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Abstract 

 

A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and 

discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-

ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The 

innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to 

enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric 

sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) 

and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and 

mechanical viewpoints. In particular, the fracture strengths of three different crack propagation 

modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in 

agreement with those of experimental mechanical tests. The approach proposed in this work could 

have interesting applications towards an ever more rational design of bone tissue engineering 

biomaterials and coatings, in view of the optimization of their mechanical properties for making 

them actually suitable for clinical applications. 

 

Keywords: Scaffold; Glass; Coating; Quantized fracture mechanics; Osteointegration. 
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1. Introduction 

 

Biological materials are renowned for their unique combination of outstanding mechanical 

properties and smart microstructure. For instance, cancellous bone is a highly porous natural 

material with excellent stiffness and strength (typically 2-12 MPa in compression [1]), and these 

remarkable mechanical properties are attributed to its anisotropic structure possessing optimized 

strength-to-density and stiffness-to-density ratios [2,3]. Such features provide interesting cues on 

how to develop new scaffolds to mirror Nature’s efficient materials from architectural/mechanical 

viewpoints and to substitute natural tissue functions, which is one of the greatest challenges in 

modern regenerative medicine. 

Architectural design of bone tissue engineering scaffolds is a complex issue because, from a 

structural viewpoint, two competing requirements have to be basically fulfilled: on one hand, the 

scaffold should exhibit a sufficient mechanical competence, i.e. strength and stiffness comparable to 

those of natural bone, but, on the other hand, it should allow new bone in-growth after its 

implantation into human body [4-6]. These requirements typically involve a porosity above 50 

vol.% to allow blood vessels supply, cells migration and new tissue in-growth, as well as the 

presence of macropores in the 100-500 μm range [4]. These features compete with the mechanical 

requirements, which are further discriminated if the scaffold is resorbable, as its integrity 

progressively decreases over time during the contact with biological fluids [7]. Furthermore, another 

crucial issue concerns the scaffold ability to promote bone regeneration and angiogenesis; in this 

sense, bioactive glasses have a great potential and constitutes a highly valuable class of biomaterials 

for tissue engineering [8,9].     
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The choice of a proper method of fabrication plays a key role in designing scaffolds structures on 

the basis of the final clinical use (e.g. load-bearing needs). At present, there is a great variety of 

methods for scaffolds processing that lead to porous body with different structures, architectures, 

pore sizes and interconnections, as well as different properties in vitro and in vivo, but, at present, a 

“gold standard” method for scaffolding has not been defined yet [6,10,11]. Sponge replication is a 

promising candidate for scaffolds fabrication due to its relative easiness of application, effectiveness, 

versatility and low cost; it was demonstrated that, by carefully setting the processing parameters 

[12,13] and/or by producing pore gradient structures [14], high-strength 3-D scaffolds closely 

mimicking human bone architecture can be successfully obtained. Some research groups 

investigated in detail the porosity-strength relationship in the attempt at optimizing the architectural 

properties of scaffolds, ideally at a pre-processing stage. Gerhardt and Boccaccini [15] showed that 

linear interpolation usually provides an acceptable approximation of the negative relationship 

between porosity and compressive strength of bioceramic scaffolds. Baino et al. [16] proposed 

simple quadratic models correlating the theoretical porosity, established at the design stage, with the 

real pore content and compressive strength of final glass-ceramic sintered scaffolds. Hellmich and 

co-workers [17-19] developed micromechanical models of porous ceramics and established non-

linear strength-porosity relations that were in good accordance with experimental findings.  

The keen attention of the scientific community towards the potential of bioactive glass-derived 

scaffolds for bone tissue engineering applications has been demonstrated by the dramatically 

increasing number of articles published since 2000 in the field, including four comprehensive 

reviews only in the last couple of years [6,10,20,21].  

In a recently-deposited patent [22], the authors proposed the innovative use of glass and glass-
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ceramic scaffolds as bioactive trabecular-like coatings on prosthetic devices with the aim to enhance 

the implant osteointegration (Fig. 1). The feasibility of such an application was demonstrated and 

discussed in a preliminary work by Vitale-Brovarone et al. [23]; in the present work, the authors 

developed a mechanical model based on quantized fracture mechanics (QFM) [24-26] to describe 

the bonding strength at the trabecular coating (scaffold)/ceramic substrate interface.  

