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  Abstract                              
 

The strain energy updating technique (SEUPT) by the author is extended to a new zig-

zag shell model with a hierarchic piecewise representation  of displacements, which 

can adapt to the variation of solutions across the thickness. This model has the 

capability of being refined across the thickness without increasing the number of 

functional d.o.f. (the traditional mid-plane displacements and shear rotations). The 

purpose of SEUPT is to improve the accuracy of  standard finite elements based on 

equivalent single-layer models with transverse shear deformations up to the level of the 

zig-zag model. The strain and kinetic energies and the work of external forces are 

updated through a post-processing iterative procedure, by starting from a local 

interpolation of the results of the finite element analysis. As no derivatives of in-plane 

stresses are involved, updating is fast. The current version of SEUPT obtains accurate 

predictions of interlaminar stresses from constitutive equations, so it does not require 

integration of local differential equilibriums, which is unwise for finite elements and 

can be inaccurate in certain cases. Owing to its adaptive capability, SEUPT  efficiently 

treats thick laminated plates and shells with distinctly different properties of layers, 

strong anisotropy and significant transverse normal stresses and strains. Accuracy is 

assessed by considering the stresses under static loading and the response to blast pulse 

loading of undamaged and damaged sandwich shells with laminated faces. The results 

show that SEUPT preserves the accuracy of the zig-zag shell model and efficiently 

improves the accuracy of standard finite elements. 
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Introduction         
    

Laminated and sandwich composites find use as primary structural components in 

aerospace and other branches of engineering, owing to their excellent properties and  

low weight. As their elastic moduli and are much smaller in the thickness direction  

than in the in-plane direction, warping and straining deformations of the normal,  

transverse shear deformations and interlaminar stresses rise, which can adversely affect  

their failure behaviour, damage accumulation mechanisms, residual strength and  

service life.  

In order to provide a correct representation of the  cross-sectional warping and of out-of-

plane stresses, the models should feature displacements that are continuous across the 

thickness and have appropriate discontinuous derivatives at the interfaces, since the 

interlaminar stresses should be continuous for keeping equilibrium. As the interlaminar 

shears have a significant bearing either at local or global levels, usually the piecewise 

variation of the in-plane displacements is accurately described. Instead,  the transverse 

displacement is usually assumed constant, linear or parabolic, an accurate description 

being required just in the regions around holes, cut-outs, free edges and delamination 

fronts. A piecewise representation of the transverse displacement across the thickness is 

basic also for capturing the core crushing behaviour of sandwiches and for keeping 

equilibrium when temperature gradients across the thickness cause thermal stresses. 

Being outside the objective of this paper, no attempt is here made for reviewing the 

structural models that provide a correct representation of  the “zig-zag” behaviour, as it is 

called the characteristic warping and straining deformation of the normal observed in the 

exact solutions (see, e.g.  Pagano 1969,  Ren  1987 and Wu et al. 1996). Just the 

displacement based models will be briefly discussed, as they are applied in the majority 

of studies, but also hybrid and mixed models  are extensively employed (see, e.g., Wu 

and Liu 1995 and Soldatos and Liu 2001).   

The readers are referred, among many others, to the  survey papers by  Savoia and Reddy 

1992,1995, Reddy and Robbins 1994, Burton and Noor 1995, Altenbach 1998, Noor et 

al. 2000,2004 for comprehensive discussion of the models with full or partial capability 

of accounting for the zig-zag behaviour. Those accurately accounting for the zig-zag 

effects are here referred as the layerwise models (LWM). The papers by Plagianakos and 

Saravanos  (2004), Chrysochoidis and Saravanos  (2007) and Ferreira et al. (2008) are 
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cited as recent examples of these models. The so-called discrete-layer models (DLM), 

which give a separate representation in any computational layer, are the most accurate 

LWM to date available. As their unknowns  increase with the number of computational 

layers, they are equally expensive as exact 3D solutions, so they could overwhelm the 

computational capacity if the analysis is not restricted to the local critical regions. 

Models that offer full 3-D modelling just in the regions where the local effects are of 

interest and a partial modelling capability outside are the hierarchical models (HM) 

(see, e.g., Barbero and Reddy 1991) and the predictor-corrector models (P-C) (see, e.g., 

Noor and Malik 2000, Lee and Cao 1996 and Park and Kim 2002), which assume 

different types of displacement fields in the same problem.  

The equivalent single layer models (ESL), whose number of functional d.o.f. does not 

depend by the number of layers, are still extensively employed, although they violate 

the continuity of interlaminar stresses and do not account for the layerwise kinematics. 

A comprehensive review of these models is shown in the paper by Reddy and Arciniega 

(2004), while a comparison with LWM is shown by Matsunaga (2004). 

Partial layerwise models that efficiently account for the interlaminar stresses are the so-

called zig-zag models (ZZ) pioneered by Di Sciuva (1987), Di Sciuva and Icardi (1993), 

Xavier et al. (1993), Cho et al. (1996). These models,  which have been recently retaken  

and extended by  many researchers (see, e.g. Kapuria et al. 2003  and Oh and Cho 2004, 

2007), as discussed in the  recent review paper by Chakrabarti et al. (2011), are based on 

displacement fields similar to those of ESL, where piecewise functions enabling an a priori 

fulfilment of  the stress contact conditions at the interfaces are incorporated, the so-called 

continuity functions. Summing up, the a priori fulfilment of  the stress contact conditions 

makes ZZ more accurate than ESL, although they are based on the same  functional d.o.f. 

and require nearly the same computational effort.  The  transverse displacement is usually 

assumed constant across the thickness, whereas the in-plane displacements are assumed to 

be piecewise linear or cubic. If the properties of constituent layers do not abruptly change, 

laminates are not extremely thick and the transverse normal stress does not have a 

significant bearing for keeping equilibrium, the ZZ  models with a constant transverse 

displacement can be as accurate as DLM if the stresses are computed integrating the local 

differential equilibrium equations. However, as shown by Cho et al. (1996), cases exist 

whose stress fields computed in this way are not jet accurate enough. Furthermore,  

integration is unwise with finite elements, as it requires high-order shape functions. Refined 
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zig-zag models (R-ZZ)  with a variable transverse displacement have been recently 

developed by Kapuria et al. (2003) and Oh and Cho (2004) for analysis of thermal stresses. 

