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Hollow vortices and wakes past Chaplygin cusps

Luca Zannetti and Davide Lasagna

Politecnico di Torino, DIMEAS, Torino, Italy
luca.zannetti@polito.it, davide.lasagna@polito.it

Abstract

By using analytic tools for 2D rotational inviscid flow, the stagnation points
of Pocklington hollow vortices are replaced by Chaplygin cusps, that is,
by regions of fluid at rest. By solidifying the bounding free streamlines,
solid bodies are obtained along whose walls adverse pressure gradients are
avoided. These results are relevant to the theory and practice of control of
separated flow at high Reynolds number. Examples are presented pertinent
to single bodies and cascade of bodies which trap hollow vortices or generate
open hollow wakes.
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1. Introduction

According to the Stepanov theorem ([1],[2],[3]), the pressure gradient
cannot be everywhere favorable on a body immersed in a 2D steady potential
flow; as a consequence, in the limit of the Reynolds number going to infinity,
it is not possible to design a body which prevents flow separation from its
smooth walls by avoiding adverse pressure gradients.

As argued in [3], the Stepanov theorem does not hold if vorticity affects
the flow field, and one could think of properly designed bodies in which a
steady rotational separated flow hinders other uncontrolled secondary sep-
arations by averting adverse gradients. The idea of bodies which trap free
vortices is based on this concept and in [3],[4] examples of such bodies have
been provided. In those examples the separating streamline leaves the body
from a cusped edge and the separated flow is modeled as a finite region of
flow entrained by a point vortex trapped on an equilibrium location.

Figure 1 shows an example from [4], where two cusped solid bodies cap-
ture a vortex pair. It has been obtained by exploiting the Chaplygin’s idea
that stagnation points can, in general, be replaced by regions of fluid at
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rest bounded by free streamlines (see [5], [6]). Since in a stagnation region
pressure is constant, solidification of those streamlines provides solid bodies
free from adverse gradients.

We adopt here a different model for the separated flow which includes
the case of an infinite wake. In general, the 2D steady rotational inviscid
flow is governed by the equation ∇2ψ = −ω(ψ), where ω and ψ represent
vorticity and stream function. As shown by Batchelor [7], [8], in the inviscid
limit as the Reynolds number goes to infinity, the steady separated flow is
a vortex patch bounded by a vortex sheet, that is, the governing equation
becomes

∇2ψ = −ωH(α− ψ) +B δ(α − ψ), (1)

with H denoting the Heaviside step function, δ the Dirac delta function and
where α and B are the values of the stream function and of the jump of
the Bernoulli constant at the patch boundary, respectively. In the Batchelor
flow, α is the value of the stream function on the separating streamline and,
as shown by Chernyshenko [9], the values of ω and B are defined by the
location of the separation point and by the constraint that the boundary-
mixing layer around the separated flow has to be cyclic.

By loosening the requirement that the inviscid solution has to be the
viscous limit for Re → ∞, different values of α,B, ω can be selected which
yield multiple solutions. Even though the physical meaning is weakened,
these solutions are interesting for they include the genuine Batchelor flow.
The main advantage is that they allow very accurate solutions in a way
which is simpler than the genuine Batchelor flow. For instance, the choice
|α| = ∞ yields the point vortex model, and the choice B = 0 yields a two
parameter (α, ω) family of vortex patch solutions as, for instance, in [10],
[11].

The “hollow” model is here adopted by assuming ω = 0; in this model

Figure 1: Chaplygin cusps replacing the stagnation points of a vortex pair flow.
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Figure 2: Chaplygin cusps in a channel trapping a closed hollow vortex pair (qh = 4.5,
qc = 0.5, τG = 3).

the vorticity is concentrated on a vortex sheet which bounds a region of fluid
at rest. It follows that the vortex sheet reduces to a free streamline with
constant velocity qh and that the Bernoulli jump B reaches its maximum
allowable value B = q2h/2. This flow model has been known for a long time,
for instance, it was adopted by Pocklington’s [12] and Michell’s [13] who
used the hodograph-plane method to define the geometry of finite hollow
vortices and infinite hollow regions standing above a flat plane. Lavrentiev
[14] suggested to use it to model the wake past bluff bodies, as in [15],
[16], [17]. Further examples of the hollow vortex concept are presented, for
instance, in [18],[19].