The use of QFM for modelling the mechanical behaviour of glass-derived porous coatings 

represents a new approach. Linear elastic fracture mechanics (LEFM) was often used in the past to 

describe the mechanical behaviour of pore-free biomedical materials; for instance, Ritter et al. [27] 

employed LEFM to obtain lifetime predictions for bioglass-coated alumina implants. The 

mechanical behaviour of porous ceramic scaffolds has been more recently described either by semi-

empirical approaches based on data fitting [15,16] or through complex models based on continuum 

micro-mechanics [17-19]. However, all these works are based on the continuum, and therefore these 

methods are not suitable for the strength prediction of porous biomaterials without invoking often 

inaccurate homogenization techniques.  

Differently from the above-mentioned methods and starting from the energy approach, Pugno and 

co-workers [24-26] developed QFM to treat fracture in discrete materials: comparison between the 

theory and the experimental results on several nanosystems, including carbon nanotubes and 

graphene, showed a very good agreement. Considering the case of porous scaffolds, characterized 

by an intrinsic structural discreteness, QFM has a unique advantage over LEFM and, in general, 

continuum theories.  

In this paper, in order to properly measure the bonding strength between trabecular coating and 

ceramic substrate from a quantitative viewpoint, three sets of experiments were performed and the 
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results were compared with QFM predictions. By the fitting between experimental data and 

theoretical prediction, the strain energy release rate was obtained; then, it was employed to 

investigate the designable bonding strength influence by two dimensionless quantities.  

It is worth mentioning that previous studies [28-30] on the bonding strength of biomaterials were 

mainly experimental, having a “descriptive” goal, and they concluded that, in general, the bonding 

strength was weak. On the contrary, the present model and method could quantitatively improve our 

ability not only in measuring but also in “designing” the bonding strength of biomaterials, making 

them more suitable for clinic applications in bone tissue engineering. 

 

2. Experimental 

 

2.1. Samples preparation 

 

The innovative acetabular component shown in Fig. 1, wherein the trabecular coating (scaffold) 

plays a key role, was studied and modelled in a simplified flat geometry. These 3-layer plane 

samples, hereafter referred to as “complete plane samples”, were fabricated according to a 

processing schedule described elsewhere by Vitale-Brovarone et al. [23]. The 6-stage preparation 

cycle is briefly summarized in Table 1; for better reader’s understanding, the stages 1-5 are also 

schematically depicted in Fig. 2. 

Furthermore, other two kinds of samples, i.e. SCNA-derived dense coatings on alumina (Stages 1-3 

and 6) and SCNA-derived scaffolds (Stages 2, 4 and 6), were prepared and mechanically tested to 

obtain key mechanical parameters used in the development of the QFM-based model (section 3). 
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2.2. Samples characterization 

 

Wide-angle (2θ within 10-70°) X-ray diffraction (XRD) by using a X’Pert diffractometer (working 

conditions: 40 kV and 30 mA; camera with Bragg-Brentano geometry, Cu Kα incident radiation, 

incident wavelength λ = 1.5405 Å, step size Δ(2θ) = 0.02°, fixed counting time of 1 s per step) was 

performed on SCNA before and after treatment at 1000 °C for 3 h to detect the presence of 

crystalline phases nucleated during the thermal treatment. 

Scanning electron microscopy (SEM, Philips 525 M) was used for morphological investigations; the 

samples were silver-coated and observed under an accelerating voltage of 15 kV. Cross-sections 

were examined after embedding the samples in epoxy resin (Epofix, Struers), cutting by a diamond 

wheel (Struers Accutom) and careful polishing by #600 to #4000 SiC grit paper. Compositional 

analyses by energy dispersive spectroscopy (EDS; EDAX Philips 9100) were also performed. 

The mechanical tests were performed according to the relevant ASTM standards [31,32] by 

applying tensile loads (Syntech 10/D machine, MTS Corp.; cross-head speed of 1 mm min
-1

) up to 

failure to the considered samples. Specifically, the tests were carried out on three kinds of samples 

(as anticipated in the section 2.1): (i) SCNA-derived scaffolds (experiment 1), (ii) SCNA-derived 

dense coatings on alumina (experiment 2) and (iii) 3-layer complete samples (SCNA-derived 

trabecular coating + intermediate SCNA-derived compact coating on alumina, referred to as 

complete samples) (experiment 3). At least three samples for each type were tested. 