Other refined zig-zag models based on a global-local superposition technique (GL-ST) have 

been recently developed by Li and Liu (1997) and Zhen and Wanji (2008) (17 d.o.f. plate 

and shell models, respectively), which accurately captures the interlaminar stresses without 

post-processing.  Vidal and Polit (2009) recently developed a 6 d.o.f.  R-ZZ beam based on 

GL-ST that features a parabolic variation of the transverse displacement across the thickness 

and a piecewise sinusoidal variation of the in-plane displacement. 

Models that combine the concepts of ZZ and DLM have been developed by Averill and co-

workers (see, e.g. Averill and Yip 1996), that are here referred as SB-ZZ. The analysis with 

these models can be carried out using a single layer, by grouping several layers, or even by 

subdividing a physical layer into one or more computational layers in order to capture steep 

stress gradients, as shown, e.g., by Mohite and Upadhyay (2007).  

The author developed SB-ZZ models for analysis of local damage accumulation, of failure 

mechanisms and of thermoelastic problems, that are here referred as SB-W-ZZ, which fulfil 

also the continuity of the transverse normal stress and stress gradient at the interfaces (see 

Icardi 2001, 2007), as prescribed by the elasticity theory. Since the analysis of damaged 

sandwiches has shown that the possibility of grouping physical layers is just apparent, the 

author recently developed ZZ plate and shell models with the capability of being refined 

across the thickness without increasing the number of functional d.o.f. A hierarchical zig-

zag representation of the displacements across the thickness is employed by these models, 

here referred as H-ZZ1 (mixed plate model)  and H-ZZ2 (displacement based shell model), 

which does not need stacking of computational layers or post-processing for being accurate. 

Compared to DLM and R-ZZ models, these models have a lower memory storage 

occupation and a lower overall processing time, since they employ a single computational  

layer with few d.o.f.  and the computation of hierarchic coefficients and continuity constants 

is fast. Their overall computational effort is also lower than with ESL and SB-ZZ models, as 

they do not require a long post- processing or the subdivision into a large number of 

computational  layers required by these models. 

The contribution of this paper is the extension of the strain energy updating technique 

(SEUPT) (see, Icardi and Ferrero 2009) to the hierarchic multilayerd shell model H-ZZ2, 

whose functional d.o.f. are the classical mid-plane displacements and shear rotations. The 

purpose of  SEUPT is to enable the users of standard finite elements based on shear 

deformation ESL models, like the First Order Shear deformation Theory (FSDT), to 
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improve their results up to the level of  a layerwise model. Using SEUPT, accurate  

predictions of the bearing of  the layerwise kinematics and of interlaminar strains and 

stresses on results are obtained starting from a FEM analysis with standard elements that 

disregards such effects. A spline interpolation of the FEM results is employed in a local 

region, which plays as an analytical solution. Basically, SEUPT consists of an iterative 

procedure by which the results of the finite element analysis  are locally improved till they 

converge to the solution by the H-ZZ2 model. Since the H-ZZ2 model does not require 

integration of local differential equilibrium equations and has just five functional d.o.f., the 

updating of results by SEUPT  requires a lower memory storage dimension and a lower 

processing time than with SB-ZZ and DLM models.  

The paper is structured as follows. First, the characteristic features, the basic equations of 

the H-ZZ2  adaptive shell model and the modelling assumptions are discussed along with 

the computation of continuity functions and coefficients of hierarchic contributions, 

which constitute the peculiar aspects of the model. Subsequently, SEUPT  is discussed 

and extended to the H-ZZ2 model. Then, applications to sample cases whose exact or 

approximate solution is available for comparisons are presented. The interlaminar 

stresses of simply-supported plates and shells in cylindrical bending under sinusoidal 

loading and their response to impulsive dynamic loading (blast pulse) are chosen as test 

cases, in order to assess SEUPT at global and local levels.  

 

Structural model   

Consider a multi-layered shell made of an arbitrary number of layers with different 

thickness and different material properties.  

Preliminaries and notations 

The middle surface    is assumed as the reference surface and the curvilinear tri-orthogonal 

system of the lines of principal curvature  ,  and the coordinate  across the thickness as 

the reference system (see Figure 1). The elastic displacements in the  ,  and   directions 

are indicated respectively as u , u , u , the strains as ij  and the stresses as ij  

( ,, ji ). while the radii are indicated as   ,R ,   ,R . The differentiation with 

respect to the spatial coordinates  will be represented by the symbols   ,  ,   ,  ,   , . A  
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Fig. 1. Shell geometry  

second-order approximation is assumed for the Lamé coefficients ),,( H , 
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The quantities that belong to a generic layer k  will be denoted with the suffix  k
,  the 

positions of  the upper 
+
 and lower 

–
  surfaces of the layers will be indicated as   k  and 

  k .  

Displacement fields (H-ZZ2 model) 

The following representation of the in-plane displacements is assumed across the thickness: 
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while the transverse displacement is represented as: 
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The terms in the summations represent the zig-zag contributions which a-priori make 

continuous the transverse shear and normal stresses at the layer interfaces, as prescribed 

by the elasticity theory. The Heaviside unit step function kH
 
appearing in the former 

equations enables the contributions of  the continuity functions 
 k

 , 
 k

  , 
)k(

 , 
)k(

  to 

act from the pertinent interfaces (i.e. 
  k

k  H  =1 for       k  and 0 for  < 
 k ). The 

continuity functions are determined once for all for any lay-up and constituent materials 

by enforcing the fulfilment of the stress contact conditions at the interfaces, as outlined 

hereafter. The expressions of the coefficients  32 C,C ,  32 C,C  in Eq. (3), (4) are 

determined by enforcing the fulfilment of the shear stress-free boundary conditions at the 

upper |
u
 and lower |

l
 free surfaces, while the coefficients b to e  in Eq. (5) are determined 

by enforcing the  boundary conditions for the transverse normal stress and stress gradient 

at the upper and lower bounding surfaces  

                     ll

u
u

pp 00  ;    ;           ;0  ,, 
u

l   (6) 

 

0p   being the transverse distributed loading acting at the upper and lower bounding 

faces, while a
   ,0u .     
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The high-order terms .....) (O 4 , .....) (O 5  represent the hierarchic contributions that 

enable the displacements to adapt to  the variation of solutions across the thickness, as 

discussed hereafter. 

