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Combination of Growth Model and Earned Schedule to
Forecast Project Cost at Completion

Timur Narbaev, Ph.D.1; and Alberto De Marco, Ph.D.2

Abstract: To improve the accuracy of early forecasting the final cost at completion of an ongoing construction project, a new regression-
based nonlinear cost estimate at completion (CEAC) methodology is proposed that integrates a growth model with earned schedule (ES)
concepts. The methodology provides CEAC computations for project early-stage and middle-stage completion. To this end, this paper es-
tablishes three primary objectives, as follows: (1) develop a new formula based on integration of the ES method and four candidate growth
models (logistic, Gompertz, Bass, and Weibull), (2) validate the new methodology through its application to nine past projects, and (3) select
the equation with the best-performing growth model through testing their statistical validity and comparing the accuracy of their CEAC
estimates. Based on statistical validity analysis of the four growth models and comparison of CEAC errors, the CEAC formula based
on the Gompertz model is better-fitting and generates more accurate final-cost estimates than those computed by using the other three models
and the index-based method. The proposed methodology is a theoretical contribution towards the combination of earned-value metrics with
regression-based studies. It also brings practical implications associated with usage of a viable and accurate forecasting technique that con-
siders the schedule impact as a determinant factor of cost behavior. DOI: 10.1061/(ASCE)CO.1943-7862.0000783. © 2013 American
Society of Civil Engineers.

Author keywords: Construction management; Cost forecasting; Earned schedule; Earned value management; Growth model; Nonlinear
regression; Cost and schedule.

Introduction

With the purpose of controlling cost overrun and schedule delays,
earned-value management (EVM) is often used as an objective
technique for supporting the tasks of monitoring, analyzing, and
forecasting project cost and schedule performance. Earned-value
management is a method integrating a project’s cost, schedule, and
scope metrics into a single measurement system (PMI 2008). It
indicates that cost deviations may affect the schedule progress
and vice versa, i.e., a project that is lagging behind or is ahead
of schedule is more likely to experience changes in the cost plan.

In particular, EVM is a widely accepted method to compute cost
estimate at completion (CEAC) of an ongoing project based
on current progress and performance. Major contributions to EVM-
based CEAC were established in the 1990s within U.S. defense
projects. Comparatively, the construction industry experienced
small applications of these findings and during the past decade little
advancement in CEAC forecasting research for construction
projects has been reported (De Marco and Narbaev 2013).

Although credited to be simple-to-use and widely accepted
formulas, index-based methods for CEAC forecasting have three

primary limitations, as follows: (1) reliance on past cost
performance only, (2) unreliable forecasting in early stages of a
project life, and (3) no count of forecasting statistics (Fleming
and Koppelman 2006; Kim and Reinschimdt 2010; Tracy 2005;
Zwikael et al. 2000). These three limitations are the primary
reasons to further extend the application boundaries of index-
based methods through their refinement or integration with other
forecasting techniques.

The most reported alternative techniques to index-based cost
forecasting formulas are those that use linear or nonlinear regres-
sion analysis to develop regression-based models (Christensen
et al. 1995). These methods are regarded as more sophisticated
in calculating a project’s CEAC than index-based methodologies
but are able to generate better estimates early in a project life
(Tracy 2005). Nonlinear formulas better describe nonlinear rela-
tionships between input and output variables and are frequently
used to build the nonlinear cost growth pattern. Furthermore, the
s-shaped curve of this cumulative cost is produced by the sigmoid
models, also termed growth models. These methodologies extend
the application boundaries of the traditional index-based CEAC
methods and overcome the three previously noted limitations. In
the literature, growth models with nonlinear regression have been
widely applied to study cumulative cost growth (Christensen
et al. 1995).

Although some literature is available in the respective areas of
application of either index-based or regression-based models, very
little research has been carried out to combine these two techniques
for calculating the CEAC of ongoing construction projects. In an
attempt to refine CEAC methodologies and improve their accuracy,
this paper contributes to the extension of the EVM body-of-
knowledge by filling this research gap through the integration of
EVM methods into growth models.

To this end, a nonlinear regression-based CEAC methodology
is proposed to interpolate characteristics of growth models and
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combine the earned schedule (ES) concept into an equation to
compute a construction project’s CEAC. Earned schedule is an
effective EVM metric that helps analyze the schedule progress
and estimate a project’s completion time.

Three primary tasks were carried out in the research that is
reported in this paper to achieve the previously noted purpose,
as follows: (1) a new CEAC formula was developed with integrated
application of four candidate growth models and ES concepts,
(2) this formula was validated through testing its applicability
on construction case projects, and (3) the statistically valid growth
model was selected for further CEAC comparative analysis with the
traditional index-based method. The prediction accuracy of the four
model equations is based on a comparison of their estimate errors.

This paper is structured as described next. First, the writers
briefly describe the index-based and regression-based cost-
forecasting methods pertinent to the research reported in this paper,
and bring the four growth models and the ES method into the
context. Second, the proposed methodology is presented through
a stepped procedure that formulates the growth models, develops
the CEAC equations, and integrates ES. The technique is then
validated on nine construction projects and the models’ CEAC
estimate errors are compared with results discussions. The paper
then presents implications, limitations, future research directions,
and conclusions.

