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A CHARACTERIZATION OF VARIETIES WHOSE
UNIVERSAL COVER IS THE POLYDISK OR A TUBE

DOMAIN

FABRIZIO CATANESE - ANTONIO J. DI SCALA

This article is dedicated, with admiration 1, to Enrico Bombieri on
the occasion of his 70-th birthday.

1. Introduction

The uniformization theorem states that any complex manifold C of
dimension 1 which is not of special type (i.e., not P1, C, C∗, or an elliptic
curve) has as universal covering the unit disk B1 = {z ∈ C||z| < 1},
which is biholomorphic to the upper half plane H = {z ∈ C|Im(z) >
0}.

A central problem in the theory of complex manifolds has been the
one of determining the compact complex manifolds X whose universal
covering X̃ is biholomorphic to a bounded domain Ω ⊂ Cn.

A first important restriction is given by theorems by Siegel and Ko-
daira, extending to several variables a result of Poincaré, and asserting
that necessarily such a manifold X is projective and has ample canon-
ical divisor KX (see [Kod54], [Kod-Mor72], Theorem 8.4 page 144,
where the Bergman metric is used, while the method of Poincaré series
is used in [Sie73],Theorem 3 page 117 , see also [Kol95], Chapter 5).

In particular X is a projective variety of general type embedded
in projective space by a pluricanonical embedding associated to the
sections of OX(mKX) for large m.

The present work took place in the realm of the DFG Forschergruppe 790 ”Clas-
sification of algebraic surfaces and compact complex manifolds”. The visit of the
second author to Bayreuth was supported by the DFG FOR 790 The second au-
thor was also partially supported by GNSAGA (INdAM) and MIUR (PRIN07,
Differential Geometry and Global Analysis), Italy.

AMS CLASSIFICATION: 32Q30, 32N05, 32M15, 32Q20, 32J25, 14C30,
14G35.

1And with the friendship and gratitude of the first author.
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This is a restriction on X, whereas a restriction on Ω is given by
another theorem of Siegel ([Sie48], cf. also [Koba58], Theorem 6.2 2),
asserting that Ω must be holomorphically convex.

The problems which naturally come up are then of two types:
Problem 1: Given a bounded domain Ω ⊂ Cn, when does there

exist a properly discontinuous group Γ ⊂ Aut(Ω) which acts freely on
Ω and is cocompact (i.e., is such that X =: Ω/Γ is a compact complex
manifold with universal cover ∼= Ω) ?

The functions on Ω which yield then a pluricanonical embedding of
X are classically called automorphic functions, and in [Sie73, pag. 119]
C.L. Siegel posed a second type of problem writing:

... we have no method of deciding whether a given algebraic variety
of higher dimension can be uniformized by automorphic functions.

A more specific question than the one posed by Siegel is:
Problem 2: Given a bounded domain Ω ⊂ Cn, how can we tell

when a projective manifold X with ample canonical divisor KX has Ω
as universal covering ?

Obviously an answer to the second problem presupposes an answer
to the first one.

For the first question it is natural to look at domains which have a
big group of automorphisms, especially at bounded homogeneous
domains, i.e., bounded domains such that the group Aut(Ω) of bi-
holomorphisms of Ω acts transitively. And especially at the bounded
symmetric domains, the domains such that for each point p ∈ Ω
there is a symmetry at p (an automorphism g with g(p) = p and
(Dg)p = −Identity).

Bounded symmetric domains were classified by Elie Cartan in [Car35],
and they are a finite number for each dimension n (see also [Helga78],
Theorem 7.1 page 383 and exercise D , pages 526-527 , and [Roos00]
page 525 for a list of them). Among them are the so called bounded
symmetric domains of tube type, which are biholomorphic to a
tube domain, a generalized Siegel upper halfspace TC = V ⊕

√
−1C

where V is a real vector space and C ⊂ V is a symmetric cone, i.e., a
self dual homogeneous convex cone containing no full lines.