Characteristic features of the model 

The representation of the displacements by Eqs. (3) to (5) is  aimed at accurately 

predicting the  interlaminar stresses from constitutive equations, since cases exist 

whose stress fields computed by  integration of local equilibrium equations can be still 

not accurate enough, as discussed in the introductory section. To this purpose, the 

displacements a priori make continuous the interlaminar stresses at the layer interfaces 

with a suited choice of the continuity functions. The characteristic feature of the 

present model is the fulfilment also the stress contact conditions on the transverse 

normal stress and gradient 

 

                                    
   )()( ||          ;        

   )()( || ,,                        (7) 

                                               

which directly derive from the local equilibrium equations, but are usually disregarded 

by the models. The transverse displacement is approximated with a double zig-zag 

piecewise variation also with the purpose of accounting for the core crushing 

mechanism of sandwiches, the layerwise effects induced by temperature gradients and 

the role played by   and   , as they can have a significant bearing on the results as 

discussed in the introductory section.  

 

Although the model can be refined by choosing appropriate contributions from the higher-

order terms .....) (O 4 , .....) (O 5 , as illustrated hereafter,  its functional d.o.f. are just the 

three displacements  0

u , 
 0

u ,
)0(

u   and the two shear rotations of the normal  0

 , 
 0

  at 

the reference surface   like for classical models. The reason is that  the continuity 

functions and the coefficients of  hierarchic contributions are expressed in terms  of the 

functional  d.o.f. and of their derivatives by enforcing the stress contact conditions at the 

interfaces and equilibrium conditions at intermediate points across the thickness, 

respectively. 

A shell model is chosen for generality, since laminated and sandwich plates can be 

particularized from it  and beams can be particularized as plates in cylindrical bending. 
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Besides, lower order models can be obtained as particular cases. For example, the classical 

(CLT) and first order shear deformation (FSDT) plate models are obtained assuming a 

constant transverse displacement and the shear rotations as vanishing or being linear.  

 

Continuity functions    

 

In order to obtain the expressions of the continuity functions  k

 , 
 k

 , 
)k(

 , 
)k(

  ,  

the displacements are written in the following form:     

 

 

               , ,,,,
1

k

k
S

k

kUu H   


                                                                  (8)   

               , ,,,,
1

k

k
S

k

kUu H   


                                                                      (9) 

    Uu ,,   ,,           k

2k
1S

1k

)k(

k

k
1S

1k

)k( ,, H  H    








  (10) 

 

U , U  , U  being polynomials in   that contains the basic terms up to the third order 

for u , u  and to the fourth order for u . 

As it can be seen in a straightforward way from the interfacial stress contact conditions, 

the expressions of the continuity functions  k

 , 
 k

 , 
)k(

  involve first order 

derivatives, whereas 
)k(

  involve also second order derivatives. Since the stress contact 

conditions should be fulfilled irrespective for the displacements, their expressions should 

be assumed in the following form,: 

 

 k

 = 
)(

1

k

u
 

 ,
U  + 

)(

2

k

u
  ,U + 

)(

3

k

u
  ,U  +  

)(

4

k

u
  ,U  + 

)(

5

k

u
  ,U   + 

)(

6

k

u
  ,U  + 

)(

7

k

u
  ,U  + 


)(

8

k

u
  ,U   + 

)(

9

k

u
  ,U                                                                                                                                                           (11)  

                                                                                                                                 

                                                                                                                                                                                                                                                                                                                                                                                                        

 k

 = 
)(

1

k

v
 

 ,
U  + 

)(

2

k

v
  ,U   + 

)(

3

k

v
  ,U +  

)(

4

k

v
  ,U  + 

)(

5

k

u
  ,U   + 

)(

6

k

v
  ,U + 

)(

7

k

v
  ,U  + 


)(

8

k

v
  ,U   + 

)(

9

k

v
  ,U                                                                                                                                                                                          (12)   

                                                                                                                                                                        

 
)k(

 = 
)(

1

k
 

 ,
U  + 

)(

2

k
  ,U   + 

)(

3

k
  ,U  +  

)(

4

k
  ,U  + 

)(

5

k
  ,U   + 

)(

6

k
  ,U +  


)(

7

k

 ,U  + 
)(

8

k
  ,U   + 

)(

9

k
   ,U                                                                                                                                                                                                       (13) 
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)k(

 = 
)(

1

k
 

 ,
U  + 

)(

2

k

 ,
U  + 

)(

3

k
 

 ,
U  + 

)(

4

k
 

 ,
U   + 

)(

5

k
 

 ,
U + 

)(

6

k
 

 ,
U  +   


)(

7

k

 ,
U  +  

)(

8

k
 

 ,
U  + 

)(

9

k
  ,U  + 

)(

10

k
  ,U   + 

)(

11

k
 

 ,
U + 

)(

12

k
 

 ,
U  

+  
)(

13

k
 

 ,
U  + 

)(

14

k
 

 ,
U  + 

)(

15

k
 

 ,
U  + 

)(

16

k
 

 ,
U + 

)(

17

k
 

 ,
U + 

)(

18

k
 

 ,
U        (14)                                                                                                                                                                                                                                                                                                                                                                                                                       

 

A system of 45 equations in the 45 unknown 
)(

1

k

u
,.....,

)(

9

k

u
,  

)(

1

k

v
,.....,

)(

9

k

v
, 


)(

1

k
,.....,

)(

9

k
, 

)(

1

k
,.....,

)(

18

k
 ,which are  the so-called continuity constants, is obtained 

from Eqs. (11) to (14) by the stress contact conditions   
   )()( ||   jj  

),,( j  ,  
   )()( || ,,    collecting apart the homologous displacements 

derivatives.  