An example of solution based on this model is shown in figure 2, where, in
a way similar to figure 1, the stagnation points of a cascade of Pocklington
vortex pairs have been replaced by Chaplygin cusps. The separated flow
consists of a pair of hollow vortices, that is a pair of regions with a core of
fluid at rest encircled by a layer of potential flow.

A further example is shown in figure 3, where Chaplygin cusps replace
the stagnation points of a cascade of infinite Pocklington hollow regions.
As above, the wake consists of infinite hollow cores bounded by a layer of
potential flow. It should be noted that the hollow model is richer than the
point vortex model, which is characterized by closed streamlines and, as a
consequence, is unable to model an infinite wake.

In Sec. 2 the Pocklington solutions for finite and infinite hollow regions
is recalled and extended to the case of cascade or, in equivalent way, channel
flow. In Sec. 3 the Chaplygin cusps are introduced and examples of solutions
are described. Concluding remarks are drawn in Sec. 4.
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Figure 3: Open hollow wake past a cascade of Chaplygin cusps (qh = 3, qc = 0.8).

2. The Pocklington’s solutions

For 2D potential flows, the inverse problem of determining the shape of
streamlines along which the velocity distribution is prescribed can in general
be solved by the hodograph-plane method.

The method consists on determining the analytic function z(λ) which
maps a suitably chosen canonical domain of the parameter λ-plane onto the
flow domain of the physical z-plane. Briefly, it is based on exploiting the
chain rule D{w(z(λ))} = w′(z)z′(λ), rearranged as

dz

dλ
=

dw/dλ

dw/dz
, (2)

where z = x+ i y is the complex coordinate of the physical z-plane, w is the
complex potential and λ is the complex coordinate of the parameter plane.

Let τ = dw/dz be the complex coordinate of the hodograph dw/dz-
plane. The shape of the flow field boundary in the τ -plane, that is, the
velocity distribution along the boundary, is provided by the formulation
of the inverse problem. The solution is obtained by expressing the right-
hand side of (2) as an explicit function of λ. The denominator dw/dz is
expressed as function of λ by conformally mapping the domain of the τ -plane
onto a canonical domain of the parameter λ-plane, while the the numerator
dw/dλ can be defined by elementary means, as the examples below show.
The mapping function z(λ) is finally obtained by analytical or numerical
integration.

The canonical domain of the λ-plane can be arbitrarily chosen. For a
simply connected flow domain, it could typically be a half-plane or a circle
or a rectangle. As a consequence, different mapping functions z(λ) can be
defined. This leads to different processes to reach the solution, which, in any
case, is unique. In fact, as required by the Riemann mapping theorem, the
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Figure 4: Left: Hollow vortex pair in a channel. Right: Hodograph-plane (dw/dz = u−iv).

different canonical domains can be mapped onto each other. A large number
of examples and variations of the method can be found in the literature,
Gurevich [6], for instance, is a rich source on this matter.

2.1. Pocklington’s hollow vortex pair

As an example of the procedure, we retrace the Pocklington [12] solution
(see also [20],[21]), with some variation relevant to the problems dealt with
in Sec. 3.

The flow considered by Pocklington consists of a pair of hollow vortices
standing in equilibrium in an asymptotically uniform flow. We consider the
more general flow past a cascade of pairs of hollow vortices or, equivalently,
of a vortex pair in a channel. For the channel width going to infinity, the
present flow coincides with the Pocklington one.

Figure 4 shows the upper vortex, where h denotes the vortex sheet
bounding the hollow body of fluid at rest and s is the separatrix that divides
the body of fluid entrained by the vortex from the fluid flowing along the
channel. Due to symmetry, the problem of determining the hollow shape
can be restricted to the study of the region ACOFEGA, marked by thick
lines, with A located at the downstream infinity. The relevant pattern of
the hodograph τ -plane is shown on the right-hand side of the figure, where
qh is the velocity along the hollow boundary.

Let the flow be normalized by assuming as reference velocity the velocity
at infinity (A) and as reference length the half width of the channel. Hence,
in the hodograph plane τA = 1 and, being C a stagnation point, τC = 0. As
discussed below, the velocity on the hollow boundary qh and the velocity τG
are free parameters, while the velocity τO is a parameter to be adjusted to
assure the closure of the hollow.
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Figure 5: λ-plane.

