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Cylindrical Resonator Sectorally Filled with
DNG Metamaterial and Excited by a Line Source

Vito G. Daniele, Roberto D. Graglia, Fellow, IEEE, Guido Lombardi, Senior Member, IEEE,
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Abstract—A circular cylindrical resonator with metallic walls
is analyzed, in the phasor domain. The resonator contains a
wedge of DNG metamaterial that is anti-isorefractive to the DPS
material filling the remaining volume of the resonator, and whose
edge is located on the resonator axis. The resonance conditions
are established. The problem of an electric line source parallel
to the axis and located anywhere inside the DPS region is solved
exactly. Numerical results are presented and discussed.

Index Terms—Cavity resonator, electromagnetic theory, meta-
material.

I. INTRODUCTION

THE idea of using double-negative (DNG) metamaterial
inside cavities to build resonators was introduced by

Engheta [1]-[2], who proposed a one-dimensional resonator
containing double-negative (DNG) metamaterial in part of its
volume. By utilizing phase compensation between the double-
positive (DPS) and DNG portions of the structure, it is possible
to build resonators that perform independently of dimensions,
at the frequencies for which the DNG metamaterial behaves as
postulated. Subsequently, this concept was extended to fully
three-dimensional cavity resonators by Couture et al. [3]-[4]
and by Uslenghi [5]-[6]. A review of these structures was
presented in [7].

In this paper, a circular cylindrical resonator with metallic
(PEC) walls sectorally filled in part with double-positive (DPS)
material and in part with double-negative (DNG) metamaterial
is considered. The boundaries separating the DPS and DNG
regions are the faces of a wedge of arbitrary aperture angle,
whose edge coincides with the axis of the resonator. The DPS
region is filled with a linear, uniform and isotropic material
characterized by a real positive electric permittivity ε and
a real positive magnetic permeability µ, or alternatively by
a real positive wavenumber k = ω

√
εµ and a real positive

intrinsic impedance Z =
√
µ/ε, where ω is the angular

frequency. The DNG region is filled with a linear, uniform and
isotropic material characterized by a real negative permittivity
−ε and a real negative permeability −µ, or alternatively
by a real negative wavenumber −k and a real positive in-
trinsic impedance Z. Thus, the DPS and DNG regions of
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Fig. 1. Cross section of the resonator

the resonator are filled with materials having real refractive
indexes of opposite sign and the same real intrinsic impedance.
The analysis is conducted in the phasor domain with time-
dependence factor e+jωt. The results obtained are valid at
those frequencies where the DNG metamaterial behaves as
postulated. Because of the dispersive properties of passive
DNG materials, broadbanding may be achievable only by the
use of active (non-Foster) metamaterials. Preliminary analyses
of this problem were orally presented by the authors of this
paper at two symposia [8]-[9]. The geometry of the problem
and the condition that must be satisfied for resonance to occur
are described in Section II. Excitation by an electric line
source parallel to the axis of the cylinder and located anywhere
inside the DPS volume is considered; this problem is solved
analytically in Section III, and some numerical results based
on this exact solution are shown and discussed in Section IV.

II. GEOMETRY OF THE PROBLEM AND RESONANCE
CONDITION

A cross section of the resonator in a plane perpendicular to
its axis is shown in Fig. 1.

The cylinder has a metallic (PEC) boundary, radius a, and
length d. Since we limit our considerations to electric fields
parallel to the axis z of the resonator, the boundary-value
problem is two-dimensional and, the z coordinate and the
length d do not play any role in our analysis. With reference
to cylindrical coordinates (ρ, ϕ, z), the DPS material occupies
the cross sectional area (0 ≤ ρ ≤ a, α ≤ ϕ ≤ 2π − α),
whereas the DNG material occupies the area (0 ≤ ρ ≤ a,
−α ≤ ϕ ≤ α). The semi-aperture angle α of the DNG wedge
may vary over the interval 0 ≤ ϕ ≤ π, where α = 0 if the
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resonator is entirely filled with DPS material, and α = π if it
is filled with DNG material.