Although this system can be solved in a direct way, the second order derivatives of the 

displacements are initially disregarded (but few are retained, as they provide the 

necessary rank) because a system of  27 equations in the 27 unknowns 
)(

1

k

u
,.....,

)(

9

k

u
,  


)(

1

k

v
,.....,

)(

9

k

v
, 

)(

1

k
,.....,

)(

9

k

 
is obtained, which makes faster the computations. 

Substituting back, approximate expressions for 
)(

1

k
to 

)(

18

k
are determined, then the 

errors are recovered by introducing new continuity functions )(k , )(k , )(k , )(k  

which are determined by enforcing the continuity of stresses 

 

                 xz = 
^

 xz + 



S

k 1

(k)
   H

(k)  
       ;             yz = 

^

 yz + 



S

k 1

(k)
   H

(k) 
     

 

               zz = 
^

 zz +  



S

k 1

(k) 
   H

(k) 
         ;         J

zz,z = 
^

 zz,z +  


S

1k

  (k) 
 H

(k)            
(15)   

 

as this is numerically more efficient than the direct solution of the 45 x 45 system. In the 

former equations 
^

 xz , 
^

 yz , 

^

 zz , 

^

 zz,z represent the stresses computed with the 

approximate expressions of the continuity constants. 

 Of course, the expressions of the continuity functions should be computed either where 

the material properties of constituent layers vary, or where the representation of 

displacements varies.  
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The derivatives of displacements being unpractical by the viewpoint of finite element 

models, they can be converted into their primitive functions in a way that preserves their 

contribution to the strain energy, as shown by Icardi and Ferrero (2010, 2011). 

 

Hierarchic terms 

 

In order to outline the procedure for computing the coefficients of hierarchic terms,  

consider the following representation of displacements that focuses on the high-order 

contributions .....) (O 4  , .....) (O 5 : 

                      
 

                                ... ...
1

87654)3(





S

k

k
EDCBAUu 



  (16) 

                      
 

                               ...... 
1

87654)3(





S

k

k
EDCBAUu 



  (17) 

                                     ...... 
1

)(98765)4(





S

k

k
EDCBAUu 



     (18) 

 

In the former equations, 
)3(

U , 
)3(

U ,  )4(

U  represent the basic terms, the 

summations represent the zig-zag contributions and the remaining terms represent the 

hierarchic contributions. The unknown coefficients A , …, E ,…, A , 

…, E …, A , …, E  appearing in the hierarchic part of the displacements are 

computed as follows. The following stress derivatives are considered as examples for 

illustrating the procedure:  

 

 ,  = [ kC11

)3(

U   87654 EDCBA     

            (    ... ...
S

1k

k


  ) , ] ,  + … +  
kC16  ,                                                     (19)                                                                                        

 ,  = kC16   ,   + …+ [ kC66    (   7654)3(
 

 DCBAU                    

                    
   ... ...E

S

1k

k8 


 
  ) , ] ,  +  [ kC66  (

)3(

U  4 A 5B 6C + 

                ......
1

87 



S

k

kED 
   ) , ] ,                                                     (20) 

 , = …+ kC45   ,  + [
 kC55   [

)3(

U  654   CBA  87   ED  
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              (    ... ...
1





S

k

k

 ) ,  + kC55

  
[

)3(

U  654   CBA  

 , = …+ kC45   ,  + [
 kC55   [

)3(

U  654   CBA  87   ED  

              (    ... ...
1





S

k

k

 ) ,  + kC55

  
[

)3(

U  654   CBA  

              (   ......ED
S

1k

)k(87 


 
    ) , ] ,                                                 (21)  

  

where the symbols 
k

ijC  represent the elastic coefficients. To be self-conteined, just 

few terms have been reported in explicit form. A system of independent equations is 

obtained by enforcing the fulfillment of the local differential equilibrium equations  

at a suited number of points across the thickness, that allows to determine all the 

unknown coefficients of the hierarchic terms. The expressions of the coefficients A , 

A , A are determined disregarding B , B , B , … E , those of B , B , B  are 

determined disregarding C , C , C , and similarly for the other coefficients, in 

order the higher-order models contain the lower-order ones as particular cases. The 

solution is obtained by an iterative process in which the starting point is represented 

by the solution without hierarchic terms. Once the first coefficients A , 

…, E ,…, A , …, E …, A , …, E  are computed, other points are chosen for 

computing the remaining coefficients.  

In order to further  refine the model, the weak form  governing equations can be 

solved at such points, since in this way the amplitude of displacements, i.e. the 

solution, is recomputed across the thickness.  

The overall process requires less than two seconds on a laptop computer for a 11 

layer sandwich plate with simply-supported edges and sinusoidal transverse loading 

by starting from a linear representation of the displacements (FSDT). As a 

consequence, a lower computational effort than for  sublaminate zig-zag models is 

required by the present model for achieving a comparable accuracy. 

The governing equations for the present model are not reported, as they can be obtained in 

a straightforward way by using the standard techniques.  

 

Strain energy updating   
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Suppose that a problem has been analysed by standard finite elements based on FSDT 

kinematics, which is here referred as the parent finite element analysis (PFA). Of course, 

reduced integration should be used for avoiding shear locking, or better,  the inconsistent 

spurious constraints should be removed by the PFA finite element model. Notice that the 

H-ZZ2  model does not suffer from shear locking, as the true relation among bending and 

shear is  accounted for,   0

,u ,  0

,u ,  0

 ,  0

  being kept as independent d.o.f. , not  

like in the FSDT  model where they are grouped as    0

 - 

,

)0(u ,   
 0

 - 


,

)0(u . 