Background Research

Earned-Value Management Cost-Forecasting with an
Index-Based Method

Earned-value management is a technique of thoroughly quantifying
the technical performance of an ongoing project and integrating
it with cost and time. It is a powerful tool that allows objective
monitoring of actual status, and comparing it with a plan, tracking
deviations from the project baseline, and forecasting the final cost
and time at completion based on the current project status (PMI
2008). The key parameters representing fundamentals of analysis
are the planned value (PV), earned value (EV), actual cost (AC),
and budget at completion (BAC). Fig. 1 is a graphical illustration
of these metrics and exposes the standard condition of a construc-
tion project, i.e., over-budget and behind schedule. These four
metrics together with the associated cost performance index
(CPI ¼ EV=AC, indicating how efficiently a project is using its
resources) and schedule performance index (SPI ¼ EV=PV,
showing how effectively time is spent) are used to analyze a
project’s cost and schedule status, and provide forecasts of project
cost and time at completion.

Cost estimate at completion forecasting and time estimate at
completion (TEAC) forecasting are performed by extrapolating
the actual project cost performance and schedule progress to the
end of the project. The Project Management Institute (PMI
2011) provides two widely accepted formulas to calculate these
two forecasts. For this, the original values of BAC and planned
duration (PD) are corrected by the corresponding indices to take
into account past performance and progress, respectively, as in
Eqs. (1) and (2) (PMI 2011):

CEAC ¼ ACþ
BAC − EV

CPI
¼ BAC

CPI
ð1Þ

TEAC ¼
!
BAC
SPI

"#!
BAC
PD

"
¼ PD

SPI
ð2Þ

One of the major findings in cost-forecasting is that the value of
the final CPI-based estimate does not vary by more than 10% from
its value at 20% completion and after that point it tends to worsen
(Christensen and Heise 1993). However, recent studies show these
are applicable only to large and long-duration defense projects
(Lipke et al. 2009).

Even though CEAC forecasting with Eq. (1) is widely used as a
standard (Anbari 2003; Fleming and Koppelman 2006; PMI 2011),
its limitations have been largely reviewed and questioned by re-
searchers. The fundamental principle of the index-based method
is that a project’s past performance is the best available indicator
of future performance (Kim and Reinschimdt 2010). However,
cost-forecasting with these conventional formulas is typically
unreliable early in a project because of the few data points available
(Fleming and Koppelman 2006; Zwikael et al. 2000). These two
limitations show premise for further extensions of EVM-related
cost-forecasting.

Earned-Value Management Cost Forecasting with a
Regression-Based Method

As an alternative to the index-based approach, various techniques
based on regression analysis have been gaining recognition as
valuable methods to support the cost-forecasting activity. In regres-
sion analysis, a dependent variable (a response, typically the AC) is
regressed against an independent variable (a predictor, typically
time) to compute the CEAC. The regression model can be
either linear or nonlinear to represent the respective relationship
between the response and predictor (Nystrom 1995). Regression-
based studies overcome the limitations inherent with index-
based techniques and thus are available for wider boundaries of
application. The parameters of a regression model found through
a regression analysis represent the behavior of a project with
respect to the entire lifecycle (Alvarado 2004). Moreover, even
though the regression-based computation effort is greater compared
with the relatively simple index-based cost-forecasting method, it
yields better estimates early in the project life (Christensen and
Heise 1993; Tracy 2005).

Growth Models

Regression-based techniques are grounded on the notion and
theories associated with the growth models. Growth models have
been frequently used to study population growth in fields such
as biology, economics, and marketing. These models describe
situations inherent to data with a growth pattern, in which the
growth rate monotonically increases to a maximum before it
steadily declines to zero (Seber and Wild 1989). This behavior

ES

Cost

AC

Time

PV

EV

CEAC

TEAC

BAC

PD

EV onto PV

Cost 
overrun

Schedule 
delay

AT

Fig. 1. Earned-value management and ES metrics
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is well-described by an s-shaped or sigmoidal pattern that is exten-
sively used in curve-fitting and forecasting of population growth.
Such models are characterized for the position of the point of in-
flection being the time at which the growth rate is the greatest.
Fig. 2 shows the typical characteristics of growth models.

In the research reported in this paper, the writers apply four
types of the three-parameter growth model, as follows: (1) logistic
model (LM), (2) Gompertz model (GM), (3) Bass model (BM),
and (4) Weibull model (WM). Table 1 introduces their generic
cumulative distribution functions (CDF) that are used for curve-
fitting and forecasting. Table 1 also provides the parameterized
CDF equations and specific mathematical properties set for the
research reported in this paper.

All of these growth models can be used to describe the cost
expenditure behavior of construction projects because their
functional form and parameters reflect the nature of physical
improvement progress and satisfy the requirements for a typical
s-shaped cost pattern of construction projects. During the initial
stages of a project, construction progress is typically slow-paced
because of field preparation, equipment deployment, and excava-
tion works. By midlife the construction progress speeds up,
increasing the work rate to a maximum, and finally decreases,
declining the work rate to zero during the completion phase.

A common mathematical feature of these models is that they all
have an α value to represent the asymptotic project final cost as
time (x) approaches infinity. In other words, as a construction
project tends to its completion, there is less work left to accomplish
and the finishing phase is a typical slow-paced approach to the final
cost (the α-asymptote).

The differences in mathematical properties and behaviors render
these models applicable to a variety of fields, as presented in a
diverse and large body of literature (Bates and Watts 1988; Hines
and Montgomery 1990; Seber and Wild 1989). As part of this vast

amount of literature, the writers next present a brief description and
review of previous applications of the four previously noted growth
models to the specific issue of forecasting in construction-project
management.