Borel proved in [Bore63] that for each bounded symmetric domain
Ω Problem 1 has a positive answer; and such a compact free quotient
X = Ω/Γ is called a compact Clifford-Klein form of the symmetric
domain Ω.

Even if the bounded symmetric domains Ω are not the only ones for
which Problem 1 has a positive answer (i.e., such a compact quotient
X exists), Frankel proved in [Fran89] that if Ω is a bounded convex
domain, and Problem 1 has a positive answer, then Ω is a bounded
symmetric domain.

2We are indebted to Pascal Dingoyan for providing this reference.
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Another theorem of Frankel ([Fran95])3 shows that KX ample implies
the splitting of a finite unramified covering ofX as a product of a locally
symmetric manifold and a locally rigid manifold, i.e., a manifold whose
local group of isometries is discrete.

A classical result of J. Hano (see [Hano57] Theorem IV, page 886,
and Lemma 6.2, page 317 of [Mil76]) asserts that a bounded homoge-
neous domain that covers a compact complex manifold is symmetric.
Henceforth we restrict our attention in this paper to Problem 2 for the
case where Ω is a bounded symmetric domain.

In this respect the first breakthrough, giving an answer to C.L.
Siegel’s question in an important special case, was based on the theo-
rems of Aubin and Yau (see [Yau78], [Aub78]) showing the existence,
on a projective manifold with ample canonical divisor KX , of a Kähler
- Einstein metric, i.e. a Kähler metric ω such that

Ric(ω) = −ω.

This theorem is indeed the right substitute for the uniformization
theorem in dimension n > 1.

Yau showed in fact ([Yau77]) that, for a projective manifold with
ample canonical divisor KX , the famous Yau inequality is valid

Kn
X ≤

2(n+ 1)

n
Kn−2
X c2(X),

equality holding if and only if the universal cover X̃ is the unit ball Bn

in Cn.
The uniformization theorems of Yau ([Yau88], [Yau93]) for a man-

ifold X with ample canonical bundle KX go in the direction of pro-
viding further answers to Siegel ’s question, sketching sufficient (but

not necessary) conditions in order that X̃ be the product of a bounded
symmetric domain with another manifold.

However Yau makes the unnecessary assumption that Ω1
X splits as a

direct sum

Ω1
X = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

does not give an answer to the more specific Problem 2 and moreover,
as we shall show here, his conditions for a summand Vj apply only for an
irreducible factor of the universal cover which is a ball or a symmetric
domain of tube type.

A very readable exposition of Yau’s results, based on the concept of
stability of the cotangent bundle Ω1

X , is contained in the first section of
[ViZu07]. Moreover Viehweg and Zuo, while still assuming the splitting
of the cotangent bundle, characterize (statement (c.iii) in Theorem 1.4
of [ViZu07]) the addenda coming from bounded symmetric domains of

3We are indebted to Gang Tian for providing this reference
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rank ≥ 2 as those for which Vj is stable, but there is a symmetric power
Sm(Vj) which is not stable4.

In the special case where Ω1
X splits as a sum of line bundles it follows

from Yau’s theorem that X̃ is the polydisk Hn, where n = dim(X).
The splitting of Ω1

X as a sum of lines bundles is not a necessary
condition, even if it does indeed hold on a finite unramified covering
X ′ → X.

The reason lies in the semidirect product (where Sn is the symmetric
group):

1→ Aut(H)n → Aut(Hn)→ Sn → 1.

A necessary condition for a compact complex manifold of dimension
n to be uniformized by a polydisk was found in [CaFr09], based on the
consideration that the tensor (here � denotes the symmetric product)

ψ̃ =:
dz1 � · · · � dzn
dz1 ∧ · · · ∧ dzn

is transformed by every automorphism g into σ(g)ψ̃, where σ(g) =
±1 is the signature of the permutation corresponding to g.

Namely, the tensor ψ̃ descends to a so called semi special tensor ψ on
X, which is simply a non zero section of the sheaf Sn(Ω1

X)(−KX)⊗ η,
where η is an invertible sheaf such that η2 ∼= OX (corresponding to the
signature character).