Before testing, each sample was glued to two loading fixtures (16-mm diameter steel cylinders) by 

using an epoxy resin (Araldite
®
 AV 119, Ciba-Geigy), which is able to withstand a maximum stress 
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of ~40 MPa (as declared by the manufacturer). At room temperature, the adhesive was a gel; its 

polymerization was achieved by a low-temperature treatment in oven (130 °C for 1 h). The failure 

tensile stress of the samples, σt (MPa), was calculated as 
d

t
A

F
 , wherein F (N) is the failure load 

and Ad (mm
2
) is the area measured after the test.  

The Young’s moduli of the different biomaterials, whose assessment was necessary for the model 

development (section 3), were evaluated by non-destructive acoustic measurements (GrindoSonic) 

as suggested by other authors [18]. 

 

3. Development of the model 

 

In order to develop the QFM-based model, the complete plane samples were considered as 

constituted by three components or layers (Fig. 3a), i.e. the SCNA-derived trabecular-like coating 

(porous scaffold, first layer), the SCNA-derived intermediate coating (non-porous coating, second 

layer) and the alumina substrate (compact substrate, third layer); all of them are planar and will be 

denoted, for purpose of simplicity, with the superscripts “1”, “2” and “3”, respectively. Accordingly, 

the superscripts “12” and “23” will identify the scaffold/intermediate coating interface and the 

intermediate coating/alumina substrate interface, respectively. 

 

3.1. Basic theory 

 

Referring to the 3-layer structure depicted in Fig. 3a, the Young’s moduli of scaffold, intermediate 

coating and substrate are denoted by E
(1)

, E
(2)

 and E
(3)

, and the corresponding thicknesses are l
(1)

, l
(2)
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and l
(3)

. The force F acts on the top face “CD” of the scaffold (Fig. 3a). The top face “CD” is 

square-shaped with side length a and area A. The side length and area of the bottom face “AB” are 

assumed to be equal to a  and αA, respectively, wherein the condition 1   accounts for a non-

constant cross-section. After crack propagation, part I was assumed to be stressed whereas parts II 

and III became unstressed (Fig. 3b), as suggested by a linear asymptotic matching; the final cross-

sectional area is αA (Fig. 3c). 

According to LEFM, the total potential energy Π of the system is expressed as: 

U W                                                                     (1) 

wherein U is the strain energy and W is the work done by the external force. 

U and W can be deduced as follows: 

2

(1) (2)

1 1 1

2
U F

k k

 
  

 
                                                                (2) 

(1) (2) 2

(1) (2)

1 1
( )W F l l F

k k

 
     

 
                                                        (3) 

wherein (1)k , (2)k  are the stiffness of the scaffold and intermediate coating before crack propagation 

and (1)l , (2)l  are the corresponding displacements. 

Accordingly, by assuming the substrate to be rigid ( (3)k  = ∞) due to its large Young’s modulus, the 

total potential energy is obtained as: 

2

(1) (2)

1 1 1

2
F

k k

 
    

 
                                                            (4) 

According to QFM, crack propagation will take place when the “quantized” strain energy release 

rate, (12)

IG , reaches its critical value (12)

ICG [24], i.e.: 

(12)

ICG
A


 


                                                                  (5) 

wherein (12)

ICG  is the critical fracture toughness along the scaffold/intermediate coating interface and 

ΔΠ is the variation of the total potential energy due to the cracked area increment ΔA.  
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For purpose of completeness, three possible failure modes (FMs), hereafter referred to as FM-1, 

FM-2 and FM-3 (Fig. 4), are investigated in the following sections. 

 

3.2. FM-1: crack along the scaffold/intermediate coating interface 

 

In FM-1 failure occurs at the interface between scaffold and intermediate coating (Fig. 4a). From 

the Eq. (4), the variation of the total potential energy Π can be calculated as: 

2

(1) (2)(1) (2)

1 1 1 1 1

2
F

k kk k

    
         

     
                                                (6) 

wherein (1)k   and (2)k denote, respectively, the stiffness of the scaffold and intermediate coating after 

crack propagation. 

The compliance (1)1/ k  can be expressed as: 

(1)

(1) (1) 0

1 1

( )

l dy

A yk E
 

                                                            (7)
 

wherein A(y) denotes the cross-sectional area at the general level y. 

Since A(y) can be expressed as 

 
2 2

2

(1) (1)
( ) (1 ) (1 )

y y
A y a A

l l
   

   
        
   

,  

then compliance is derived as 

 
(1) (1)

(1) (1) (1)0

1 1

( )

l dy l

A yk E E A 
 

  .         
 