The electric field inside the resonator is assumed to be of
the form:

E± = ẑE±z (ρ, ϕ) = ẑJν(±kρ)[A±ν sin(νϕ) +B±ν cos(νϕ)] (1)

where the upper (lower) sign applies to the DPS (DNG) sub-
volume. Consequently, the magnetic field components are

H±ρ (ρ, ϕ) =
±jν
ωµρ

Jν(±kρ)[A±ν cos(νϕ) −B±ν sin(νϕ)] (2)

H±ϕ (ρ, ϕ) =
∓j
ωµ

∂

∂ρ
[Jν(±kρ)][A±ν sin(νϕ) +B±ν cos(νϕ)](3)

H±z (ρ, ϕ) = 0 (4)

Imposition of the boundary conditions across the faces of
the wedge separating the DPS and DNG regions, i.e. the
continuity of Ez and Hρ across the interfaces, leads to an
algebraic system of four homogenous equations for the four
unknowns integration constants A±ν and B±ν ; for nonzero fields
to exist, the determinant of the coefficients must be zero,
yielding:

sin((π − 2α)ν) = 0 (5)

The resonance condition (5) determines the possible values
of the separation constant ν. If α 6= π/2, the condition (5)
leads to the discrete set of values:

νm =
mπ

π − 2α
, (m = 0,±1,±2, ...) (6)

in particular, if the resonator is completely filled with only one
material (α = 0 or π), then νm is an integer, as expected. The
boundary condition, that the tangent electric field be zero on
the metallic walls of the resonator, yields:

Jνm(ka) = 0 (7)

from which the resonator frequencies are derived. Hence,
if α 6= π/2, phase compensation between DPS and DNG
subvolumes cannot occur. However, if α = π/2, i.e. if the
DPS and DNG sub-volumes are semi-cylinders of equal size,
then the resonance condition (5) is identically satisfied, and
the boundary condition on the PEC walls

Jν(ka) = 0 (8)

yields the allowed values of ν for any preassigned frequency:
phase compensation always occurs, and the cylinder resonates
at all frequencies for which the DNG material behaves as
postulated.

III. SOLUTION FOR LINE SOURCE EXCITATION

Let us consider an electric line source J parallel to z axis
and located at (ρo, ϕo) inside the DPS sub-volume (see Fig.
1):

J = Jz ẑ = Io
1

ρo
δ(ρ− ρo)δ(ϕ− ϕo)ẑ (9)

where Io is the intensity (in A) and δ is the delta function.
The longitudinal component Ez of the electric field must

satisfy the following equation:(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
+ k2

)
Ez(ρ, ϕ) = −jωµoJz (10)

Fig. 2. Cross section of the two symmetries

with boundary conditions at the DPS/DNG interface and at
the cylindrical border.

The solution of the problem is found by employing the re-
solvent technique [10]. This technique requires the evaluation
of the one dimensional characteristic Green function in the
azimuthal direction. In order to reduce this problem to the
solution of a Sturm-Liouville (SL) problem on a finite interval,
we need to consider the azimuthal periodicity of the field Ez .
For the presence of the DNG sector we cannot resort to the
expedient used in [10] Ch.3.4b for the resonator filled by a
homogeneous DPS medium.

However, since (10) is linear, the solution of the problem
shown in Fig. 1 may be obtained by superposition of the
solutions of the two problems shown in Fig. 2, that involve
symmetric (Fig. 2a) and anti-symmetric (Fig. 2b) line sources
with respect to the plane y = 0. These two configurations are
equivalent to inserting a perfect magnetic conductor (PMC) in
the plane y = 0 of Fig. 2a, and a perfect electric conductor
(PEC) in the plane y = 0 of Fig. 2b. In this way, we are facing
the solution of two SL problems defined on finite intervals
using the additional PMC and PEC boundary conditions. This
can be accomplished by resorting to azimuthal non-uniform
transmission lines (see Appendix I).