The LM is one of the most widely used s-shaped growth models
because of its simplicity and analytic tractability (Seber and Wild
1989). The LM has the same parameters and meanings of the GM.
However, the LM is normally distributed, having the inflection
point at 50% of total growth, whereas the GM has it at approxi-
mately 1=3 of the total growth. De Marco et al. (2009) applied
the logistic curve to forecast the TEAC of a construction project.
Their model extrapolates the nonlinear s-shaped curve of EV data
of an ongoing project and allows the evaluation of time estimates
by considering the specific initial behavior of a project based on
current schedule progress. Their project case proved that the TEAC
computed by using the LM is more accurate than the estimate
computed by using the index-based formula.

The GM is often used to study population growth in cases for
which the growth curve is not symmetrical and typically right-
skewed (Seber and Wild 1989). Inflection happens at time
x ¼ β=γ with cumulated growth GMðxÞ ¼ α=e (approximately
1=3 of the final cost) when the cost expenditure rate reaches its
maximum Gmax ¼ αγ=e (Fig. 2).

In both the LM and GM, a β parameter represents the y-intercept
initial size and γ is a scale parameter that governs the rate of
growth. Trahan (2009) developed GM curves to forecast a project’s
CEAC by using EVM data of a number of U.S. Air Force acquis-
ition contracts from 1960 to 2007. Trahan (2009) used the GM
parameters (found by regressing the values of the cumulative
AC up to a project completion against corresponding values of time
points) to determine a remainder of BAC at 20% completion and
then to predict a project’s CEAC. The results of Trahan (2009) are
similar to previous studies (Christensen et al. 1995) in that the

Time
(a) (b)

Growth

GM(x) 
=α/e

x=β/γ0

α

Time

Growth

x=β/γ0

GMmax
=αγ /e

Fig. 2. Characteristics of an s-shaped growth model: (a) cumulative-growth curve; (b) growth rate curve

Table 1. Growth Models and Mathematical Properties

Property Logistic Gompertz Bass Weibull

Generic CDF α=½1þ βeð−kxÞ&
(Seber and Wild 1989)

αef−e½−kðx − γÞ&g
(Seber and Wild 1989)

$
1 − e½−ðpþ qÞx&

%
=$

1þ ðq=pÞe½−ðpþ qÞx&
%

(BBRI 2010)

1 − ef−½ðt − γÞ=δ&βg
(Hines and Montgomery 1990)

Parameterized
CDF

LMðxÞ ¼ α=½1þ eðβ − γxÞ& GMðxÞ ¼ αe½−eðβ − γxÞ& BMðxÞ ¼ α
&$

1 − e½−ðβ þ γÞx&
%
=$

1þ ðγ=βÞe½−ðβ þ γÞx&
%' WMðxÞ ¼ αf1 − e½−ðx=γÞδ &g

Inflection
point

x ¼ β=γ; LMðxÞ ¼ α=2 x ¼ β=γ; GMðxÞ ¼ α=e x ¼ ln ½ðγ=βÞ=ðβ þ γÞ&;
BMðxÞ ¼ α½0.5 − ð β2γÞ&

x ¼ ð1=γÞðδ − 1=δÞ1=δ ;
WMðxÞ ¼ 1 − e½−ð1 − δ−1Þ&

Symmetry Symmetrical Asymmetrical Asymmetrical Flexible
Maximum
growth rate

αγ=4 αγ=e
$
α½ðβ þ γÞ2&

%
=4γ 1=γ

Parameters α ¼ asymptote α ¼ asymptote α ¼ asymptote α ¼ asymptote
β ¼ y-intercept β ¼ y-intercept β ¼ y-intercept γ ¼ scale

γ ¼ scale γ ¼ scale γ ¼ scale δ ¼ shape
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growth models may not be more accurate than index-based
methods to compute the CEAC in all cases. However, the model
appeared to be appropriate and accurate to forecast the final cost
of either overrun or overrun-close projects.

The BM (Bass 1969) has been used in marketing science for
over 4 decades. The model explains the process of how new
products are adopted and the rate at which they penetrate the
marketplace. It provides good forecasts of the total sales, its peak,
and timing of the peak based on historical data (Satoh et al. 2001).
Application studies of this model (Table 1 shows a generic CDF) in
the construction industry by Alvarado et al. (2004) showed that the
BM best works to develop the EV baseline curves based on its
curve-fitting procedure. This is because the behavior of the
cumulative EV follows the s-shaped pattern in which it is cumu-
lated at a constant p (units of cost) per time point and the growth
rate increases by q (units of cost) per time point for each p earned.
Based on historical projects, BM is a reliable technique to model
the EV baseline curves for future construction, repair, and alteration
projects (Alvarado et al. 2004).

The WM is a widely-used model in the field of manufacturing
and reliability engineering, failure analysis, and weather forecasts
(Hines and Montgomery 1990). Unlike the other three growth
models, the WM is extremely flexible because of its δ-shaped
parameter. By changing the value of the parameter, the WM
distribution can be related to a number of other distributions.
For instance, when the parameter value is 1.0 the model represents
the exponential distribution, and when its value is 3.4 it approxi-
mates the distribution that is normal, representing the LM curve. Its
scale parameter represents the growth rate and governs the inflec-
tion point of the cost expenditure, whereas the shape parameter
determines its distribution. The WM has wide application in cost
control and analysis within U.S. defense projects. Brown (2002),
based on 128 research and development projects, found that
curve-fitting with WM well-describes a project budget profile
and developed Weibull-based regression models to forecast the
required δ-shaped and γ-scale parameters. Nassar et al. (2005)
applied Weibull analysis to evaluate reliability of a project’s
schedule performance utilizing CPI and SPI data. They concluded
that the advantage of the WM relative to the conventional index-
based approach is that the Weibull analysis provides accurate
performance analysis and risk predictions with a relatively small
number of data points, rendering it to best work as early as three
data points available.

