eıα into H1, we can write the solution as

follows:

ds2 =
1

|H1|2
(dt+ A)2 − |H1|2d−→x 2

3, (C.25)

1Here we are actually taking the extreme limit of the dyonic solution, which indeed has

a simple form. The information on the electric and/or magnetic charges is contained in

the SO(2) electric-magnetic-duality phase eiα.
2But not in all of them; in particular, not in Kerr black hole.
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where:

A = Aidx
i , εijk∂

iAj = ±Im(H̄1∂kH1) , (C.26)

At = 2Re(H1) , Ãt = −2Re(ıH1) , (C.27)

and

∂i∂iH1 = 0. (C.28)

Metrics of the above form are known as conformastationary[119], and the

integrability condition of the equation for the one-form A is the Laplace

equation for H1. This class of solutions is known as the Israel-Wilson-Perjés

solutions (IWP solutions)[169, 170]. This class contains all the “extreme”

solutions that we have found so far, plus many others that may have electric

and magnetic charges, mass, NUT charge and also angular momentum. In

particolar, the:

M2 =
Q2 + P 2

2
, (C.29)

Kerr-Newman solutions, for generic angular momentum, belong to this class;

their complex harmonic function is:

H1 = 1 +
M√

x2 + y2 + (z − ıα)2
. (C.30)

In terms of the spheroidal coordinates,

x− ıy =
√

(r −M)2 + α2sin(θ)e+ıϕ , (C.31)

z = (r −M)cos(θ) , (C.32)

the harmonic function takes the form:

H1 = 1 +
M

r −M − ıαcos(θ)
, (C.33)
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and the three-dimensional metric becomes:

d−→x 2
3 = [(r −M)2 + α2cos2(θ)]

(
dr2

(r −M)2 + α2
+ dθ2

)
+

+ [(r −M)2 + α2]sin2(θ)dϕ2 ; (C.34)

moreover, the 1−form A is given by:

A =
(2rM −M2)αsin2(θ)

(r −M)2 + α2cos2(θ)
dϕ , (C.35)

and:

|H1|2 =
(r −M)2 − α2cos2(θ)

r2 + α2cos2(θ)
, (C.36)

and we recover the Kerr-Newman solutions with M2 = Q2+P 2

2
. These solu-

tions are not black holes because they the bound:

M2 ≥ α2 +
Q2 + P 2

2
; (C.37)

in fact, it has been argued by Hawking and Hartle that the only black hole

type solution in the IWP family of metrics are multi-ERN (multi-extreme

Reissner-Nordström) solutions.

In physics, one of the main interests of this family of solution is that

it is electric-magnetic duality invariant and it is the most general family

that we can have with the above charges always satisfying the condition

M2 = Q2+P 2

2
. An electric-magnetic duality transformation is nothing but a

change in the phase of H1. Non-extreme solution can be constructed from

the Israel-Wilson-Perjés class (IWP class), by adding a “non-extremality

function” W1, as in the Reissner-Nordström case[171].

C.3 Dilaton and dilaton/axion black holes

The a-model describes a real scalar coupled to gravity and to a vector-

field strength. The coupling depends on a parameter a, hence the name

“a-model”, and is exponential. Since the scalar can be identified in some
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cases with the string dilaton, or with the Kaluza-Klein scalar, which is called

also the dilaton sometimes, there models are also generically referred to as

dilaton gravity[119]. We will be able to describe the black holes type solution

for general value of a and in four-dimension.

It is very convenient to have the most general solution, of D = 4 and

a = 1-model action, written explicitly in terms of the physical charges.

Moreover, the most general static solution can be generalized in natural

way by adding angular momentum and NUT charge `, becoming the truly

most general stationary black holes type solution that we will call the SWIP

solution[171]. It will be T-duality and S-duality invariant by defined, and its

physical properties will be given in terms of duality invariant combinations

of charges.

The solution is determined by two complex harmonic functions, H1 and

H2, the non-extremality function W1, the spatial background metric γmn and

` complex constants kl[130, 131, 132]:

ds2 = e2UW1(dt+ Aϕdϕ)2 − e−2U

W1

(γmndx
mdxn ) ; (C.38)

with:

e−2U = 2Im(H1H̄2) (C.39)

and

Aϕ = 2`αcos(θ) + αsin2(θ)

(
e−2U

W1

− 1

)
. (C.40)

The complex harmonic functions, H1 and H2 take the form:

H1 =
1√
2
eϕ0eıβ

(
τ0 +

τ0M1 + τ̄0Υ

r + ıαcos(θ)

)
, (C.41)

H2 =
1√
2
eϕ0eıβ

(
1 +

M1 + Υ

r + ıαcos(θ)