The SEUPT strain energy updating procedure  is a post-processing iterative procedure 

aimed at improving the accuracy of results of PFA up to the level of the H-ZZ2 model. 

As outlined hereafter, the PFA finite element solution is interpolated in the regions of 

interest using spline functions, then this interpolation is used to construct an updated 

“analytical” solution by the H-ZZ2 model. The current version of SEUPT has the 

following advantages.  

 

 As just the constitutive equations are considered by the H-ZZ2 model, integration 

being unnecessary, no derivatives of in-plane stresses are involved, so the 

updating procedure is faster.  

 Distinctly different properties of constituent layers, strong anisotropy, extremely 

thick composites, significant transverse normal stress and strain and damaged 

composites can be more efficiently treated by the H-ZZ2 model.  

 In the current version of SEUPT, the work of the external forces is updated while 

computing the coefficients of the hierarchic terms, whereas this possibility was 

disregarded in the former version.  

 Another advantage of the current version of SEUPT is the possibility of treating 

shells. 

 

Implemetation of SEUPT 

 

The results at nodes or at Gauss points by PFA are used for constructing a spline 

interpolation of the functional d.o.f., that is here represented as  

 

                          
...)( 3

2

2

10  zCzCCzF  ),,( z                              (22) 
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by solving      FVC
1

 ,  C  being the vector of coefficients,  V the Vandermonde 

matrix and  F  the displacements at the chosen points. The readers find all the omitted 

details in the standard textbooks).  

Ill-conditioning is easily overcome by suitably choosing the set of interpolation points, as 

so many point are available in the finite element discretization as alternative choices. 

Oscillations can be seen at the bounds of a sub-region if too many points are retained. In 

these cases, the analysis should be carried out just around the central area. As observed in 

the numerical applications, no oscillations and rather accurate results can be obtained 

using a 4x4 patch interpolation scheme around the area of interest, which results in a 

third-order approximation over the patches.   

Differentiation F  ...2 21  zCC , integration ...2/
~ 2

10  zCzCBF  and any 

other operation will be carried out on the spline interpolation, so no unwise, high-order 

polynomials are required as finite element shape functions.  

Since the updating operations are carried out only locally, they results computationally 

efficient as compared to other post-processing methods.  

 

SEUPT consists of the following steps. 

 

i) First, the representation is rearranged for being consistent with the H-ZZ2  model. As 

   0

 - 

,

)0(u ,   
 0

 - 


,

)0(u are used in the FSDT elements, the shear 

rotations  0

 , 
 0

  that appear explicitly in the H-ZZ2  model (along with the derivatives 

 ,

)0(u , 
 ,

)0(u , so no shear locking rises) are recovered from the spline interpolation of  , 

  by differentiating 
)0(

u . 

 

ii) The converted functional d.o.f. )0(ˆ
u , 

)0(ˆ
u ,

)0(ˆ
u , )0(ˆ

 ,
)0(ˆ

  are introduced in the H-ZZ2  

model as
 

)0(ˆ
u + u

 , 
)0(ˆ

u +
u

 , 
)0(ˆ

u +
u

 , )0(ˆ
 + 

 , 
)0(ˆ

 +

 , u

 ,
u

 , 
 , 


  being the 

corrections that will be computed by SEUPT. 

 

iii) The strain energy of  the FSDT model over the region of interpolation is equated 

that of the H-ZZ2  model with no hierarchic terms:
     



16 

 

                                     
    )23(qKqqqKqq iZZHMS

T

iiiFSDT

T

ii 
                          

 

In the former equation, iq  represent the vector of displacements,  ii qq   the updated 

displacements and K the stiffness matrix. The Penalty Function Method is used for 

solving. First, the continuity functions are computed, then the energy of transverse shear 

strains is equated. An approximate correction 
 is obtained first by assuming all the 

other corrections as null. Then an approximate expression of 

  is computed and the 

process is iterated till convergence. After, the remaining corrections u

 ,
u

 ,
u

  are 

computed in a similar way by considering the remaining strain energy contributions and 

the corrections of displacements one at a time. As FSDT disregards the strain energy due 

to the transverse normal stress and strain, an  approximate expression of these quantities 

is constructed as follows.  

 

 The interpolated transverse shear stresses by the FSDT model are derived in 

 ,  and integrated in  , then an approximate expression of the transverse 

normal stress 


is obtained  by integrating the third local differential 

equilibrium equation.  

 

 After, an approximate expression of the transverse normal strain 


 is computed 

by the 3D stress–strain relation  

               


= 13S 23S 33S 34S 35S 36S      (24) 

the strains being obtained deriving the interpolated displacements.  In this way, 

improved  expressions of  the transverse normal strain and stress 


 , 


are 

obtained from Eq. (23) using Eq. (24).  

 

 The stresses computed at the previous iteration are  interpolated by spline 

functions and used for the subsequent iterations.  
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The process is restarted from the computation of 
 and repeated till convergence.  As a 

measure of errors, the maximum value of the integral of any displacement divided by the 

area of the domain where SEUPT is carried out is used. 

 

iv) A subdivision is chosen across the thickness for computing the hierarchic coefficients 

A , A , A  by solving the local differential equilibrium equations, as discussed above. 

The continuity functions are recomputed with any new hierarchic contribution. The 

governing equations in weak form (PLV) are solved either for refining the work of 

external forces, or for the computation of the corrections 

 . However numerical tests 

have shown that refinement is unnecessary for undamaged laminates and sandwiches.  

The subdivisions are refined across the thickness by considering the further hierarchic 

contributions  
B , 

B , 
B , … 

E .   

The process from iii) to iv) is continued till convergence. In this phase, the percentage of 

variation of the strain energy is assumed as the measure of errors.  