Likewise, the compliance after delamination ca be calculated as: 

 

(1) (1) (1) (1)

(1) (1) (1)0(1)
(1)

1 1

( )

l dy l l l

A yE E A A A E A A Ak
E A

A

  
   

    


                                    (8)

 

wherein ( )A y  denotes the cross-sectional area at the general level y after failure. 
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Combining Eq.(7) with Eq.(8), it is possible to obtain the following expression: 

 

(1) (1) (1) (1)

(1) (1) 2 3 2(1) (1)(1)(1)

1 1
1 1

( )
2

1 1

A

l l l l AA

k E AE A E A A AE A A Ak

A A



 

 


 


    

  
 

                  (9) 

Developing the calculations for the intermediate coating, it was possible to obtain: 

(2)

(2) (2)

1 l

k E A
  

 

(2)

(2)(2)

1 l

E A Ak 



 

 

(2) (2) (2)

(2) (2) (2) (2) 2 2(2)

1 1

1

l l l A

Ak E A A E A E Ak
A

  




   

  
 

 

                                  (10) 

Then inserting Eq.(9) and Eq.(10) into Eq.(6), the following expression was obtained: 

(1) (2)
2

(1) 2 3 2 (2) 2 2

1
( )

2 2
11

l A l A
F

AE A E AA

AA

 



 
   

 
  

 

                                   (11) 

Finally, the energy release rate )12(

IG  is obtained: 

 

1/2 (1) (2) (2) (1)

2
(12) (12)

(1) (2) 2

1 2

4 (1 )
I I

A
l E l E

A
G

AA
E E

A










 


  




                                     (12) 

The crack propagation will take place when (12) (12)

I ICG G  and can be stable, metastable or unstable 

according to the following criteria [24]: 

 

 

 

(12)

(12)

(12)

0,

0,

0,

I

I

I

dG
stable

d A

dG
critical state

d A

dG
unstable

d A


 





  



  



                                                   (13) 

Combining Eq.(12) with Eq.(13), the following condition is obtained: 

 

1 2 (1) (2) (2) (1)
(12)

2
(12)

(1) (2) 3 2

1 4

0
( )

8 (1 )

I
I

A
l E l E

dG A

Ad A
E E A

A










 

 




,  
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from which it is possible to conclude that the crack propagation is always unstable. 

Finally, the delamination strength is expressed as: 

(1) (2)

(12) (12)

1 2 (1) (2) (2) (1)

(1 )

2

1 2

IC IC

A
E E

A G
A

l E l E
A

 










 

                                      (14) 

If the condition (2) (1)l E (1) (2)l E  is satisfied, then Eq. (14) can be simplified into: 

3 (1) (12)

(12) 4
(1)

2 1IC

IC

E G A

Al
 




   

Due to vanishing of /A A , a further simplification occurs (
3

(12) (1) (12) (1)42 /IC ICE G l  ) and, if 1  , 

the following expression is obtained: 

 (12) (1) (12) (1)2 /IC ICE G l  .

 

 

3.3. FM-2: crack in the scaffold 

 

In FM-2 failure occurs in the scaffold (Fig. 4b), as the strength of the scaffold is supposed to be 

lower than the bonding strength at the interface between intermediate dense coating and alumina. 

According to QFM, the fracture stress is expressed as [24-26]: 

(2)

(1)

(1) q

2

IC

IC

K

a






 

 
 

                                                            (15) 

wherein (1)

IC  is the strength of the scaffold, (2)

ICK  is the critical stress intensity factor of the 

intermediate dense coating, 
(1)2a  is the crack length and q  is the fracture quantum, that is expressed 

as: 

2
(2)

(2)

2
q IC

IC

K

 

 
  

 
                                                              (16) 

wherein (2)

IC  is the fracture strength of the intermediate coating. 
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Accordingly, the following expression was obtained: 

(2) (2)

(1) (2)

(1) (1)
(1)

1 1

q 1 / qq 2 1 2 / q
2

IC IC

IC IC

K
K

a aa






   
   

    

                                   (17) 

Extending the result from a crack to an elliptical hole with half axes a and b [25] gives: 

(2) 2 2
(1) (2)1 2 / q(1 2 / ) 1 2 / q(1 2 / )

( , )
1 2 / q 1 2 / qq / 2

IC

IC IC

K a a b a a b
a b

a a
 



    
 

 
                                 (18) 

If the half axes a and b are much greater than q , then this final expression is obtained: 

(2) (2)

(1) 1
( , )

(1 2 / ) 1 2 /q / 2

IC IC

IC

K
a b

a b a b





 

 
                                              (19) 

 

3.4. FM-3: mixed crack 

 

In FM-3 (Fig. 4c) the two aforementioned modes FM-1 and FM-2 coexist and the critical stress is 

assumed to  be predicted by a mean field approach as: 

( ) (12) (1) (1 )M d d

IC IC IC

A A

A A
  

 
                                                       (20) 

wherein 
dA  is the final delamination area (different from A  as a consequence of the intrinsic 

fracture on the complementary surface dA A  ); the superscript “M” denotes the mixed crack. 