)
; (C.42)

and W1 and the spatial background metric γmn take the forms:

W1 = 1− r2
0

r2 + α2cos2(θ)
, (C.43)
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γmndx
mdxn =

r2 + α2cos2(θ)− r2
0

r2 + α2 − r2
0

dr2 + (r2 + α2cos2(θ)− r2
0)dθ

2 +

+ (r2 + α2 − r2
0)sin

2(θ)dϕ2; (C.44)

the complex constants kl are given by:

kl = − 1√
2
e−ıβ

(
ΓlM1 + ῩΓ̄l

|M1|2 − |Υ|2

)
. (C.45)

The metric can also be written in a more standard form:

ds2 =

(
∆− α2sin2θ

Σ

)
dt2 + 2αsin2θ

Σ + α2sin2θ −∆

Σ
dtdϕ+

−Σ

∆
dr2 − Σdθ2 − (Σ + α2sin2θ)2 −∆α2sin2θ

Σ
sin2θdϕ2; (C.46)

where:

Σ = (r +M)2 + (`+ αcosθ)2 − |Υ|2 , (C.47)

∆ = r2 − r2
0 + α2 . (C.48)

We have expressed the functions that enter the metric in terms of physical

constants: α = J/M is the angular momentum J per unit mass M , the have

combined the electric and magnetic charges into:

Γl = Ql + ıP l , (C.49)

and the mass and NUT charge ` into the complex mass:

M1 = M + ı` . (C.50)

The complex dilaton/axion charge Υ and τ0, its asymptotic value, are defined

by:

τ ∼ τ0 − ıe(−2ϕ0) 2Υ

r
. (C.51)

In these solutions the charge Υ depends on the conserved charges in this

fixed way:

Υ = −1

2

∑
l

(Γ̄l)2

M1

; (C.52)
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and the non-extremality parameter r0 is given by:

r2
0 = |M1|2 + |Υ|2 −

∑
l

|Γ̄l|2 . (C.53)

In non-static cases when r0 is zero, the solution is supersymmetric, but

for a not zero it is not an extreme black holes. A more appropriate name is

supersymmetry parameter. The extremality parameter will be:

R2
0 = r2

0 − α2 ; (C.54)

when it is positive, we have two horizons placed at:

r2
± = M ±R0 ; (C.55)

and the area of the event horizon is given, for black hole solutions with zero

NUT charge, by:

A = 4π(r2
+ + α2 − |Υ|2) . (C.56)

We observe that, when r0 = 0, that is W1 = 1, the general SWIP solution

has special properties; the principal one is that the back-ground metric γmn

is nothing but the metric of Euclidean three-dimensional space in oblate

spheroidal coordinates, which are related to the ordinary Cartesian ones by:

x = (
√
r2 + α2)sinθcosϕ

y = (
√
r2 + α2)sinθsinϕ

z = rcosθ ; (C.57)

on rewriting the equation (C.38) in Cartesian coordinates, we find the solu-

tions:

ds2 = e2U(dt+ Aϕdϕ)2 − e−2U (γmndx
mdxn ) ; (C.58)

with:

e−2U = 2Im(H1H̄2) , τ =
H1

H2

, (C.59)
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Aϕ = 2`αcos(θ) + αsin2(θ)
(
e−2U − 1

)
. (C.60)

and

n=l∑
n=1

(kn)2 = 0 ,
n=l∑
n=1

|kn|2 =
1

2
. (C.61)

That is, for any arbitrary pair of complex harmonic functions H1 and H2

in the three-dimensional Euclidean space, it is clear that we can construct

multi-black holes solutions and that r0 = 0 can be reinterpreted as a no-force

condition between the black holes. These solutions include the IWP metric,

equation (C.25), when

H1 = ıH2 (C.62)

and this H1 is equal to H1√
2

in IWP metric, which trivializes the axidilaton τ .

These are the only black holes type solutions in the IWP family: the addition

of angular momentum eliminates the event horizon and the addition of NUT

charge eliminates the asymptotic flatness. Something similar is true for the

supersymmetric SWIP solutions above: the only supersymmetric black holes

in this family are the static ones with Ai = 0, which imposes a non-trivial

constraint on the complex harmonic functions[172].

The solution include for vanishing dilaton/axion charge Υ = 0, which

corresponds to special choices of electric and magnetic charges, the Kerr-

Newman black hole in Boyer–Lindquist coordinates (C.13).