 

v) The work of inertial forces is updated in a similar way for improving the dynamics    

of the FSDT model. The work of inertial forces, as obtained from the displacements by 

the finite element analysis, is interpolated by the spline functions and  then equated to the 

one of the  H-ZZ2 model in order of computing new corrections 
 .  Notice that these 

corrections must hold irrespective of the time evolution of the solution, which is 

represented as  ii qq   )(t . The dynamic updating of the FSDT model is obtained 

equating the work of inertial forces by the FSDT model to that of the H-ZZ2 model 

                                  
    )25(qqqqqq iZZHMS

T

iiiFSDT

T

ii MM   

FSDTM , ZZHMSM   being the consistent mass matrices of the two models. The solution is 

found with an iterative process like for the strain energy.  

 

 First the corrections 
 , 


  

are computed equating the inertial work of 

transverse shear stresses and strains. 

  Then the remaining corrections u

 ,
u

 ,
u

  are computed, one at a time, 

considering the remaining contributions to the work of inertial forces, reiterating 
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till convergence and still using the averaged displacements as the measure of 

errors, like in iii).  

 The entire updating process is restarted using the last correction as the entry 

solution and repeated till convergence.  

 

As shown by the numerical test, very few iterations, if not just one as occurred in most 

cases, are required by SEUPT for being accurate, either for the overall process i) to v), or 

for each sub-cycle. 

 

Numerical applications 

 

Accuracy and efficiency of the H-ZZ2 model have been extensively assessed in the 

previous papers by the author. Here the capability of SEUPT of achieving comparable 

results without post-processing is assessed. The sample cases already considered for 

testing the H-ZZ2 model are here presented, as for these cases the exact three-

dimensional elasticity solution is available for comparisons, along with the results by 

various models.  

Static loading is considered with the purpose of testing the accuracy of SEUPT at the 

local level. In this case, thick simply-supported sandwich plates and shells undergoing 

sinusoidal loading are considered, because stronger layerwise effects occur than for 

laminates. Damaged faces are also considered for having abruptly changing properties 

across the thickness, as owing to their intricate fields they represent a severe test. In 

accordance with the  ply-discount theory, the damage is simulated by degrading  the 

elastic properties. It  is  assumed to be spread over the entire length, although this is 

unrealistic. The reason is that  a local distribution of the damage is difficult to treat with 

the closed form approaches used for comparisons. It could be noticed that, on the 

contrary, SEUPT can easily treat a local scale damage by the PFA finite element analysis.   

The overall response of SEUPT is assessed by considering panels undergoing blast pulse 

loading, as this loading, which can be due to an accidental cause, or explosive device, is a 

major hazard that can cause catastrophic failure and loss of life. Flat and doubly-curved 

sandwich panels are considered, since papers of theoretical, numerical or experimental 

nature have shown that the pressure loading hazard  can be consistently reduced by using 

sandwich structures with honeycomb core and laminated faces. The purpose of the  

following numerical assessments is to test whether SEUPT, which could be successfully 
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employed for designing structures. It could be noticed that SEUPT is compatible with the 

existing finite elements packages, having compatible d.o.f.,  and capable of accurately 

predicting the  overall response and the stress fields and of efficiently managing the large 

number of time iterations required under impulsive loading. 

 

Analysis of static cases 

 

First, simply-supported flat and curved sandwich panels in cylindrical bending under 

static sinusoidal heap loading 
u

0p = P sin ( / ) are considered. For this sample cases 

the exact elasticity solutions by Pagano (1969) and Ren (1987) are available for 

comparisons in absence of damage, whereas  the solution by the author (see, Icardi 2001 

and Icardi and Ferrero 2011) is available for damaged cases.   

The sandwich panels are treated as multilayered plates or shells made of an arbitrary  

number of thin layers constituting the faces and of a thick intermediate layer constituting 

the core, this assumption being successful in the previous studies. 

Using the basic model without hierarchic terms and a constant transverse displacement, 

Icardi (2007) and Icardi and Ferrero (2010, 2011) have shown that the integration of 

local differential equilibrium equations saves the computational cost, as compared to  

the SB-W-ZZ model, despite it does not take a negligible fraction of processing time 

and memory occupation. These studies have shown that a very refined subdivision into 

44 sub-layers is required by the SB-W-ZZ model, as intricate stress fields due to the 

distinctly different properties of core and faces occur which make apparent the 

advantages of sublaminate models. Owing to these effects, thick sandwich panels 

represent the suited test cases for assessing the accuracy of SEUPT. However, the 

former studies on sandwich plates have shown that the smaller effort is always required 

by the hierarchic model H-ZZ2 whose representation is simplified or improved as 

necessary. Hereafter the results predicted by SEUPT for flat and curved sandwiches are 

compared to those obtained in closed form by the present model. 

 

Sandwich plate 

 

Figure 2a shows the variation of the transverse displacement across the thickness of  the 

undamaged sandwich plate by the exact solution and by the present model with 

displacements expanded up to the 6-th order (U6W6 UN). The result by the SB-W-ZZ 
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model (Icardi 2007) with 44 computational layers and by the present model without 

hierarchic contributions, i.e. with a 3-rd order expansion of the in-plane displacement and a 

4-th order expansion of the transverse displacement (U4W4 CST UN) are also shown.  

These results are obtained in closed form within the framework of the Galertkin’s method by 

assuming appropriate trigonometric in-plane variations for the d.o.f. Infinite radii and no 

variation in the direction of  are assumed  in the H-ZZ2  model. Although unrealistic, a 

thickness ratio of 4 is considered, as it magnifies the interlaminar effects, as well as the 

contributions of the higher-order terms of the displacement model. The result by SEUPT is 

indicated as U6W6 UP UN. It corresponds to a preliminary finite element analysis (PFA) 

with 50 eight-node standard isoparametric plate elements  in the spanwise direction and 5 

elements in the width direction, whose results are updated by the present model with a 6-th 

order expansion of the displacements. Figure 2b presents the counterpart results when the 

elastic modulus E3 of the upper face is reduced by a factor 10
-2

 (DAM), as this unrealistic 

test case presents intricate transverse shear stress distributions which represent a severe test 

for SEUPT.  The transverse displacement is reported apart from a factor 10
-5

  for the 

ndamaged case and 10
-4

 for the damaged case. Figure 2c shows the variation of the 

interlaminar shear stress across the thickness for the undamaged sandwich, while Figure 2d 

gives the same results when the upper face is damaged. Figure 2e and 2f show the variation 

of the transverse normal stress for undamaged and damaged sandwiches, respectively. 