The semicircle of the τ -plane is mapped onto the rectangle marked by
thick lines in fig. 5. First, the semicircle of the τ -plane is mapped onto a
semicircle of the intermediate µ-plane by the Möbius mapping

µ = −bτ − a τE
a τ − τE

, (3)

with a, b such that µG = −µO = 1 and µF = −µE. Then, the mapping
onto the rectangle of the λ-plane is given by µ = sn(λ,m), where “sn” is the
Jacobi sine amplitude function. The parameter m is obtained by solving by
iteration the implicit equation

µE = sn[K(m) + iK ′(m)/2,m],

where K denotes the complete elliptic integral of the first kind and K ′(m) =
K(1 −m). Finally, by inverting eq. (3), the function τ(λ) results as

τ =
dw

dz
= τE

a b+ sn(λ,m)

b+ a sn(λ,m)
. (4)

As inferred by the requirement that the sides FE and OG are streamlines
and by the symmetry properties of the flow field, the complex velocity dw/dλ
has to be a doubly periodic function of λ, with half periods ω = 2K and
ω′ = iK ′/2. In the periodic domain, shown in fig. 5), it has to have two
first order poles, located at λA (downstream infinity) and λA′ = −(λA + ω)
(upstream infinity), which represent the sink and the source responsible for
the mass flow streaming inside the channel. Thus, dw/dλ is expressed by
the elliptic function

dw

dλ
= Q [ζ(λ− λA′) − ζ(λ− λA) + κ], (5)
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where ζ is the Weierstrass ζ-function, and Q and κ are constants to be
determined. For the sake of brevity, the dependence of the Weierstrass
functions on the half-periods (ω, ω′) has been omitted. According to eq. (2),
Q has the mere meaning of scale factor which can be adjusted a posteriori
to enforce the channel width, while the value of κ is defined by the condition
that C is a stagnation point, that is (dw/dλ)C = 0, which yields

κ = ζ(λC − λA) − ζ(λC − λA′).

The closure of the hollow implies that
∮

h dz = 0. Due to the symmetry
of the hollow with respect to the imaginary axis, this condition reduces to
the scalar equation

Re

∫ E

F

dz

dλ
dλ = 0.

By means of a trial and error process, for a choice of qh and τG, this equation
is used to determine the value of τO.

The problem has thus two degrees of freedom, represented by the free
choice of qh and τG. The physical soundness of this outcome can be deduced
by considering that in a channel with a given width there is a single infinity of
solutions for point vortices (qh → ∞) standing in equilibrium with different
values of the circulation γ, and that each point vortex can be desingularized
into a family of hollow vortices with the same circulation γ and different
velocity qh at the hollow boundary. The value of the hollow circulation
is given by γ = 2(wE − wF ), where, by integrating eq. (5), the complex
potential w is

w = Q

[

log
σ(λ− λA′)

σ(λ− λA)
+ κλ

]

,

with σ denoting the Weierstrass σ-function.
An example of hollow vortex solution is shown in figure 6, corresponding

to the choice qh = 4.5, τG = 3, which yields τO = −4.277 and γ = −7.806.
The figure also shows the location of the point vortex which stands in equi-
librium with the same circulation γ.

The vortex pair considered by Pocklington stands in an unbounded do-
main. According to the above analysis, it corresponds to choose τG = τA =
1, which yields λA = ω/2 and λA − λA′ = 2ω. As a consequence of the 2ω
period of dw/dλ, the source and sink that, according to eq. (5), are located
in λA′ and λA, merge into a doublet which expresses the asymptotic flow in
the physical plane. Thus, eq. (5) is replaced by

dw

dλ
= Q [℘(λ− λA) + κ],

7



Figure 6: Hollow vortex (qh = 4.5) and point vortex standing in equilibrium with γ =
1.735. Solid line: hollow vortex separatrix; dotted line: point vortex separatrix.

with κ = −℘(λC − λA), where ℘ is the Weierstrass ℘-function. By integra-
tion, the complex potential becomes

w = Q [−ζ(λ− λA) + κλ].