The necessary condition about the existence of a semi special tensor
was proven, in dimension n ≤ 3, to be a sufficient condition for X to
be uniformized by a polydisk ( [CaFr09, Theorem 1.9.]).

Unfortunately, the above necessary condition is not sufficient for
n ≥ 4 (see [CaFr09, Theorem 1.10.]).

Our first result in this paper is the following necessary and suffi-
cient condition for a compact complex manifold to be uniformized by
a polydisk.

Theorem 1.1. Let X be a compact complex manifold of dimension n.
Then the following two conditions:

(1) KX is ample
(2) X admits a semi special tensor ψ ∈ H0(Sn(Ω1

X)(−KX)⊗η) such
that, given any point p ∈ X, the corresponding hypersurface
Fp =: {ψp = 0} ⊂ P(TXp) is reduced

hold if and only if X ∼= (Hn)/Γ (where Γ is a cocompact discrete sub-
group of Aut(Hn) acting freely ).

4 They however took for granted Yau’s wrong assertion, that if Sm(Vj) is not
stable, then it should have a direct factor of rank one having the same slope.
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Remark 1.1. The second condition is quite explicit, since it amounts
to verifying that the polynomial ψp, obtained by evaluating ψ at the
point p, is a squarefree polynomial: and to verify this it suffices to use
the G.C.D. of univariate polynomials.

Our second and third results show that semispecial tensors, and a
generalization of them, the slope zero tensors (see [Bog78] for the re-
lated concepts of slope and stability) work out in a more general set-
ting, and give a necessary and sufficient condition for a complex com-
pact manifold X to be uniformized by a bounded symmetric domain
of tube type.

Here a slope zero tensor is a non zero section ψ ∈ H0(Snm(Ω1
X)(−mKX)),

where m is a positive integer.

Theorem 1.2. Let X be a compact complex manifold of dimension n.
Then the following two conditions:

(1) KX is ample
(2) X admits a semi special tensor ψ;

hold if and only if X ∼= Ω/Γ , where Ω is a bounded symmetric
domain of tube type with the special property

(*) Ω is a product of irreducible bounded symmetric domains Dj of
tube type whose rank rj divides the dimension nj of Dj,

and Γ is a cocompact discrete subgroup of Aut(Ω) acting freely.
Moreover, the degrees and the multiplicities of the irreducible factors

of the polynomial ψp determine uniquely the universal covering X̃ = Ω.

Theorem 1.3. Let X be a compact complex manifold of dimension n.
Then the following two conditions:

(1) KX is ample
(2) X admits a slope zero tensor ψ ∈ H0(Smn(Ω1

X)(−mKX)), (here
m is a positive integer);

hold if and only if X ∼= Ω/Γ , where Ω is a bounded symmetric domain
of tube type and Γ is a cocompact discrete subgroup of Aut(Ω) acting
freely.

Moreover, the degrees and the multiplicities of the irreducible factors

of the polynomial ψp determine uniquely the universal covering X̃ = Ω.

In particular, for m = 2, we get that the universal covering X̃ is a
polydisk if and only if ψp is the square of a squarefree polynomial.

We obtain as a corollary a simple proof of a variant of Kazhdan’s
Theorem [Kazh70] about the Galois conjugates of an arithmetic pro-
jective manifold X. Namely, we have the following application.

Corollary 1.4. Assume that X is a projective manifold with KX am-
ple, and that the universal covering X̃ is a bounded symmetric domain
of tube type.

Let σ ∈ Aut(C) be an automorphism of C.
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Then the conjugate variety Xσ has universal covering X̃σ ∼= X̃.

Our paper leaves two questions open:

(1) Is it possible (as in [CaFr09]) to remove the assumption that
KX is ample, replacing it by the condition that X be of general
type?

(2) Study necessary and sufficient conditions for the case where
there are irreducible factors which are bounded symmetric do-
mains not of tube type: these should probably involve subbun-
dles of higher rank of the bundles Sk(Ω1

X)(−mKX).