The results are presented in the following normalized form, according to Pagano and 

Ren: 

                  
 

hq

bu
u

0

,2 



   ;  

 

hSq 20

,0 



  ;   

 
0

,2

q

b 



             (26) 

(notice that u ,   are maximim at 2/b , while  is maximum at 0 ). No 

results are presented for the in-plane displacements and stresses, as they can be easily 

captured also by lower order models.  

The sandwich is assumed to be made with five layered face sheets made of three different 

materials, whose properties are:  

MAT 1: E1=E3=1, G13=0.2 (GPa), 13 =0.25; MAT 2: E1=33, E3=1, G13=8, 13 =0.25; MAT 

3: E1=25, E3=1, G13=0.5, 13 =0.25. The core, which is indicated as MAT 4, has the 

following properties: E1=E3=0.05, G13=0.0217, 13 =0.15.  

The stacking sequence considered is:  (MAT 1/2/3/1/3/4)s . MAT 1 is rather weak in tension-

compression and shear compared to MAT 2,  whereas MAT 3 is stiff in tension-compression 
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but rather weak in shear.  MAT 4  is very weak in tension-compression and rather weak in 

shear.  As a consequence, strong concentrations of interlaminar stresses rise at the interfaces 

even in the undamaged case.  

 

Sandwich shell 

 

Figure 3 shows the interlaminar stress distributions for a sandwich shell in cylindrical  

bending. Material properties, lay-up and thickness ratio are the same as in the previous case. 

To enable a comparison with published results, the angle ψ  is assumed equal to π/3, in such 

a way β traces a circumferential path of length R  (of course, in the other 

direction R ). No results for the transverse displacement and stress are shown in this 

case, as they are similar to those already presented for the sandwich plate. Figure 3a gives 

the variation of the transverse shear stress across the thickness of a 0/90 curved panel with a 

radius-to-thickness ratio of 4 by the exact solution, by SEUPT (U6W6 UP), by the basic 

model without hierarchic contributions, as obtained by integrating the local differential 

equilibrium equations (U3W4 INT) and from constitutive equations (U3W4 CON). In the 

latter two cases, the results by the U3W4 model are obtained in closed form by the 

Galerkin’s method, by assuming appropriate trigonometric functions for the displacements. 

The distribution of the transverse shear stress     (SXZ) is shown in the normalized 

form by Eq. (26) at  0 . Figure 3b shows the variation of this stress across the thickness 

of a 0/90/0 curved panel with a radius-to-thickness ratio of 4, as predicted by the above 

mentioned models. Figure 3c shows the variation of    across the thickness of a 

sandwich panel with a radius-to-thickness ratio of 4, as predicted  by the exact solution and 

by SEUPT (U6W6 UP), when the sandwich is undamaged,  (DF) has a damaged upper face 

(E3 reduced by a factor 10
-2

) or (DC) the core damaged (G13 reduced by a factor 10
-2

). 

It can be observed from Figure 2 and 3 that SEUPT preserves the accuracy  of the 

model used in the  updating process, its results being comparable to those by the H-ZZ2 

model  in closed form, while its processing time ranges from a fraction to twice the 

time required by the H-ZZ2 model (the computational costs of the PFA finite element 

analysis have not been taken into account). As a consequence, SEUPT  improves the 

results of a FEM analysis based on FSDT standard elements up to the accuracy level of 

the H-ZZ2 model with an affordable computational effort. 
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Fig. 2. Transverse displacement and interlaminar streses of UN and DAM simply supported, flat, thick sandwich 
panels in cylindrical bending under sinusoidal loading  
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In the sample cases of Figure 3 the curved sandwich panels have been discretized in the 

PFA finite element analysis by 10 eight-node standard isoparametric plate elements 

based on FSDT and with  reduced integration of the strain energy due to transverse 

shears in the transverse direction and 100 elements in the spanwise direction, in order to 

accurately represent the sinusoidal loading and the cylindrical surface of the shell.  

It could be noticed be that with discrete-layer models an additional fraction of time is 

required for matching the regions with a 3D  representation with those with a partial 

modelling capability, while SEUPT is free from this. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Transverse shear stress distribution of cross-ply, UN, or DAM simply supported, curved sandwich panels 
in cylindrical bending under sinusoidal loading 
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Blast pulse loading 

 

Flat and doubly-curved sandwich panels with laminated faces subject to blast loading 

have been investigated by Hause and Librescu (2005, 2007). In these studies, the face 

sheets were assimilated to equivalent anisotropic material layers free from transverse 

shear effects, while the core is assimilated an equivalent transversely orthotropic layer 

capable of carrying transverse shear stresses only. The transverse displacement was 

assumed uniform across the thickness, while the in-plane displacements were assumed in 

a form that fulfils the kinematic continuity conditions at the interfaces, but not the stress 

continuity conditions. The pressure loading was assumed uniform over the entire area of 

the panels, the front of the explosive blast pulse being supposed to be large. 

The Friedländer exponential decay equation  

                                                    pt

t
a

p

m e
t

t
PtP



 )1()(                                        (27) 

was used to simulate the pressure time history )(tP . In the former equation, mP  

represents the peak pressure, a  is the decay parameter, which can be adjusted to 

approximate the pressure curve from blast tests, pt  is the length of the overpressure 

phase. Idealized cases of triangular, rectangular, sinusoidal and step pressure pulses have 

been considered, which can be seen as special cases of the Friedländer model.   

In the present paper, square flat and doubly-curved sandwich panels with simply-

supported edges, various length-to-thickness ratios subject to pulse pressure loading  are 

considered, that correspond to cases already considered by Hause and Librescu.  