Let the problem be normalized by assuming as reference velocity the veloc-
ity at infinity and as reference circulation the absolute value of the vortex
circulation |γ|. Since, as above, γ = 2(wE − wf ), Q is given by

Q = 1/{2[ζ(λE − λA) − ζ(λF − λA) − k(λE − λF )]}

2.2. Pocklington’s open hollow region

Pocklington [12] extended the above solution to hollows which extends to
the downstream infinity. This solution can be assumed as the basis to model
a wake which extends to infinity. As above, this solution is here derived in
different form and generalized to the case of the flow inside a 2D channel.

A solution is shown in figure 7, where the flow on the upper half channel
is presented. By solidifying the symmetry line, it can be seen as an infi-
nite separated flow which detaches at point C and consists of an infinite
hollow region bounded by a layer of potential flow; as above, the vorticity
is concentrated on the vortex sheet bounding the hollow. The flow field is
characterized by a jet streaming from E in a direction opposite to the main
flow. The jet is arrested at C and turns around the hollow. The downstream
asymptotic pressure should be uniform and equal to the pressure inside the
hollow and, as a consequence, at downstream infinity, the recirculating jet
flow and the main flow should attain the velocity qh of the hollow boundary.

The relevant hodograph τ -plane (τ = dw/dz) is shown on the left-hand
side of figure 8. The semicircle GE represents the constant flow speed qh
along the hollow boundary. The line ACE represents the flow velocity along
the channel centerline and the line AG is relevant to the upper wall. The
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Figure 7: Open hollow wake and separatrix(qh = 5).

interior of the semidisc represents the flow velocity inside the channel, it is
mapped onto the upper half λ-plane by the transformation

τ = qh
1 −

√
λ

1 +
√
λ
, (6)

which is such that the hollow boundary is mapped onto the negative real
axis and the channel walls onto the positive real axis.

The complex potential in the transformed λ-plane consists of a source
located in λA, with QA mass flow responsible for the flow running in the
channel from the upstream infinity A, and by a sink located in λ = λG = 0,
with mass flow is QG = QA + QE, where QE represents the mass flow
streaming from E to G. The complex velocity in the λ-plane is thus

dw

dλ
=
QA

2π

(

1

λ− λA
− QG

QA

1

λ

)

. (7)

By taking the upstream velocity qA as reference velocity and the half width
of the channel as reference length, QA = 2. By enforcing that λ = λC = 1
is a stagnation point, one obtains QG/QA = 1/(1−λA). Thus, according to
eq. (2), the derivative of the z = z(λ) mapping is given by

dz

dλ
=

dw/dλ

τ
=

1

π qh

[

1

λ− λA
− 1

λ(1 − λA)

]

1 +
√
λ

1 −
√
λ
,

whose integration yields

z =
λA(λ− 1)[−5 + 4

√
λ+ λ+ 4 log(

√
λ− 1)]

π qh λ(λA − λ)(λA − 1)

For the above normalization, τA = 1, which, according to eq. (6) yields
λA = [(qh − 1)/(qh + 1)]2. The problem has thus one degree of freedom
expressed by the free choice of qh ≥ 1.
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Figure 8: Hodograph τ -plane and transformed λ-plane.

An example of solution is shown in fig. 7 for qh = 5. The boundary of
the hollow and the upper wall and centerline of the channel are the z-image
of the real axis of the λ-plane, while the separatrix is the z-image of the
ψ = const streamline which departs from the stagnation point λ = λC = 1.

The flow in an unbounded domain corresponds to the choice qh = 1. In
this case, τG = τA = 1, and, in the λ-plane, λA = λG = 0. By the merging
of the source located in λA and the sink located in λG into a doublet located
in λ = 0, the above expression (7) for the complex velocity is changed in

dw

dλ
=

Q

2π

(

1

λ2
− 1

λ

)

.

where Q is a free parameter which defines the arbitrary length scale of the
solution.

3. Chaplygin cusps

Following the same reasoning as in [4], the stagnation points C of the
above Pocklington flows can be replaced by Chaplygin cusps, that is, by
finite regions filled by fluid at rest. As below described, the hodograph-
plane method is particularly well suited to obtain these solutions. Beside
the general interest on analytical or almost analytical solution of non trivial
flows governed by the Euler equations, there is also some physical interest
on this study. In fact, as for the hollow vortices, the Chaplygin cusps are
characterized by constant pressure, that is, by constant velocity along their
boundary. Let the cusp be considered as solid bodies and the channel as
the periodic domain of a cascade flow, the resulting flow possesses the re-
markable property, discussed in Sec. 1, that there are no adverse pressure
gradients along any solid bounding wall.
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Figure 9: Hodograph τ -plane and intermediate µ-plane.