Earned-Schedule Method

The methodology proposed in this paper integrates these given
growth models with ES. Developed by Lipke (2003), ES is re-
garded as one of the primary methods for schedule analysis and
time forecasts (PMI 2011). The advantages of ES compared
with EVare that it allows measuring the schedule indicators in time
instead of currency units and eliminating the deficiency of the SPI
tending to 1.0 as the project approaches completion even though it
is behind or ahead of schedule. Hence, the ES concept introduces a
new time-based SPI, also denoted as SPIðtÞ. The ES is found by
comparing EVagainst PVand its value is calculated by plotting the
EV curve at actual time (AT) to the PV curve (Fig. 1). This
projection point represents the time in which the current EV should
actually have been earned. Depending on whether a project is ahead
or behind its schedule, this time point can be after or before AT,
respectively. The following set of equations [Eqs. (3)–(7)] are used
in this paper to analyze a project’s progress and provide time
forecasts:

ES ¼ Cþ I ð3Þ

where C represents the number of time increments for which EV
exceeds PV; and I represents the following:

I ¼
EV − PVc

PVcþ1 − PVc
ð4Þ

SPIðtÞ ¼
ES
AT

ð5Þ

TEAC ¼ PD
SPIðtÞ

ð6Þ

CF ¼ TEAC
PD

¼ 1

SPIðtÞ
ð7Þ

where CF = completion factor, which indicates forecasted time-
completion yielded to unity.

When the value of the CF is 1.0, based on current work progress,
this indicates that the duration of a project is as planned; more than
1.0, a project is likely to be finished with schedule delay; and less
than 1.0, an early finish. Comparative studies by Henderson (2004),
Henderson and Zwikael (2008), and Vandevoorde and Vanhoucke
(2006) proved relative accuracy in forecasting the TEAC by the ES
method. With regard to construction projects, De Marco and
Narbaev (2013) proved that the TEAC found by using ES is more
accurate than the EV-based formula and provides a better early
estimate of the total duration of a project.

Methodology

The CEAC methodology proposed in this paper develops a new
formula to forecast the final cost of an ongoing construction
project, effective for early and middle stages of its execution.
The formula interpolates the parameters of the growth models
found through nonlinear regression analysis, and then it is refined
by integrating a value of the ES-based CF to consider any schedule
progress and time estimates that might affect the construction-
project cost performance.

To achieve this purpose the methodology is accomplished in
three steps. First, the writers combine PV and AC data versus time
to develop the growth models and determine their parameters.
Because all growth models have an intrinsic nature of a nonlinear
relationship between a predictor (input) and response (output), this
step is performed through nonlinear regression analysis. Second,
the writers interpolate the results of the growth models into the
CEAC equation. Third, considerations of the final time completion
and schedule progress are taken into account and hence this
formula is refined by integrating a value of the ES-based CF.
Fig. 3 presents the three-stepped modeling process of the proposed
CEAC methodology together with the tasks to be performed in
each step.

Step 1: Developing the Growth Model

The first step is to develop the regression-based nonlinear growth
model that was used to fit the cumulative cost s-shaped curve line of
a construction project. For demonstration purposes, the LM is used
and its equation parameterized, as per Eq. (8)
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LMðxÞ ¼ α
1þ eðβ − γxÞ

ð8Þ

Eq. (8) has three parameters, as follows: (1) the α-asymptote
represents the never-attained value of the final cost as time tends
to infinity, (2) β is the y-intercept (which represents the initial size
of a project cumulative cost), and (3) the γ-scale parameter that
governs the rate of the cost growth. The maximum cost growth rate
is Gmax ¼ aγ=4 and it occurs when the time x ¼ β=γ and the
cumulative cost LMðxÞ ¼ α=2. In Eq. (8) the predictor x represents
normalized time points with its maximum value equal to 1.00
(100% time-complete); i.e., the PD of a project. The corresponding
value of the response variable is normalized points of the
combined-to-date AC (from a project beginning to AT) and PV
(from AT and onto 100%) with its maximum value (BAC) of
1.00. This allows building the combined dataset of AC and PV with
respect to time points used in the model-fitting and determining the
three parameters for the LM nonlinear equation.