The coupling of n vector multiplets to N = 2 supergravity theory can,

in some cases, be completely described by a prepotential function F (X) of

the projective coordinates XΛ, with Λ = 0, 1, . . . , n, that parametrize the

scalar manifold. From prepotential F (X) one can derive the Kähler potential

K[130]:

K = − log
(
NΛΣX

ΛXΣ
)
, (C.63)

with:

NΛΣ =
1

2
Re[∂Λ∂ΣF (X)] . (C.64)
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from which the Kähler metric of the scalar sigma-model,

gab̄ =
∂

∂za

∂

∂z̄b

K , za ≡ Xa

X0
, (C.65)

the chiral connection Aµ

Aµ =
ı

2
NΛΣ[X̄Λ∂µX

Σ − (∂µX̄
Λ)XΣ] , (C.66)

and also the couplings of the scalars to the vector fields can be derived.

The most general black holes solution of an N = 2 theory has to be

duality invariant and thus has to be built out of the only invariant that the

special geometry formalism contains: the chiral connection Aµ and the Kähler

potential K. The metric for extreme black holes, in N = 2 supergravity, can

always be written in the form[22]:

ds2 = eKdt2 − e−Kd−→x 2, (C.67)

where the coordinates XΛ are identified with real harmonic function HΛ that

are also related to the n+ 1 U(1) vector potentials of the theory. In [130] it

was realized that one could also use complex harmonic functions, and then

the one-form Ai that appears in non-static SWIP black holes solutions:

ds2 = eK(dt+ Aidx
i)2 − e−Kd−→x 2, (C.68)

is realized to the chiral one-form of the N = 2 supergravity theory by:

Ai = εijk∂
jAk . (C.69)

More precisely, in N = 4 and D = 4 supergravity, with only two vector

fields corresponds to an N = 2 and D = 4 theory with prepotential F (X) =

2X0X1; the axidilaton is just τ = X1/X0 and with harmonic functions:

X0 = ıH2 , X1 = H1 , (C.70)

gives the SWIP solutions.

It is natural to conjecture that a similar recipe should work in general

cases since the basic principle of correspondence between elements of the



158 APPENDIX C. THE TAUB-NUT SOLUTION

metric and special geometry invariant should be valid. However the SWIP

solutions remain the only equations whose complete explicit form is known.

Also it is to be expected that general non-supersymmetric black hole so-

lutions of extended supergravity can also be constructed by introducing a

background metric and non-extremality functions[83].



Appendix D

The surface gravity

The surface gravity, g, of an astronomical or other object is the gravitational

acceleration experienced at its surface. The surface gravity may be thought

of as the acceleration due to gravity experienced by a hypothetical test par-

ticle which is very close to the object’s surface and which, in order not to

disturb the system, has negligible mass.

In relativity, the Newtonian concept of acceleration turns out not be clear

cut. For a black hole, which can only be truly treated relativistically, one

can not define a surface gravity as the acceleration experienced by a test

body at the object’s surface. This is because the acceleration of a test body

at the event horizon of a black hole turns out to be infinite in relativity.

Because of this, a renormalized value is used that corresponds to the Newto-

nian value in the non-relativistic limit. The value used is generally the local

proper acceleration multiplied by the gravitational redshift factor; that is,

one can define the surface gravity for a black hole whose event horizon is a

Killing horizon[61, 2]. The surface gravity k of a static Killing horizon is the

acceleration, as exerted at infinity, needed to keep an object at the horizon.

Mathematically, if ka is a suitably normalized Killing vector, then the surface

gravity is defined by:

ka5a k
b = kkb, (D.1)

159
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where the equation is evaluated at the horizon. For a static and asymptoti-

cally flat spacetime, the normalization should be chosen so that kaka → 1 as

r →∞, and so that k ≥ 0. For the Schwarzschild solution, we take ka to be

the time translation Killing vector:

ka∂a =
∂

∂t
, (D.2)

and more generally for the Kerr-Newman solution we take

ka∂a =
∂

∂t
+ ΩH

∂

∂φ
, (D.3)

the linear combination of the time translation and axisymmetry Killing vec-

tors which is null at the horizon, where ΩH is the angular velocity of the

black hole.

The surface gravity for the Schwarzschild solution is:

k =
1

4M
, (D.4)

where M is the mass, and the surface gravity for the Kerr-Newman solution

is:

k =

√
M2 −Q2 − J2

M2

2M2 −Q2 + 2M
√
M2 −Q2 − J2

M2

, (D.5)

where: M is the mass, Q is the electric charge and J is the angular momen-

tum.