Let us indicate with E(1)
z (ρ, ϕ) and E(2)

z (ρ, ϕ) the electric
fields that are present inside the cavities of Fig. 2a and Fig.
2b, respectively. Then the electric field inside the resonator of
Fig. 1 is

Ez(ρ, ϕ) = E(1)
z (ρ, ϕ) + E(2)

z (ρ, ϕ) (11)

The fields E(`)
z (ρ, ϕ) (` = 1, 2) of (11) are found employing

a Green resolvent technique [10]. It yields:

E(`)
z (ρ, ϕ) = −jωµIo

∞∑
n=0

∞∑
m=0

w(ϕo)
Φ(`)∗(ρo, ϕo)Φ

(`)(ρ, ϕ)

k2 − k2mn
(12)

where w(ϕo) = −1 + 2u(ϕo−α), u is the unit step function,
the asterisk indicates the complex conjugate, kmna is the nth
zero of (7),

Φ(1)(ρ, ϕ) =
√
2Jνm (zn(νm)ρ/a)

a Jνm+1(zn(νm))

√
ξm
π−2α

·
·[cos(νmϕ)u1(ϕ) + cos(νm(2α− ϕ))uo(ϕ)]

(13)

with ξm = 2 except ξ0 = 1 and where u1(ϕ) = u(ϕ)−u(ϕ−α),
uo(ϕ) = u(ϕ−α)−u(ϕ−π). The function Φ(2)(ρ, ϕ) is obtained
from Φ(1)(ρ, ϕ) by replacing the two cosine functions in (13)
with sine functions of the same arguments.
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The technique leading to the solution (12) fails when α =
π/2, because the characteristic Green function that relies on
(6) cannot be defined. This peculiar case will be considered
in future work.

TABLE I
VALUES OF kmna FOR α = 0

m νm km1a km2a km3a km4a km5a km6a

0 0 2.405 5.520 8.654 11.792 14.931 18.071
1 1 3.832 7.016 10.173 13.324 16.471 19.616
2 2 5.136 8.417 11.620 14.796 17.960 21.117
3 3 6.380 9.761 13.015 16.223 19.409 22.583
4 4 7.588 11.065 14.373 17.616 20.827 24.019
5 5 8.771 12.339 15.700 18.980 22.218 25.430
6 6 9.936 13.589 17.004 20.321 23.586 26.820
7 7 11.086 14.821 18.288 21.642 24.935 28.191
8 8 12.225 16.038 19.555 22.945 26.267 29.546
9 9 13.354 17.241 20.807 24.234 27.584 30.885

10 10 14.476 18.433 22.047 25.509 28.887 32.212
11 11 15.590 19.616 23.276 26.773 30.179 33.526

TABLE II
VALUES OF kmna FOR α = π/7

m νm km1a km2a km3a km4a km5a km6a

0 0 2.405 5.520 8.654 11.792 14.931 18.071
1 7/5 4.363 7.585 10.759 13.919 17.072 20.221
2 14/5 6.135 9.496 12.740 15.941 19.122 22.292
3 21/5 7.827 11.322 14.640 17.891 21.107 24.303
4 28/5 9.472 13.091 16.485 19.787 23.041 26.267
5 7 11.086 14.821 18.288 21.642 24.935 28.191
6 42/5 12.678 16.521 20.057 23.462 26.795 30.083
7 49/5 14.252 18.196 21.800 25.255 28.628 31.948
8 56/5 15.812 19.851 23.520 27.025 30.436 33.788
9 63/5 17.361 21.491 25.222 28.774 32.224 35.607

10 14 18.900 23.116 26.907 30.506 33.993 37.408
11 77/5 20.431 24.729 28.579 32.222 35.746 39.192

IV. NUMERICAL RESULTS

The first few roots kmna of (7) are listed in Table I for
α = 0 (no DNG sector present), and in Table II for α = π/7.
As expected, the roots are the same in the two cases when
m = 0; when m > 0, the roots in Table II are larger than the
corresponding roots in Table I.