The last task in this step is to define an equation for the writers’
LM through nonlinear regression analysis. For this purpose, best-fit
values of model parameters were obtained to fit the model data and
then compared with the other three models (Bates and Watts 1988).
The Minitab software package is used. Unlike linear regression,
building a nonlinear regression model requires specifying the
starting values for a model parameters and the algorithm for
approximation of these values (Bates and Watts 1988). However,
no standard procedure exists to define good starting values. Unless
one knows the starting values of the model parameters based on
prior information, to define a good set of these values in nonlinear
model fitting is difficult because it is because of the existence of a
nonlinear relationship between a predictor and a response variable
and the phenomena the model represents. To estimate values of
these parameters, both linear and nonlinear regression use the least

squares (LS) method of approximation. The most common
assumption in curve-fitting is that data points are randomly
scattered around an ideal curve with the scatter in accordance with
a Gaussian distribution (Bates and Watts 1988). Taking into
account this consideration, the LS approach minimizes the sum
of the squared errors (SSE, the difference between the estimated
values and actual input values of the parameters) of the vertical
distances of the points from a curve. The research reported in this
paper applies a Gauss-Newton algorithm for the LS approximation,
which obtains convergence iteratively close-to-linear regression
that are not heavily dependent on the starting values. The iteration
process continues until the algorithm converges to determine the
parameter values within the specified tolerance on the minimum
SSE (Bates and Watts 1988). In the research reported in this paper,
the candidate model is regarded as statistically valid if the Newton-
Gauss algorithm of the LS approximation converges to estimate
values of the growth model’s parameters within specified con-
vergence tolerance. When the minimization algorithm fails to
perform this task, the model is rejected from further CEAC
comparative study.

In the writers’ regression analysis, the levels of the confidence
interval (CI) are set, i.e., lower and upper CI, which are lower and
upper 100% (1–0.05) endpoints of the estimates, respectively. The
CI gives a range of estimate values between two limits in which the
actual values are more likely to fall. The CI represents the accuracy
of an estimate and the 95% confidence level is regarded as an
accepted standard (Seber and Wild 1989).

Step 2: Calculating the Project CEAC

To compute the CEAC the writers used Eq. (9), which assumes the
values of the growth model when a project is to-date and 100%
complete. This formula is similar to the classical formula in
Eq. (1) because both equations have AC. However, in Eq. (9)
the remaining portion of the CEAC is computed based on the non-
linear growth model results, whereas Eq. (1) corrects the remaining
portion of the BAC by CPI. Trahan (2009) presents the generic
form of Eq. (9) and developed the nonlinear growth model by
regressing the response values of the AC for the entire project
lifecycle against the corresponding time increments. Unlike the
approach of Trahan (2009), the research reported in this paper
combines values of current AC and PV, as presented previously
in step 1

CEACðxÞ ¼ ACðxÞ þ ½growth modelð1.0Þ
− growth modelðxÞ&ðBACÞ ð9Þ

Knowing the three parameters for the equation defined
previously in step 1, the writers computed the value for the growth
model 1.0 in which the time is 100% complete and it trends to its
α-asymptote. For the growth model x, a predictor variable is the to-
date value of the time increment. These two values are calculated by
using Eq. (8) and their difference represents the estimated portion
of BAC needed to complete a project, which is in turn added to the
current-to-date AC incurred to compute the final CEAC.

Step 3: Integrating ES into a CEAC Equation

This step considers a project final cost affected by schedule
progress; hence, Eq. (9) is refined to take this assumption into
account. This is achieved by replacing the value of the time x ¼
1.00 for the growth model function by a value of CF (the ratio
of the to-date TEAC to a project PD) found using the ES method.

• Normalize all values of time points to unity (i.e.,
PD=1.00). Each next time point is a cumulated 
portion of this unity. These  values represent a 
predictor variable (x) of a Growth Model .

• Normalize the values of to date AC (from 
beginning onto AT) to unity (i.e., BAC=1.00).

• Normalize the values of PV of the time range from 
AT onto PD to unity (i.e., BAC=1.00).

• Combine the normalized values of the AC and PV. 
Each time increment represents a cumulated 
portion of this unity. These values represent a 
response variable (y) of a Growth Model.

• Load the predictor and response variables values 
into the nonlinear regression platform and select a 
Growth Model function (e.g., Logistic). Perform 
the regression.

• Find the values of the parameters (α, β, γ) of a 
Growth Model.

• Find the values of a Growth Model equation  when 
x=AT and x=PD=1.00.

• Compute CEAC by including the above two values 
of a Growth Model into Equation 9.

• Refine the CEAC formula (Equation 9) by replacing 
x=PD=1.00 with the value of Completion Factor 
(from Equation 7). This refined CEAC formula 
takes into account for current schedule progress as 
shown in Equation 10. 

Step 1. 
Develop Growth 
Model Equation

Step 2. 
Calculate

CEAC

Step 3. 
Integrate ES
into CEAC
Equation 

Fig. 3. Cost estimate at completion methodology modeling-process
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This correction to the CEAC formula is introduced as given in
Eq. (10)

CEACðxÞ ¼ ACðxÞ þ fgrowth model½CFðxÞ&
− growth modelðxÞgðBACÞ ð10Þ

Validation

Applicability

The proposed CEAC methodology is demonstrated through
application on nine past projects to construct various types of civil,
industrial, infrastructure, and residential facilities internationally.
These projects all have medium-sized budgets with average
BAC close to US$8 million and planned completion times varying
from 6 to 27 months (the average PD is 13.3 months). These case
projects and their EV records are reported in the literature. Table 2
provides the list of these projects along with their associated infor-
mation and EV data. Five out of nine projects experienced cost
overruns and seven projects reported a schedule delay. In most
cases the number of time points and corresponding AC points used
for nonlinear modeling is either four or five (including the initial
time point x ¼ 0); this shows that the nonlinear regression is com-
puted based on a small sample size. Regression analysis is useful
early in a project life when little or unreliable EV performance and
progress data are available.

The advantage of regression modeling in this context is that it
extrapolates past available data with future planned data, whereas
the conventional EVapproach solely relies on past performance and
progress. This extrapolation is achieved through the development
of the growth model in which the values of its parameters show a
relationship between past, current, and future project performance
and progress. The CF shows the forecasted progress outcome and

based on its value it suggests that seven out of nine projects finished
with schedule delay.