Appendix E

The Special Kähler geometry of

D = 4 Model

In the present appendix we shall discuss the main geometric quantities related

to the special Kähler geometry of the model under consideration. Recall that

a special Kähler manifold MSK [32, 33, 34, 35, 36], of the complex dimension

n, is a Hodge-Kähler manifold on which a flat, holomorphic and symplectic

vector structure is defined, with structure group Sp(2n+ 2, R). If Ω(za) is a

holomorphic section of this bundle:

Ω(za) = (ΩM(za)) =

 XΛ(za)

FΛ(za)

 , (E.1)

Λ = 0, . . . , n; a = 1, . . . , n; M = 1, . . . , 2n+ 2; (E.2)

the Kähler potential K is expressed as follows:

K(za, z̄a) = − log
(
−ıΩCΩ̄

)
= − log

[
−ı
(
XΛF̄Λ − FΛX̄Λ

)]
, (E.3)

where C being the Sp(2n+ 2, R)-invariant metric:

C =

 0 1

−1 0

 . (E.4)
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162APPENDIX E. THE SPECIAL KÄHLER GEOMETRY OFD = 4 MODEL

The complex vector field Ω(za) also belongs to a holomorphic line bundle,

namely it transforms by multiplication times a holomorphic function[173, 56]:

Ω(za) → e−f(z)Ω(za). (E.5)

This implies, according to equation (E.3), a Kähler transformation on the

potential

K : K → K + f(z) + f̄(z̄). (E.6)

It is useful to introduce a section of a U(1)-bundle over the scalar manifold,

V (za, z̄a) ≡ e
K
2 Ω(za), (E.7)

which as Ω(za) → e−f(z)Ω(za), transforms under a U(1)-transformation:

V (za, z̄a) → e−iθV (za, z̄a), (E.8)

where θ = θ(z, z̄) = Im(f). This vector satisfies the property of being

covariantly holomorphic with respect to the U(1)-connection:

∇āV ≡
(
∂ā −

1

2
∂āK

)
V (za, z̄a) = 0, (E.9)

where:

∂a ≡
∂

∂za

; ∂ā ≡
∂

∂z̄a

. (E.10)

If we define:

Ua = (Ua
M) ≡ ∇aV =

(
∂a +

1

2
∂aK

)
V (za, z̄a), (E.11)

the following properties hold:

V CV̄ = ı; UaCV̄ = ŪāCV̄ = 0; UaCŪb̄ = −ıgab̄. (E.12)

If Ea
I , with I = 1, . . . , n, is the complex vielbein matrix of the manifold,

gab̄ =
∑
I

Ea
IĒI

b̄ (E.13)
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and EI
a its inverse, we introduce the quantities:

UI ≡ EI
aUa, (E.14)

in terms of which the following (2n+ 2)× (2n+ 2) matrix L̂4 is defined:

L̂4 =
√

2 (Re(V ), Re(UI),−Im(V ), Im(UI)) , (E.15)

which, by virtue of equations (E.12), is symplectic:

L̂T
4 CL̂4 = C. (E.16)

In terms of this matrix one can construct the symmetric, symplectic and

negative definite matrix M4 = (M4MN):

M4 = CL̂4L̂T
4 C. (E.17)

This matrix is related to RΛΓ and IΛΓ as follows:

M4 =

 I +RI−1R −RI−1

−I−1R I−1

 . (E.18)

For symmetric homogeneous special Kähler manifolds, the symplectic bundle

defines an embedding of the isometric group G4 into Sp(2n+2, R), realized by

the symplectic representation R by which G4 acts on the symplectic section

V as part of the structure group. The global symmetric of the D = 4 model,

duality symmetries, consist in the simultaneous action of G4 on the scalar

fields and on the symplectic vector of the electric field strengths and their

magnetic duals of the representation R.

One can always, by suitably fixing the symplectic gauge, choose a section

Ω(za) in which XΛ(za) can be regarded as projective coordinates for the

manifold. In particular, in a local patch in which X0 6= 0, Xa/X0 are

independent functions of za and can be thus used as coordinates, known as

special coordinates [173, 56]. In the special coordinate patch we can then

choose:

za ≡ Xa

X0
(E.19)



164APPENDIX E. THE SPECIAL KÄHLER GEOMETRY OFD = 4 MODEL

in the first place. Moreover the lower components can be expressed in terms

of a prepotential F (X):

F (X) : FΛ =
∂F (X)

∂XΛ
, (E.20)

F (X) being a homogeneous function of degree two in the XΛ. In the spe-

cial coordinates the whole geometric structure can be derived by a single

holomorphic prepotential:

F(z) =
F (X)

(X0)2
. (E.21)

In particular, the equation (E.3) the Kähler potential K becomes:

K = − log
{
ı
[
2 (F − F̄)− (za − z̄a)(∂aF + ∂āF̄)

]}
. (E.22)
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