Figure 10: Transformed λ-plane and complex-potential w-plane.

3.1. Chaplygin cusps and hollow vortices

We replace the stagnation points C and C ′ of figure 4 by a pair of
Chaplygin cusps, that is, dead-flow regions with finite area. The solution is
shown in figure 2.

The problem is normalized by assuming the flow velocity at infinity and
the distance between the upstream and downstream cusps as reference ve-
locity and length, respectively. Due to the symmetry of the flow field with
respect to the real and imaginary axis, the solution can be obtained for the
domain marked by thick lines on figure 2. The relevant pattern of the com-
plex velocity in the hodograph τ -plane is shown in figure 9. The solution
is obtained by mapping the inside of this figure onto the upper half-λ-plane
(figure 10). To this purpose, the figure is first mapped into a rectangle of
the intermediate µ-plane (figure 9) by the transformation

µ = log

(

τ√
τE τD

)

,

then the interior of the rectangle is mapped onto the the upper half-λ-plane
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by the elliptic sine-amplitude function

λ = sn

(

K(m)

µE
µ , m

)

,

where K(m) is the complete elliptic integral of the first kind and, according
to the implicit equationK(m)/K(1−m) = µE/π, the parameterm is defined
by the rectangle aspect ratio µE/π.

The λ→ τ mapping is therefore given by:

τ =
√
τE τD exp

[

µE

K(m)
sn−1(λ,m)

]

The complex velocity dw/dλ can be expressed by considering the right-
hand side of figure 10, which shows the pattern of the complex potential
w along the path marked by thick lines in the physical z-plane (fig. 2). It
results in a polygon which is mapped onto the upper half-λ-plane by the
Schwarz-Christoffel mapping, which yields:

dw

dλ
= −κ λ− λC

(λ− λA)
√
λ− λG

√
λ− λF

√
λ− λE

√
λ− λD

. (8)

where |κ| is a parameter which defines the geometrical scale and can be set
a posteriori.

The derivative dz/dλ (eq. 2) is thus determined as a function of λ and
the solution is obtained by its numerically integration.

The problem depends on five real parameters, namely qh, qc, τG, τO,
ϕC = arg(τC). The requirement that the hollow boundaries and the Chap-
lygin bodies have to be closed sets two constraints. As consequence of the
symmetry of the solution, these constraints are expressed by the two real
equations

Re

∫ F

E

dz

dλ
dλ = 0, Im

∫ D

B

dz

dλ
dλ = 0.

The problem has thus three degrees of freedom. Our choice was to select
as free parameters qh, qc and τG, and to let τO and ϕC be determined by
the fulfillment of the constraints. The parameters qh < 1, 0 < qc < 1 have
a primary effect on defining the sizes of the hollows and Chaplygin bodies,
while the primary effect of τG ≥ 1 is on the channel width.

For τG = τA = 1 the complex potential pattern is changed as shown in
figure 11 and the above solution degenerates to a channel with an infinite
width, that is, to an unbounded domain with a single pair of Chaplygin

12



Figure 11: Complex-potential w-plane for τG = τA = 1.

Figure 12: Chaplygin cusps in an unbounded domain (qh = 3, qc = 0.5).

cusps. By defining a new Schwarz-Christoffel mapping, we see that the
above solution still holds by just replacing λG with λA in eq. (8), which
becomes

dw

dλ
= −κ λ− λC

(λ− λA)3/2
√
λ− λF

√
λ− λE

√
λ− λD

.

An example of solution for a single pair of Chaplygin cusps is shown in
figure 12, corresponding to the choice qh = 3, qc = 0.5.

3.2. Chaplygin cusps and open hollow wakes

The cascade of Chaplygin cusps with infinite hollow wakes shown in
figure 3 has been obtained by replacing the stagnation point C of the infinite
Pocklington hollow shown in figure 7. The pertinent hodograph plane is the
half-annulus traced on the left of figure 13.