The writers next demonstrate the three-step procedure on a
numerical example, project A, an industrial facility renovation
project, and then show results for all cases. Step 1 of the method-
ology is about developing the regression-based nonlinear growth
model that will be used to fit its s-shaped curve to the cumulative
cost curve of project A. Table 3 shows both the initial input data and
the results of step 1. After 3 months of execution, the project is
20.76% complete and therefore this is the period in which the
CEAC is computed. Eq. (11), presented in the next paragraph,
shows the nonlinear LM equation for project A.

Minitab developed Eq. (11) based on the options the writers set
for the nonlinear regression analysis, as discussed next. The writers
define good starting values for the three parameters. Taking into
account the normalization to unity of both the predictor and
response variables the writers define 1.0 as a starting value for
all parameters. The confidence level is then set at 95% with the
Gauss-Newton algorithm to converge on the minimum SSE. The
maximum number of iterations is 200 with a default-set conver-
gence tolerance of 1 × 10−5. Fig. 4(a) presents the LM-fitted
s-curve of project A. The curve fits the AC-PV data of the project
very well; i.e., all eight response values are in the CI (upper and
lower dashed curves). The writers are confident with a probability
of 95% that the CI estimates the real AC-PV data

LMðxÞ ¼ 1.134
1þ eð4.463 − 6.302xÞ

ð11Þ

Eq. (11), the LM equation, fits an output of percent complete
(response of the fitted curve) with an input of time complete
(predictor of the fitted curve). The model suggests that at month 3,
the cumulative cost is 0.222 of the BAC and this happens when
the project is 48.4% time-complete. The asymptote of the LM

Table 2. Case Projects and EVM Data

Project Type

Duration (months)

Outcome AT (months) CFPlanned Actual

A (De Marco et al. 2009) Renovation 6.2 7 CO-LF 4 1.133
B (Shokri-Ghasabeh and Akrami 2009) Infrastructure 15 16 CO-LF 5 1.083
C (Khamidi et al. 2011) Infrastructure 27 31 CO-LF 4a 1.022
D (Vandevoorde and Vanhoucke 2006) Renovation 9 13 CU-LF 4 1.093
E (Ibid) Renovation 9 12 CO-LF 4 1.134
F (Ibid) Renovation 10 9 CO-EF 4 0.982
G (Valle and Soares 2006) Civil 10 10 OB-OS 5 1.154
H (Singletary 2006) Civil 13 14 CU-LF 5 1.846
I (Cheng et al. 2010) Residential 21 24 CU-LF 10 0.996

Note: CO = cost overrun; CU = cost underrun; EF = early finish; LF = late finish; OB = on-budget; and OS = on schedule.
aQuarterly increments.

Table 3. Step 1 Results for Project A

Time points Months Predictor time EV complete (%)

Real AC-PV values Fitted AC-PV values

Cumulative Growth rate Cumulative Growth rate

1 0 0.000 0.00 0.000 0.000 0.013 0.013
2 1 0.161 0.58 0.025 0.025 0.035 0.022
3 2 0.323 6.23 0.115 0.090 0.092 0.057
4 3 0.484 20.76 0.213 0.098 0.222 0.130
5 4 0.645 33.65 0.450 0.237 0.465 0.243
6 5 0.806 52.57 0.750 0.300 0.737 0.272
7 6 0.968 69.01 0.920 0.170 0.949 0.212
8 6.2 1.000 100.00 1.000 0.080 0.978 0.029
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equation shows that as the project time approaches infinity the
project has a 13.4% cost overrun. From the mathematical properties
of Eq. (11), the LM equation (Table 1), the inflection point occurs
when the project is 70.8% time-complete and the cost is 56.7% of
the BAC. The cost-growth rate of the project starts with 0.013%
of the BAC for the first 1% of time-complete and it increases
until the inflection point, at which it reaches its maximum of
1.787% per 1% time-complete. Table 3 shows monthly adjusted
growth rates. The cost-expenditure rate of the fitted curve line is
at its maximum 5 months into the project, when it is 27.2% of
the BAC, whereas the PV is 30.0% for that month [Fig. 4(b)].

When the project is from 48.40 to 100% time-complete, the
nonlinear fitting procedure allows computing the cumulative actual
cost as 0.222 and 0.978 of the BAC, respectively (Table 3). Further-
more, in accordance with step 2 the writers calculated the CEAC us-
ing Eq. (9). The computed CEAC is 5.30% less than the final actual
cost and project A was delivered with a cost overrun of 2.34%.

The final step requires integration of the value of the CF to
consider the effects of the schedule progress into the project’s
cost. The CF for project A is 1.133 (Table 2). In Eq. (9) the value
of the time x ¼ 1.00 is replaced by this value of the CF [Eq. (10)].
The 2.78% value of the new ES-based CEAC is slightly more
than the final actual cost. However, this refined estimate with in-
tegration of the CF is more accurate than the underestimated value
obtained without considering the CF as per Eq. (9), i.e., –5.30%.