As an example, we consider a line source of intensity
Io = 1A located at (ρo = 0.7a, ϕo = 5π/8) when α = π/7

and ka = 5. The amplitudes of the even field |E(1)
z |, odd

field |E(2)
z |, and total field |Ez| obtained from (11)-(12) by

truncating the infinite series to nmax = mmax = 10 are
shown in Fig. 3. The large field amplitude of Fig. 3c in
the neighborhood of the source image with respect to the
plane y = 0 bisecting the DNG wedge, may be physically
understood by considering the negative Snell refractions across
the wedge surfaces of the rays emanating from the line source.

The relative error between the amplitudes of Fig. 3c and
those obtained by extending the summations to nmax =
mmax = 11 is shown in Fig. 4. While it is difficult to establish
a convergence criterion for the series (12), it would appear
that reasonably accurate results are obtained by selecting
nmax = mmax = 2ka.

A vector plot of the direction and intensity of the magnetic
field associated to the electric field of Fig. 3c is shown in
Fig.5.
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Fig. 3. Amplitudes (a) |E(1)
z |, (b) |E(2)

z |, and (c) |Ez | in (V/m) for Io = 1A,
ρo = 0.7a, ϕo = 5π/8, α = π/7 and ka = 5, obtained from (11)-(12)
with nmax = mmax = 10.

V. CONCLUSION

A metallic cylindrical resonator containing two lossless
media anti-isorefractive to each other and separated by the
faces of a wedge whose edge is located on the resonator axis
has been studied, in the phasor domain. The conditions for
resonances to exist have been found, the exact fields inside the
resonator have been determined when the excitation is a line
source parallel to the cylinder axis, and some numerical results
have been displayed. It has been shown that resonances occur
independently of the diameter of the resonator only when the
faces of the wedge lie in the same plane, i.e. when the wedge
has an aperture angle of π radians. This particular case will
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Fig. 4. Relative error (in log10 scale) between |Ez |nmax=mmax=10 and
|Ez |nmax=mmax=11.

Fig. 5. Vector plot of the magnetic field associated to the electric field of
Fig. 3c.

be examined in detail in a future work.
APPENDIX

NON-UNIFORM AZIMUTHAL TRANSMISSION LINE

Without loss of generality we refers to the PMC symmetry
of Fig. 2a. Using separation of variables in (10) we need to
construct an ortho-normal basis for the equation(

d2

dϕ2
+ ν2

)
Fν(ϕ) = 0 (14)

with boundary conditions at the interface of the media, at the
PEC cylindrical border and at the additional PMC interface.
Problem (14) can be treated with (characteristic) resolvent
technique. The characteristic Green function g(ϕ,ϕ′, λ) of a
Sturm-Liouville problem must satisfy the following equation:(

d

dϕ
p(ϕ)

d

dϕ
+ λw(ϕ)

)
g(ϕ,ϕ′, λ) = −δ(ϕ,ϕ′) (15)

Note that λ is an arbitrary parameter and the functions
p(ϕ) and w(ϕ) arise from the presence of non-homogeneous
media. The application of (14) to our problem (15) yields the
following definitions

p(ϕ) = w(ϕ) = −1, for 0 < ϕ < α, (DNG) (16)
p(ϕ) = w(ϕ) = +1, for α < ϕ < π, (DPS) (17)

and boundary conditions

∂g(ϕ,ϕ′, λ)

∂ϕ

∣∣∣∣
ϕ=π

=
∂g(ϕ,ϕ′, λ)

∂ϕ

∣∣∣∣
ϕ=0

= 0. (18)

To solve equations (15), it is useful to define the circuit model
of the problem using a non-uniform transmission line [10] as
shown in Fig. 6. For 0 < ϕ < α (DNG medium) we have

Fig. 6. Non-uniform transmission line equivalent to the problem (15) with
conditions (16)-(18): PMC symmetry.

a transmission line with propagation constant ν(ϕ) = −
√
λ

and characteristic impedance Z . Conversely, for α < ϕ < π
(DPS medium) we have a transmission line with propagation
constant ν(ϕ) = +

√
λ and characteristic impedance Z. Note

that, condition (18) results in open circuits at ϕ = 0, π.
The method for the construction of g(ϕ,ϕ′, λ) is reported in
chapter 3.3 of [10] and is based on the knowledge of the
solution of the transmission line problem.
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