The paper is organized as follows: in section 2 we recall a result by
Korányi and Vági which plays a central role for our theorems, since it
determines the holonomy invariant hypersurfaces in the tangent space
to an irreducible symmetric bounded domain.

After this, in sections 3 and 4, we provide the proofs of our two main
theorems 1.1 and 1.2, using the existence of the Kähler-Einstein metric,
the classical theorems of De Rham and Berger and the Bochner prin-
ciple, in order to show the sufficiency of the condition of the existence
of a semispecial tensor.

In section 4 we show that this condition is also necessary for every
bounded symmetric domain of tube type satisfying (*), thereby partly
generalizing the result of Korányi and Vági (we prove semi-invariance
of our tensor for the full group).

We conclude with the Kazhdan type corollary 1.4, a couple of exam-
ples, and the proof of Theorem 1.3.

2. Preliminaries

2.1. Symmetric bounded domains and its invariant polynomi-
als. Let D ⊂ Cn be a bounded symmetric domain in its circle real-
ization around the origin 0 ∈ Cn. Let Aut(D) be the full group of
automorphisms of D. It is well-known that Aut(D) is the full group of
isometries of D endowed with its Bergman metric.

Let K ⊂ Aut(D) be the isotropy group of D at the origin 0 ∈ Cn,
so that we have D = Aut(D)/K.

A polynomial f ∈ C[X1, . . . , Xn] is said to be K-semi-invariant if
there is a character χ : K → C∗ such that, for all g ∈ K, f(gX) =
χ(g)f(X). Since K is compact we have: |χ(g)| = 1.

An inner function on D is a bounded holomorphic function on D
such that |f ∗(z)| = 1 for almost every z ∈ S where S is the Shilov
boundary of D and f ∗ is the radial limit of f , see [KoVa79, page 185]
for details.

Let D = D′ × D′′ be the decomposition of D as a product of two
domains where D′ is of tube type and D′′ has no irreducible factor of
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tube type.

The following theorem collects several results in [KoVa79].

Theorem 2.1. [KoVa79, Korányi-Vági]
Let D = D′ ×D′′ be the above decomposition and let moreover

D′ = D′1 ×D′2 × · · · ×D′p

be the decomposition of D′ as a product of irreducible tube type domains
D′j, (j = 1, · · · , p).

Then there exists, for each j = 1, . . . , p, a unique polynomial Nj(zj),
which is an inner function on D′j such that: for all inner function f
on D there exist a constant c ∈ C and exponents kj with

(1)

f = c

p∏
j=1

N
kj
j ,

hence in particular
(2)

f(z′, z′′) = f(z′) ,

where z′ denotes a vector in the domain D′ and z′′ ∈ D′′.

The second part of the above theorem follows from part (iii) in
Theorem 3.3. of [KoVa79, page 187]. The first part is contained in
Lemma 2.5. and Lemma 2.3 of [KoVa79, pages 184,182].

It is well-known that the isotropy group K acts transitively on the
Shilov boundary S of D. So a K-semi-invariant polynomial f is, up
to a multiple, an inner function. Notice that, by the uniqueness in the
above result, the polynomials Nj are K-semi-invariant. Thus, we have
the following corollary.

Corollary 2.2. The above theorem holds replacing inner function by
K-semi-invariant polynomial.

The same result was rediscovered by Mok in [Mok02].
It is very important to observe that the polynomials Nj have degree

equal to the rank(D′j) of the irreducible domain D′j. Here rank(D′j)
denotes the dimension r of the maximal totally geodesic embedded
polydisc Hr ⊂ D′j. Therefore rank(D′j) ≤ dim(D′j) and equality holds
if and only if D′j = H.

Remark 2.1. For the explicit form of the polynomials Nj see [KoVa79,
page 183]. In sections 4.2 and 4.3 we will see that the polynomials Nj

are used to construct an Aut(D)0-invariant tensor ψ̃.



8 FABRIZIO CATANESE - ANTONIO J. DI SCALA

2.2. Irreducible symmetric domains of tube-type whose di-
mension is divisible by its rank. Recall the notation for the clas-
sical domains:

• In,p is the domain D = {Z ∈Mn,p(C) : Ip −t Z · Z > 0}.