Comparison of the Growth Models and an Index-Based
Method

The third objective of this paper is to determine which growth
model among the four studied works best to forecast CEAC in both

early and middle stages of project execution. Two criteria are set to
perform this task, as follows: (1) statistical validity of the growth
model equation, and (2) accuracy of the CEAC. Therefore, the
writers first evaluated if the LS algorithm finds a solution for
the parameter values of the growth model equation through the
Minitab regression platform and selected the growth model for
which the parameter values were found with respect to all nine
cases. A comparative study of their CEACs is then provided.
The accuracy of the estimates of the equations is based on
(1) a comparison of percentage error (PE), which is termed the
difference between the actual and estimated values of final cost ex-
pressed as a percentage; and on (2) the mean absolute percentage
error (MAPE) of the number of valid projects tested. These two
measures were computed in accordance with Eqs. (12) and (13)

PE% ¼
CEAC − CAC

CAC
× 100 ð12Þ

MAPE% ¼
P

jPEj
n

ð13Þ

where CAC = cost at completion; and n = number of statistically
valid projects.

For early-stage estimates, Table 4 presents both PE and MAPE
of the CEAC computed using the four models and it shows the
original source’s forecast computed with the index-based method.
Four cases fail to converge. The same analysis is conducted for
middle-stage estimates (45–65% complete) with eight cases failing
in convergence. Minitab determines the cause of this failure as
multicollinearity in the model. This problem occurs in multiple

Time0.00 0.20 0.40 0.60 0.80 1.00

AC-PV

1.00

0.80

0.60

0.40

0.20

0.00

(a) (b) Time0.00 0.20 0.40 0.60 0.80 1.00

AC-PV

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Real AC-PV values

Fitted AC-PV Fitted AC-PV

Real AC-PVUpper and Lower Bounds

Fig. 4. Logistic model s-shaped curve of project A: (a) fitted curve with a confidence interval of 95%; (b) growth rate curve

Table 4. Estimate Errors and MAPE of the CEAC in the Early Stage, 10–30% Complete

Project

LM GM BM WM

CPI-basedBase ES Base ES Base ES Base ES

A −5.30 2.78 −11.08 −0.19 −5.55 3.44 FtC — −0.29
B −7.76 −5.17 −6.96 −2.91 −6.55 −0.07 −6.48 −0.16 16.26
C −6.78 −1.66 −5.74 −4.37 −6.42 2.87 −5.74 6.53 −1.01
D 1.32 2.67 1.55 5.21 1.28 2.91 0.98 2.53 −9.31
E −14.85 −12.71 −14.57 −9.67 −15.02 −11.31 −14.89 −9.75 −4.11
F −6.79 −6.95 −5.18 −5.59 −6.81 −7.01 −7.00 −7.16 2.02
G −7.63 −6.33 −4.03 −0.48 −7.31 −5.89 −8.01 −7.52 −28.51
H −9.58 −7.48 −6.68 0.54 −9.38 −6.03 −8.20 −5.40 −1.58
I FtC — 9.72 8.74 FtC — FtC — 12.24
MAPE 7.50 5.72 7.27 4.20 7.29 4.94 7.32 5.57 8.37

Note: FtC indicates that the model failed to obtain the convergence within a tolerance of 1 × 10−5.
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regressions when two or more predictors are highly linearly corre-
lated, which causes erratic changes in the parameter estimates
(Bates and Watts 1988). Several measures are available to solve
this issue, such as simplifying the model equation, transforming
predictors, parameterization, and so on (Seber and Wild 1989).
However, this issue is beyond the scope of this paper; the failing
growth model equation is considered invalid and is discarded in the
further CEAC comparative study.

The writers next performed a comparison of the accuracy of the
final cost estimates. For early-stage estimates, in the base case,
i.e., without applying the ES method, the results of the estimates
error show that the GM has the smallest MAPE of 7.27 (Table 4).
However, it is difficult to recognize its accuracy because of
negligible differences in the MAPE of the four models. Compari-
son of the individual PE results yields nothing in the base cases.
The application of the ES concept into the CEAC methodology
allows clearing some points. First, the results of individual PE show
that the GM outperforms other models in five cases out of eight (the
writers eliminated project I because it is the sole model in which the
GM works). Second, the comparison of MAPE results shows that
the GM is improved with a value of 4.20%. However, individual PE
suggests that the GM does not produce explicitly more accurate
results than the other three models. The CEAC calculated by the
CPI-based formula has largest MAPE of 8.37% and its PEs
are more unsteady compared with regression-generated CEACs.
Table 5 provides final MAPE for the middle-stage estimates of
the nine projects in which again, at the control point, the GM
ES-based equation provides the smallest result (3.44%) compared
with the CPI-based and GM-based methods. Overall, the results of
this comparative study allow concluding that the GM is a statisti-
cally valid model that works for all nine projects in both early
stages and midstages, and it provides more accurate CEAC when
its equation is integrated with ES.

In addition, the writers address a study on the impact of the
GM’s and the CPI-based method’s factor on CEAC at three
consecutive time points (i.e., x − 1, x, and xþ 1). The reason
for performing this kind of sensitivity analysis is to see if changes
in CF and CPI with respect to time have a respective influence on
CEAC accuracy for the GM ES-based and index-based methods.
The results confirm this statement. First, both factors (CF and
CPI), with changing values with respect to time, have a positive
influence on the CEAC accuracy. Second, the sensitivity test proves
that the GM provides more steady errors in the estimates close to
actual outcomes, whereas the CPI-based method’s CEACs have
larger differences. This large difference in errors is associated
to CPI instability in the traditional approach, which is solely
dependent on past cost performance

The research reported in this paper validates the GM using a set
of industry projects and compares it with the traditional CPI-based
method. In total, the writers screened 34 construction projects

carried out from 1998 to 2010 by an Italian construction company
that calls for anonymity. The projects that fail meeting EVM ap-
plication requirements (lack of PV, EV, and/or AC; incomplete
or partial reporting; and lack of schedule progress data) were
excluded from the test. Twenty-one projects were selected for
early-stage and 26 for middle-stage forecasts. Table 6 presents
the final MAPE results in which the GM outperforms the CPI-
based method in calculating CEAC. In particular, in the early stage,
the CPI-based method produces a MAPE of 8.17, whereas the
GM base case (−6.10%) with an even more accurate result of
4.93% when it considers schedule progress.