 

4. Results and discussion 

 

4.1. Micro-structural analysis 

 

Fig. 5a reports the XRD pattern of as-poured SCNA; the presence of a broad halo (2θ within 20-35°) 

without any diffractions peak, reveals the completely amorphous nature of SCNA after melting. As 
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shown in Fig. 5b, the thermal treatment of sintering (1000 °C for 3 h) induced the nucleation of 

CaSiO3 (wollastonite; PDF database code 00-027-0088), known as a highly biocompatible 

crystalline phase [33,34]. As the thermally-treated SCNA is a glass-ceramic materials, hereafter it 

will be referred to as GC-SCNA.  

 

4.2. Morphological investigations  

 

Fig. 6a demonstrates the glass-ceramic nature of the sintered intermediate coating, as the presence 

of needle-shaped white crystals embedded in a dark matrix (residual glass phase) is clearly 

distinguishable. Fig. 6b showed that these white crystals were constituted by calcium (Ca), silicon 

(Si) and oxygen (O) (small amounts of Na and Al were also detected due to “boundary effects” as 

they were contained in the surrounding amorphous matrix; Ag is due to the thin metal coating 

necessary for the analysis): this observation was fully consistent with XRD results, further 

demonstrating the existence of CaSiO3 as the unique crystalline phase. Fig. 6a also demonstrated 

that the interface between GC-SCNA intermediate coating and alumina was defect- and crack-free, 

thereby proving the suitability of SCNA as excellent material to coat alumina substrates, in good 

accordance with previous observations by the authors [23].  

From an architectural viewpoint, the GC-SCNA scaffold closely mimicked the foam-like 3-D 

structure of cancellous bone (Fig. 6c). The total porosity of the scaffold (about 63 %vol.) was 

comparable to that of human spongy bone (typically in the 50-70 %vol. range [4]) and its highly 

interconnected network of macropores within 100-600 μm (Fig. 6d) is a valuable feature to allow 

bone cells colonization and implant vascularisation in vivo. 
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Fig. 6e reports the SEM micrograph of a polished cross-section of a complete sample showing the 

components of its 3-layer structure.   

 

4.3. Model results: outcomes and potential of the QFM-based approach  

 

The bonding strength of the GC-SCNA trabecular-like coatings to alumina flat substrate was studied 

by employing the model developed in the section 3. 

The parameters used as model inputs were given as follows:  

- layers thicknesses: (1)l = 2.0 mm, (2)l  = 0.2 mm, (3)l  = 1.0 mm 

- elastic moduli: (1)E  = 20 GPa, (2)E  = 90 GPa, (3)E  = 400 GPa  

- initial bonding area, A (A = 111.1 ± 16.3 mm
2 

for experiment 1, whereas A was assumed to be 

100.0 mm
2
 for experiments 2 and 3, being the samples fabricated by using 10 × 10 mm

2
 

alumina plates) 

- delaminating area, Ad, that was experimentally measured for each sample after the mechanical 

test (Ad = 77.8 ± 22.2 mm
2 

for experiment 2 and Ad = 88.0 ± 9.9 mm
2
 for experiment 3). 

- failure stress, σt, that was experimentally measured for each sample (σt = 3.7 ± 1.1 MPa
 
for 

experiment 1,  σt = 20.8 ± 1.9 MPa for experiment 2 and σt = 1.7 ± 0.4 MPa for experiment 

3).  

 

From the experimental observations, it is worth underlining that the failure in experiment 1 

corresponds to FM-2 whereas the experiments 2 and 3 to FM-3 (being Ad < A in all cases); FM-1 is 

absent in the experiments.  
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The elastic moduli are comparable to those assessed by other authors using acoustic methods on 

porous glass-ceramics with analogous porosity [18]. 

The fitting of the experimental data to estimate the unknown parameters of the model was carried 

out by using a proper code developed with MATLAB software (least mean squares algorithm). 