• IIn is the intersection of the domain In,n with the subspace of
skew symmetric matrices.
• IIIn is instead the intersection of the domain In,n with the

subspace of symmetric matrices.
• IVn, the so called Lie Balls, are described in section 4.3.

Theorem 2.3. Let D be an irreducible symmetric domain of tube-type.
Let d = dim(D) be the complex dimension of D and r its rank.

If d is multiple of r then one of the following holds:

(i) D is of type In,n, n ≥ 1. In this case r = n and d = n2,

(ii) D is of type II2k, k ≥ 1. In this case r = k and d = k(2k − 1),

(iii) D is of type III2k+1, k ≥ 0. In this case r = 2k + 1 and
d = (2k + 1)(k + 1),

(iv) D is of type IV2k, k ≥ 2. In this case r = 2 and d = 2k,

(v) D is the exceptional domain of dimension d = 27 and rank
r = 3.

Proof. The proof follows from the classification of irreducible bounded
symmetric domains, see e.g. [Roos00, p. 525].

3. Manifolds uniformized by a polydisk

Here we prove Theorem 1.1.
By a semi special tensor ψ with reduced divisor we mean, as in

[CaFr09, Definition 1.3] , a semi special tensor

ψ ∈ H0(Sn(Ω1
X)(−KX)⊗ η)

such that the homogeneous polynomial ψp, obtained by evaluating the
tensor on the fibre over the point p ∈ X ( ψp is a polynomial of degree
n on the tangent space TXp), is not divisible by a square.

Proposition 1.4. and its proof in [CaFr09, page 162] shows that, as
explained in the introduction, (1) and (2) are necessary if X ∼= (Hn)/Γ
(where Γ is a cocompact discrete subgroup of Aut(Hn) acting freely ).

Assume now that (1) and (2) hold and let X̃ be the universal cover
of X.
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Proceeding as in [CaFr09, page 160] the semispecial tensor ψ pulls

back to a special tensor ψ̃ =: Ψ on X̃ which is parallel with respect
to the Levi-Civita connection associated to the Kähler-Einstein metric
(this follows from the Bochner principle, see [Koba80], [Yau88], page
272 and [Yau93], page 479).

Fix a point x ∈ X̃ and let Hx ⊂ U(TxX̃) be the restricted holo-
nomy group with respect to the Levi-Civita connection associated to
the Kähler-Einstein metric.

Since Ψ is parallel there exists a degree n polynomial f := ψx on

TxX̃ such that

Fx = {vx ∈ TxX̃ : ψx(vx) =: Ψ(x, vx) = 0}

is Hx-invariant.
This implies that f = ψx is Hx-semi-invariant.
Notice that f = ψx is not divisible by a square since ψx has a reduced

divisor Fx.

Since X̃ has no flat De Rham factor (otherwise X is flat and the
canonical divisor KX cannot be ample) we use the second author’s
Proposition A.1 (appendix to [CaFr09], page 178) implying that there

is a decomposition of the vector space TxX̃ as TxX̃ = V1 ⊕ V2 and
where f(v1, v2) = f(v1) depends only on the variable v1.

Moreover V1 is the tangent space at the origin of a bounded sym-
metric domain D ⊂ Cm such that the action of Hx on V1 is equal to
the action of the connected component K0 of the isotropy group K at
the origin 0 ∈ Cm .

Let us use now Theorem 2.1 and the notation therein.
We obtain that f splits as

f = c

p∏
j=1

N
εj
j

where εj ∈ {0, 1}. Then we get

n = deg(f) =

p∑
j=1

εjdeg(Nj) =

p∑
j=1

εjrj .

We also have that

p∑
j=1

εjrj = n ≥ m = dim(D) =

p∑
j=1

dim(D′j)+dim(D′′) ≥
p∑
j=1

rj+dim(D′′)

since rj ≤ dim(D′j).
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We conclude that εj = 1 ∀j, n = m, p = n, dim(D′′) = 0, and
moreover dim(D′j) = rj = 1 for j = 1, · · · , n.