In the middle-stage estimate, the result evidences the same
trend. However, the estimate errors for all three models are closer
to actual cost outcome than in early-stage forecasts. This is because
of greater uncertainty during a project initial stage getting reduced
as it progresses to completion with the values of the CF and CPI
tending to stabilize.

Implications, Limitations, and Future Research

The research reported in this paper originates some considerations
inherent with both theoretical and practical implications. It paves
the way to the integration of index-based methods with regression-
based CEAC models that so far have been considered as two
separate streams of project-management research. In particular,
the methodology combines both actual and future planned values,
and provides for accurate and reliable early estimates. In this sense,
the proposed approach helps to overcome the intrinsic limitations
of index-based methods, such as backward-looking on past EV
information and unreliable cost-forecasting early in a project life.
As a result, the theory developed in this paper is a contribution to
the evolution of EVM body-of-knowledge through a combination
of statistical analysis.

The research reported in this paper has some practical implica-
tions. First, the proposed methodology is a cost-schedule integrated
approach, which provides a viable and accurate CEAC-forecasting
method because the cost estimate considers the schedule impact as
a determinant factor of cost behavior. Second, it may also be used
for small-sized and short-duration construction project because the
nonlinear regression analysis works as early as three time points
available in a short-lifespan project.

However, like all EVM systems, the proposed method has a
prerequisite inherent with the availability of progress, cost, and
schedule-measurement information reported by the project team
at all levels of the organization. Unless reliable and timely reporting
is established, the proposed CEAC methodology, as any other
EVM method, will only provide false cost-forecasts (Fleming
and Koppelman 2002, 2004).

The proposed methodology gives rise to a number of interesting
issues for future research. First, the theoretical background of the
developed methodology calls to provide comparative analyses be-
tween the proposed model and conventional index-based methods
with respect to stability and timeliness of cost-forecasting.

Second, the paper limits further analysis of the schedule
progress and duration forecasts bounding the involvement of the
ES method with contribution of the CF only. Therefore, a third area
of future research is associated with the application of other

Table 5. Change in MAPE at Three Consecutive Time Points

Time point

Model
input Model output

CF CPI GM base GM ES-based CPI-based

Early, average 1.21 0.99 6.53 4.85 10.72
Precontrol 1.36 0.99 6.59 6.52 16.27
Control 1.16 1.02 7.28 4.20 8.37
Postcontrol 1.12 0.98 5.72 3.83 7.52
Middle, average 1.12 0.99 5.01 4.55 4.85
Precontrol 1.11 0.96 5.14 4.14 4.41
Control 1.10 0.98 5.11 3.44 4.87
Postcontrol 1.14 1.03 4.79 6.08 5.28

Table 6. MAPE of the CEAC for Industry Projects

Execution stage Projects GM base GM ES-based CPI-based

Early, 10–30% 21 6.10 4.93 8.17
Middle, 45–65% 26 5.63 3.21 6.38
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concepts of schedule factors, such as impact of schedule changes,
schedule fast-tracking, sequential relationships, and dynamic
scheduling.

The project-management community uses other techniques that
produce accurate results for both cost and duration forecasts.
Hence, the promising avenue for future research is on comparative
study of the GM with such techniques as artificial intelligence-
based tools [artificial neural network (ANN), fuzzy logic models,
and so on], Bayesian beta s-shaped curve, Kalman filter, and other
valuable and promising methodologies.

To ease diffusion and usage of the developed methodology,
a computer tool must be developed. Accordingly, the next
practice-oriented objective is to create application software that
may assist construction industry practitioners in the desired
implementation of the writers’ technique.

Conclusion

This paper proposes a new nonlinear regression-based model to
assist project managers in the task of forecasting the final cost at
completion of a construction project that is early into its life. The
method enhances forecasting capabilities of the EVM technique
by combining conventional index-based forecasting approaches
and statistical regression analysis. It is a cost-schedule integrated
approach that interpolates characteristics of an s-shaped growth
model with the ES technique to calculate the CEAC of a construc-
tion project. This issue is regarded as a research novelty that
contributes to the extension of the EVM body-of-knowledge.

The new methodology was developed to provide more accu-
rate and reliable CEAC forecasts effective for early and middle
stages of project execution. Three objectives are accomplished
to achieve this purpose, as follows: (1) a theoretical basis for a
new CEAC formula was formulated; for this, the writers grounded
into the research context both index-based and regression-based
cost-forecasting methods, the four growth models, and the ES
concept; (2) to prove viability and practicability of the formula
it was validated on nine construction projects; and (3) the writers
selected the best-performing growth model by testing their stat-
istical validity and comparing the accuracy of their estimates.
The validation and comparison revealed that the GM is a statisti-
cally valid model and generates more accurate CEAC estimates
than those computed by using the other three models and the
index-based method.
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