For experiment 1, employing Eq.(19) with the assumption a/b = k/A  yields: 

(2)

(1) ( , )
1 2 /

IC

IC a b
k A


 


 

Data fitting (Fig. 7a) allowed to obtain (2)

IC  = 47 MPa and k = 651 mm
2
. 

For experiment 2, mixed mode (FM-3) was observed (Fig. 4c) between GC-SCNA dense coating 

and alumina substrate. Applying Eq.(20) and assuming 1   gives: 

(2) (3)

( ) (23) (2)

(2) (3) (3) (2)

2 (1 )

2

d

M d d

IC IC IC

d

A
E E

A AA G
A AA

l E l E
A

     



 

wherein (2)

IC  = 47 MPa has already been calculated from experiment 1. By best fitting of the data 

(Fig. 7b), (23) 0.46ICG  N/m was obtained. 

FM-3 was also observed in experiment 3; the bonding strength, assuming 1  , can be predicted as: 

(1) (2)
(2)

(12) (12)

(1) (2) (2) (1)

2 (1 )
1 2 /

2

d

d IC d

IC IC

d

A
E E

A AA G
A k A AA

l E l E
A


     




 

Likewise, by best fitting of the data (Fig. 7c) (12) 0.065ICG  N/m was obtained.  

Fitting the experimental data by the present theory showed that the scaffold strength increases as the 

cross-sectional area increases in the experiment 1 carried out on the GC-SCNA trabecular-like 

coating (scaffold) alone (Fig. 7a). Fig. 7b shows that the delaminating strength between the GC-

SCNA dense intermediate coating and alumina substrate decreases as the delaminating area 

increases. However, in Fig. 7c, although the trend of the fitting curve is also decreasing, its slope is 
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close to zero, which is different from that shown in Fig. 7b; this can be explained considering (i) the 

small difference between the delaminating strength between GC-SCNA trabecular-like coating and 

GC-SCNA interlayer and the scaffold strength, and (ii) the large difference between the 

delaminating strength between GC-SCNA interlayer and ceramic substrate and interlayer strength.   

The QFM-based model developed in the present work is useful not only to estimate important 

mechanical parameters, such as the fracture toughness of the material, but it can act as a valuable 

tool to be applied at the design stage of the desired device. Specifically, it would be very useful to 

investigate the influence of some key design parameters that can be properly controlled by 

manufacturers/researchers, such as geometry and elastic properties of the involved biomaterials, 

with the aim of optimizing the structural and mechanical behaviour of the system. As a 

representative example, the influence of two dimensionless parameters, namely l1/l2 and E1/E2, was 

studied in the case of the mixed mode (FM-3) by employing the fitted strain energy release rate 

(12) 0.065ICG  N/m.  

It is worth mentioning that, from the designer’s viewpoint, it would be of utmost importance to 

investigate the influence of varying biomaterial porosity on the mechanical strength of the system. 

For instance, the processing parameters of glass-derived porous biomaterials, such as the trabecular-

like coatings analyzed in the present work, can be varied in a controlled way to obtain a desired pore 

content which plays a key role in affecting the mechanical properties of the material [12,13,16]. The 

Young’s modulus of a given (bio)material is known to be dependent on its pores content [18]; 

therefore, the analysis of the influence of the parameter E1/E2 on the bonding strength also allows to 

take into account the effect of pores content (as variations of porosity involve variations in the 

elastic modulus) [18]. The analytical results are reported in Fig. 8; the increase of the two 
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dimensionless quantities resulted in different behaviours: (1) the higher l1/l2 – namely the higher the 

thickness of trabecular-like layer –, the lower the bonding strength; (2) the higher E1/E2 – namely 

the higher the Young’s modulus of trabecular-like layer –, the higher the bonding strength. From 

these data it is possible to conclude that the bonding behaviour of the device can be improved by 

reducing the scaffold thickness, or by increasing the Young’s modulus of the scaffold, or else by 

acting simultaneously on both parameters. 

The impact of the approach proposed in the present work over the biomaterials design could be very 

significant in the near future. Ideally, the suggested method would allow overcoming the limitations 

and inaccuracies of the traditional “trial and error” approach to optimize the mechanical 

performances of biomaterials and implants. Furthermore, unwanted losses of experimental time 

used for samples preparation could be successfully avoided.    