This shows that Hx = K0 splits as K0 = U(1)n and completes the

proof that X̃ is a polydisk Hn.
�

4. Manifolds uniformized by a tube domain

Here we give the proof of Theorem 1.2.

4.1. Sufficient conditions. We want here to show that if KX is am-
ple, and X admits a semispecial tensor ψ, then the universal covering
X̃ is a product of irreducible symmetric domains of tube type whose
rank divides the dimension.

We proceed as for the proof of theorem 1.1.
Namely, we write the universal cover X̃, according to the theorems

of De Rham and Berger (see [Ber53] and also [Olm05]), as the product
X̃ = D1 ×D2 = D′1 ×D′′1 ×D2 where (since there are no flat factors,
as already observed):

• D2 is the product of the irreducible factors of dimension ≥ 2
for which the holonomy group is transitive (actually, it is the
unitary group)
• D1 is a bounded symmetric domain
• D′1 is the product of all the irreducible bounded symmetric do-

mains of tube type
• D′′1 is the product of all the irreducible bounded symmetric

domains which are neither a ball nor are of tube type.

Consider now the pull back tensor Ψ = ψ̃, and consider coordinates
(u,w, z) according to the product decomposition X̃ = D′1 ×D′′1 ×D2.

Let a = dim(D′1), b = dim(D′′1), r = dim(D2).
Then the tensor ψx in a point x can be written as

ψx = f(u,w, z)(du1∧· · ·∧dua)−1∧(dw1∧· · ·∧dwb)−1∧(dz1∧· · ·∧dzr)−1

and it is holonomy invariant.
By the same argument as in the previous section (Proposition A.1 of

the appendix to [CaFr09], page 178, and the theorem of Korányi-Vági
) we have:

f(u,w, z) = f(u).

Write the (restricted) holonomy group as K ′1 × K ′′1 × K2 and ob-
serve that none of the subgroups K2, K

′
1, K

′′
1 is contained in the special

unitary group, otherwise the Kähler-Einstein metric is Ricci flat in a
certain direction, contradicting the ampleness of KX .

Hence for instance K2 acts nontrivially on (dz1 ∧ · · · ∧ dzr)−1, while
it acts trivially on f .

This would contradict the holonomy invariance of the tensor unless
there is no factor D2. The same identical argument implies that there
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is no factor D′′1 , hence D is a product of irreducible bounded symmetric
domains of tube type.

We write now accordinglyD as a product of such irreducible bounded
symmetric domains of tube type

D =
h∏
j=1

Ωj

and we take variables (z1, . . . , zh) with zj ∈ Ωj, and write, if
zj = (zj,1, . . . , zj,nj), and nj = dim(Ωj),

dztopj =: dzj,1 ∧ · · · ∧ dzj,nj .
By the theorem of Korányi-Vági , up to a constant we can write

ψx = Nm1
1 (z1) . . . N

mh
h (zh)(dz

top
1 ∧ · · · ∧ dz

top
h )−1.

We impose invariance for each holonomy subgroup Kj.
We know that Kj acts on Nj(zj) by a character χj(g), and similarly

Kj acts on (dztop1 ) by a character χ′j.
Recall that, Ωj being a circular domain, Kj contains the diagonal

subgroup Sj = {eiθInj}.
Restricting to Sj we see that, if φj is the tautological character, then

χj|Sj = φ
rj
j , χ′j|Sj = φ

nj
j , hence, by Sj invariance, we conclude that

mjrj = nj, ∀j = 1, . . . , h.

We are done since we observe that the classification theorem 2.3
shows that the pair of integers (rj, nj), under the condition rj|nj, com-
pletely determines the irreducible bounded symmetric domain of tube
type Ωj.

�

4.2. Necessary conditions. As we observed in the introduction the
ampleness of the canonical line bundle KX is a result of Kodaira, i.e.,
condition (1) is necessary.

We shall give two proofs that condition (2), i.e., the existence of a
semi special tensor, is necessary.