As above, the flow is normalized by the body length and by the upstream
velocity τA = 1. The hodograph, which depends on two free parameters,
namely, the 0 < qc < 1 velocity on the cusp and the qh velocity on the
hollow core of the wake, is mapped by λ = log τ onto the rectangle marked

13



by thick lines on the right-hand side of figure 13. The sides of the rectangle
correspond to streamlines, as a consequence, the complex velocity dw/dλ
has to be a doubly periodic function, with half periods ω = log qh/qc and
ω′ = iπ. The relevant periodic domain is traced by dotted lines on figure
13. Let QA be the mass flow flowing from upstream in the channel and QE

the mass flow running from E to G in the wake potential layer, the complex
velocity dw/dλ has to present a source with QA mass flow located in λA = 0,
a source with QE mass flow located in λE = − log qh, a sink with QA +QE

mass flow located in λG = log qh plus their infinite reflections with respect
the thick rectangle sides. Enforcing the double periodicity with respect the
dotted rectangle, the complex velocity is thus the elliptic function

dw

dλ
=
QA

2π
{ζ(λ) − 2ζ(λ− λG) + ζ(λ− λA′)

+
1

2
QE/QA[ζ(λ− λE) − ζ(λ− λG)] + iκ

}

,
(9)

with λA′ = 2λG and where ζ is the Weierstrass ζ function. QA plays the role
of a scale factor and it is adjusted a posteriori to make unit the length of the
cusped body. The values of the mass flow ratio QE/QA and of the constant
κ are determined by enforcing that (dw/dλ)B = (dw/dλ)C = 0. In fact,
the condition that the sides of the rectangle of the λ-plane are streamlines
implies that the corner B has to be a stagnation point, and C is, as well,
a stagnation point for it is the λ-image of the separation location. Let
λC = log qc + iϕc, the value of ϕc is not known a priori, it is determined by
enforcing the closure of the Chaplygin cusp

Im

∫ λD

λB

dz

dλ
dλ = 0.

According to the free choice of the parameters 0 ≤ qc < 1, qh > 1, there
is a two parameter family of solutions, corresponding to differently shaped
cusps in differently wide channels. Figure 3 is an example of solution relevant
to the choice qc = 0.8, qh = 3. For qc → 0 the solution is the Pocklington
infinite hollow shown in figure 7. For qh → 1, the channel width goes to
infinity, that is, the solutions are relevant to a one-parameter (qc) family
of single bodies in an unbounded flow domain. These solutions can be
obtained by considering that, in the above definition of dw/dλ, sources
and sinks located in λA, λA′ and λG merge in a quadrupole located in
λA = λA′ = λG = 0; eq. 9 thus becomes

dw

dλ
=
M

2π

{

℘′(λ) +
1

2
QE/M [ζ(λ− λE) − ζ(λ)] + iκ

}

,
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Figure 13: Hodograph τ -plane and transformed λ-plane.

Figure 14: Chaplygin cusp in an unbounded domain (qc = 0.5, qh = 1).

where M is the quadrupole strength and ℘′ is the Weierstrass ℘′.
An example of solution is shown in figure 14, relevant to the choice

qc = 0.5.

4. Conclusions

As stated in [3], solid bodies free from adverse pressure gradients can
be designed for the 2D inviscid flow, provided that some region of the flow
field is affected by vorticity. Thus, bodies could be conceived which, by
inducing a steady rotational separated flow, yield the conditions to be free
from uncontrolled secondary separations. Despite the highly idealized flow
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model, this idea is interesting in the field of flow control at high Reynolds
number.

Following the same idea as in [4], examples of such bodies are here pro-
vided by the analytical tool of the hodograph-plane method. In [4] the
separated flow was modeled by concentrating the vorticity into point vor-
tices and the solid bodies were obtained by replacing the stagnation points
of a vortex pair flow by Chaplygin cusps. The present paper adopts a differ-
ent model for the separated flow, with the vorticity concentrated in vortex
sheets bounding hollow regions.

In a way similar to [4], the stagnation points of the Pocklington [12]
hollow vortex pair have been replaced by Chaplygin cusps. The resulting
flow can be seen as the desingularization of the point vortices considered in
[4] into hollow regions with growing area.

Moreover, by replacing the stagnation points of the infinite Pocklington
hollows [12] with Chaplygin cusps, examples are provided of bodies with
infinite open wakes.

The Pocklington solutions, which are pertinent to single region in an un-
bounded flow, have been generalized to flow inside a channel or, equivalently,
to a cascade flow.
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