 

4.4. Considerations on the suitability of the chosen biomaterials, limitations of the present study and 

future perspectives 

 

In this work, the experimental glass SCNA was selected as starting material to produce trabecular-

like coatings (scaffolds) intended to promote the osteointegration of prosthetic devices (Fig. 1). As 

discussed elsewhere by the authors [23], the choice of SCNA was mainly due to the need for 

proposing high-strength porous biomaterials able to potentially withstand the loads that 

physiologically act on a real hip joint prosthesis: the compressive strength of GC-SCNA scaffolds 

(13 MPa [23]) was comparable and even slightly superior to that of natural cancellous bone (2-12 

MPa [1]), and therefore SCNA seemed to be very suitable for the intended scope. Trabecular 
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coatings based on the well-known 45S5 Bioglass
®

, for instance, are to be considered unsuitable due 

to their dramatic brittleness (the literature shows that Bioglass
®
-derived glass-ceramic scaffolds 

exhibit a compressive strength lower that 1 MPa [35,36]); therefore, the search for an alternative, 

new and more mechanically effective biomaterial was necessary. Currently, the development of 

porous glass-based biomaterials with mechanical strength and architectural features comparable to 

those of natural cancellous bone is one of the most challenging topics of bone tissue engineering 

research [5-7,12,13,21,37-39].   

However, as shown elsewhere by the authors [23], the major drawback of GC-SCNA is its low 

bioactivity. In vitro tests in acellular simulated body fluids (SBF) mimicking the ionic composition 

of human plasma are commonly recognized as a standard procedure used for estimating the 

bioactive potential of biomaterials. On the basis of a lot of experimental work carried out in the last 

thirty years [40-42], the majority of researchers currently agrees that the formation in vitro of a 

hydroxyapatite layer on the surface of biomaterials is a fundamental pre-condition to reasonably 

predict the in vivo bioactive behaviour (bone-bonding ability) of the implant. In recent years, 

however, the suitability of SBF has been called into question [43] and a recent work by Towler et al. 

[44] indicates that forecasting a material ability to bond to bone based on SBF experiments may 

provide a false negative result. Therefore, the apparently low in vitro bioactivity of GC-SCNA 

trabecular-like layer [23] could be enhanced in an in vivo environment; furthermore, the coatings 

could lead to osteogenesis in vivo by virtue of the key role played by their bone-like porous 

architecture [24]. In view of future research work on SCNA, surface functionalization by means of 

appropriate organic molecules could also contribute to improve the material bioactivity and 

osteointegration potential [45]. 
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It is also interesting to underline that the mechanical properties of bioceramic scaffolds can 

significantly increase in vivo due to tissue in-growth [46]: in fact, the cells adherent on scaffold 

struts, the newly formed tissue and the scaffold itself create a biocomposite in situ, thereby 

increasing the time-dependent strength of the implanted construct. At present, the GC-SCNA 

trabecular-like coatings were mechanically tested only in “dry” conditions; it is reasonable to expect 

that, after implantation in vivo, their actual strength can become superior to that assessed before the 

contact with the biological environment.     

The feasibility of SCNA-derived trabecular-like coatings was successfully demonstrated on flat 

geometry, and the bonding strength of the coating to the substrate was modelled in this work 

following an innovative QFM-based approach. The major goal achieved in this article was to carry a 

novel contribution for linking the experimental approach to the theoretical one for the development 

and analysis of biomaterials and implantable devices. Indeed, the majority of medical implants are 

characterized by complex, often curved shapes, like the semi-spherical geometry that is typical of 

the acetabular component of hip joint prostheses (Fig. 1); therefore, the pilot results achieved in this 

study will deserve an extension to a real 3-D configuration. It will be necessary to set up appropriate 

manufacturing technique to fabricate curved trabecular-like coatings on ceramic cups, and then an 

appropriate QFM-based model for this curved geometry can be developed; in such a context, 

optimization of scaffold shaping and coating techniques is currently in progress in the framework of 

an European Project (MATCh – “Monoblock Acetabular cup with Trabecular-like Coating”, Grant 

Agreement n. 286548). 