A [ °/- °/ °/- °/ °/core/ °/- °/  °/- °/ °] lay-up, with a specific fibre 

orientation  defined for any application is considered. The Newmark implicit time 

integration scheme is used for solving the dynamic equations, because the alternative 

explicit time integration schemes need extremely small time steps to be stable. In all the 

cases presented,  the effects of geometric non-linearity and damping are disregarded.  

According to Hause and Librescu, the material properties of faces are chosen as: 

E1=206.84, E2= E3=5.171, G12= G13= G23=2.551 (GPa), 12 = 23 =0.25, 13 =0.22, density 

1558,35 Kg/m
3
. Those of core are: E1=E2= E3=0.138, G12= G13= 0.1027, G23=0.06205 

(GPa); ij  follows from ijE  and ijG  and the rule for transversely orthotropic media; the 

density is 16.3136 Kg/m
3
. 
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Figure 4 shows the response of a sandwich panel with a side length of 0.6096 m, a core 

25.4 mm thick and each of the faces 1.905 mm thick, under a step blast pulse with an 

overpressure of 1.38 MPa and  45 (length-to-thickness ratio of 20.869). The central 

deflection as the time unfolds is reported, which is normalized to the thickness of the 

panel according to Hause and Librescu.  

As the overall response is involved, SEUPT is carried out at selected points over the 

whole in-plane area of the panels. The results of a 4x4 local interpolation over a 10x100 

meshing is referred as the coarse representation, that of a 8x8 scheme as the refined one. 

The cases indicated as Pres U6W6 UP 30° and  Pres U6W6 UP 90° represent the results 

of SEUPT for  30  ,  90 .  

Figure 4a shows the comparison of the solution by SEUPT (coarse and refined models) to 

the reference solution by Hause and Librescu. In the subsequent figures, only the results 

by the refined model are presented. Figure 4b shows the results by SEUPT for radius-to 

thickness ratios of 4 and 10. Figure 4c shows the results by SEUPT 

for  90,45,30 and a radius-to thickness ratios of 20.869. Notice that the results by 

SEUPT are equivalent to those by the H-ZZ2 model in closed form using a 15 terms in-

plane trigonometric expansion of the displacements. 

The results of Figure 4 show that SEUPT predicts little less large amplitudes of the 

oscillation and a small delay with respect to the reference solution by Hause and 

Librescu. It appears by the analysis with the H-ZZ2 model in closed form that a very 

close agreement with the reference results by Hause and Librescu is achieved if an in-

plane expansion of the displacements with a single component is used and the 

representation across the thickness is  simplified to that of FSDT. The results of Figure 4 

confirm the importance of tailoring for bearing blast loads, the lowest amplitude of 

oscillations as the time unfolds being obtained with the orientation  = 45°. Of course, 

the amplitude of deflections increases as the length-to-thickness ratio increases and the 

bending stiffness decreases varying .  The largest amplitude is shown  for  90 , as to 

this orientation corresponds the lowest stiffness. 

Figure 5 shows the response of a doubly-curved sandwich panel with radius-to-side 

length ratios of 0 (flat case), 0.2, 0.4,  a side length of 0.420 m, a length-to-thickness ratio 

of 15 (T15: faces 1.5 mm thick, core 25 mm thick), under an exponential pulse profile 

that simulates a sonic boom ( mP =1,38 Mpa, a / pt =40, pt =0.005 s) and with  = 45°.   

 

 



26 

 

 

 

Fig. 4. Response to a pressure pulse of flat, square sandwich panels with various length-to-thickness ratios and 
face ply orientations  

 

According to Hause and Librescu, the central deflection is normalized to the static one 

under a uniform transverse pressure of 1.38 MPa. The same lay-up and material 

properties of the sample case of Figure 4 are considered. The results by SEUPT are 

compared to the reference results by Hause and Librescu, for a radius-to-side length ratio 

(LR) of 0 (flat panel) in Figure 5a. The counterpart results for a radius-to-side length ratio 

of 0.2 (LR02) are given in Figure 5b, while those for 0.4 (LR04) are given in Figure 5c. 

The same considerations of Figure 4 still hold, about the close agreement of SEUPT with 

the reference results by Hause and Librescu, though little less large amplitudes and a 

small delay are shown. Also in this case a better agreement with the reference solution is 

still shown by the analytic model U6W6 over which SEUPT is based if the transverse 

displacement is assumed constant across the thickness and the FSDT modelling is used 

across the thickness. 
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Fig. 5. Response to an axponential pressure pulse of doubly curved, square sandwich panels with various radius-
to-thickness and length-to-thickness ratios 

 

Concluding remarks  

 
The strain energy updating technique (SEUPT), whose purpose is to improve the results of 

standard finite elements based on shear deformation models up to the level of  a layerwise 

model, has been applied to a new hierarchic shell model with a piecewise zig-zag 

representation of the three displacements. This model accurately and efficiently predicts the 

interlaminar stresses without any post-processing. Due to the hierarchic representation 

adopted, it can be refined  across the thickness without increasing the number of functional 

d.o.f. Compared to discrete-layer and refined zig-zag models, it requires a lower memory 

storage occupation and a lower overall processing time for obtaining a comparable accuracy. 
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SEUPT consists of an iterative procedure by which the strain energy, the work of external 

forces and the kinetic energy of a low order model are improved till the displacements 

converge to those of a high-order model with the same functional d.o.f. Results have been 

presented, which show the interlaminar stress distributions across the thickness of 

simply-supported flat and curved sandwich panels undergoing sinusoidal loading. Also 

dynamic results have been presented for flat and curved sandwich panels subject to 

pressure pulse loading. 

SEUPT gives results always in a good agreement with  the reference solutions and with 

the structural model in closed form. It effectively improves the results of standard finite 

elements based on simple shear deformation models up to the level of  a layerwise model 

with an affordable computational effort.  It can accurately predict either the overall 

response, or the stress distributions. According, SEUPT can be successfully employed for 

analysis of the local and global response of  undamaged and damaged  flat and doubly-

curved sandwich panels. In particular, it can efficiently treat aircraft structures made of 

composite materials undergoing impulsive loadings. 
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