 

5. Conclusions 
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In this work, the bonding strength of glass-derived trabecular-like coatings to ceramic substrates for 

prosthetic applications was investigated, following a new approach based on the combination 

between experimental results and quantized fracture mechanics theory. It was observed that, in the 

considered 3-layer structure, the crack mixed mode (intrinsic fracture and interface delamination) 

always takes place. By fitting the experimental data with the theoretical prediction, additional 

mechanical properties of the system were identified, such as the fracture toughness; this parameter 

was then introduced into the model to further study the influence of different system parameters on 

the boding strength. The model and concepts reported in this paper represent a novel approach 

towards a more rational design of biomaterials and coatings for bone tissue engineering applications. 
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Figure 

 

Fig. 1. Scheme of the innovative acetabular cup disclosed in the patent [22] deposited by the authors; 

this monoblock ceramic implant is constituted by three elements: (i) a bioinert ceramic substrate, 

that articulates directly with the (prosthetic) femur head; (ii) a bioactive trabecular coating, i.e. a 

glass-derived scaffold, that aims at promoting implant osteointegration to patient’s pelvis bone; (iii) 

a glass-derived (pore-free or minimally porous) interlayer, able to improve the adhesion between 

alumina substrate (cup) and trabecular coating (scaffold). (Figure reproduced from Vitale-Brovarone 

et al. [23] with permission by Springer). 
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Fig. 2. Processing stages (1-5) involved in samples preparation.  

 

 

Fig. 3. Scheme of the device: (a) parts and nomenclature; (b) cracking mechanism; (c) top view 

after failure. 

 

 

Fig. 4. Failure modes: (a) mode 1 (delamination at the substrate/intermediate layer interface); (b) 

mode 2 (failure in the scaffold); (c) mode 3 (mixed failure).  
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Fig. 5. XRD patterns of (a) as-melt SCNA and (b) thermally-treated SCNA (sintering at 1000 °C for 

3 h). 

 

 

Fig. 6. Samples analysis by SEM-EDS: (a) GC-SCNA intermediate coating (SEM back-scattering 

mode); (b) EDS analysis of the needle-shaped white crystals observed in (a); (c) GC-SCNA scaffold 

surface (top view); (d) GC-SCNA scaffold cross-section; (e) cross-section (SEM back-scattering 

mode) of the complete 3-layer sample (alumina substrate + dense interlayer + trabecular-like 

coating). 
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Fig. 7. Comparison between experimental results and theoretical predictions (a) experiment 1, (b) 

experiment 2 and (c) experiment 3. 

 

 

Fig. 8. The potential of the QFM-based approach: an example on how to use the developed model to 

predict the bonding strength of the trabecular coating in a flat configuration in order to optimize the 

device mechanical properties. Variation of the model parameters: in the influence of l1/l2, l1 varies 

from 0.2 mm to 2.0 mm; in the influence of E1/E2, E1 varies between 9 GPa to 90 GPa; in both cases, 

E2 = 90 GPa, l2 = 0.2 mm, α = 1.0, (12) 0.065ICG  N/m, Ad = 88.0 mm
2
. 

.  
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Tables 

Table 1. Cycle of fabrication of the sample investigated in this work. 

Stage Description 

1 High-purity alumina (> 99.5%) 1-mm thick sheets (Goodfellow, Cambridge, UK) 

were cut by means of a rotating diamond wheel (Accutom 5 Machine, Struers) to 

obtain squared 10 mm × 10 mm plates. 

2 A silicate glass (SCNA; molar composition: 57SiO2-34CaO-6Na2O-3Al2O3) was 

prepared by melting the raw products (SiO2, purity 99.0%, Sigma-Aldrich; CaCO3, 

purity 99.0%, Sigma-Aldrich; Na2CO3, purity 99.5%, Sigma-Aldrich; Al2O3, purity 

99.9%, Alfa-Aesar) in a platinum crucible at 1500 °C for 1 h in air and then by 

quenching the melt in cold water to obtain a “frit”, that was subsequently ground 

by a 6-balls zirconia milling and eventually sieved to obtain glass particles below 

32 μm. 

3 SCNA “green” coatings on the alumina plates were prepared by gravity-guided 

deposition after  suspending a proper amount of glass particles (0.7 g) in ethanol 

(beaker diameter: 56 mm) to finally obtain a 100-μm thick layer 

4 Commercial open-cells polyurethane sponge (apparent density 20 kg m
-3

) was cut 

in 4-mm thick blocks to be impregnated with a water-based SCNA-containing 

slurry (the glass particles were prepared at the end of Stage 2), according to an 

optimized schedule proposed for sponge replication method [12]. 

5 SCNA-impregnated sponge (prepared in Stage 4) was stacked on the “green” 

SCNA coating (prepared in Stage 3). 

6 The whole system was thermally treated in air at 1000 °C for 3 h (heating rate 5 °C 

min
-1

; cooling rate 10 °C min
-1

) to allow the burning-out of the polymer template 

and the glass powders sintering. 

 

 

 

 