Our first proof relies on the foundations of the theory of bounded
symmetric domains of tube type by means of their associated cones C
and their Jordan algebras, developed for instance in [FaKo94].

The second proof is a case by case computation which works just for
the classical domains but provides an explicit expression for the semi
special tensor.

Both proofs are based on the fact that, if Ω is a bounded symmetric
domain, and

Ω = Πh
j=1Ωj
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is its decomposition as a product of irreducible bounded symmetric
domains, then we have a semidirect product

1→ Πh
j=1Aut(Ωj)→ Aut(Ω)→ S → 1

where S ⊂ Sh.
This follows from the fact that the De Rham decomposition of the

universal cover of a complete Riemannian manifold is unique up to the
ordering of the factors (see [KobNom63], Theorem 6.2 of Chapter IV).

As in the proof of Proposition 1.4 in [CaFr09] and by the above
exact sequence it is enough to construct, for each irreducible bounded
symmetric domain of tube type D, a special tensor Ψ semi-invariant
by the group of holomorphic automorphisms Aut(D).

Then such a tensor Ψ necessarily descends to a semi special tensor
ψ on any quotient X of Ω.

Let D be an irreducible bounded symmetric domain of tube type.
Following [FaKo94, Chapter X] D is biholomorphic, via the Cayley
map, to a tube domain TC = V+iC where V is a real finite dimensional
vector space and C ⊂ V is a so called symmetric cone.

Both D and TC are open subsets of the Hermitian Jordan algebra
VC := C⊗V which is the complexification of a simple Euclidean Jordan
algebra whose real vector space is V.

Let ψ̃ be the tensor defined as follows

(1) ψ̃ :=
det(dz)

n
r

K

where n = dim(D), r is the rank of D, det(·) is defined in [FaKo94,
page 29] and K is a generator of Λn(VC), viewed as a non vanishing
holomorphic top-degree form.

Notice that det(·) is also denoted by ∆(·) and called the Koecher
norm in [KoVa79]. It is the same polynomial Nj we encountered before.

Let G(TC) be the group of biholomorphic maps of the tube TC and
let G(TC)

0 its identity component.

Lemma 4.1. ψ̃ is invariant by G(TC)
0.

Proof. According to Theorem X.5.6 in [FaKo94, page 207] the group
G(TC) is generated by the involution j(z) := −z−1 and the subgroups

G(C) and N+. So it is enough to show that ψ̃ is invariant by j(z) :=
−z−1 and by the subgroups G(C) and N+.

That ψ̃ is invariant by the translations of N+ is obvious.
The invariance by G(C)0 follows from Proposition III.4.3 in [FaKo94,

page 53].

To show that j∗ψ̃ = ψ̃ we will use the results in [FaKo94, Chapter
II] about the so called quadratic representation P (·), and also Lemma
1.1 and Proposition 1.2 of [ADO06] stating the crucial properties:

• P (x)(x−1) = x
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• P (x)−1 = P (x−1)
• Dj(x) = P (x)−1

• Det(P (x)) = det(x)
2n
r

• det(P (y) · x) = (dety)2 · det x.

We have then:

j∗ψ̃ =
det(dj(z))

n
r

j∗K
=

det(P (z)−1 · dz)
n
r

j∗K
=

=
det(P (z−1) · dz)

n
r

j∗K
=

((detz−1)2 · det(dz))
n
r

j∗K
=

(detz)
−2n
r · det(dz)

n
r

j∗K
=

=
(detz)

−2n
r .det(dz)

n
r

Det(P (z)−1)K
=

(detz)
−2n
r .det(dz)

n
r

(detz)
−2n
r K

= ψ̃.

This completes the proof of the claim.
�

It is known that either G(TC) is connected or has just two connected
components. Indeed, Aut(D) is connected unless D is a classical do-
main D = In,n (n ≥ 2) or D = IV2k where Aut(D) has two connected
components [Car35, page 152].

So we get the following corollary.

Lemma 4.2. ψ̃ is semi-invariant by G(TC). That is to say, there exists
a character χ : G(TC)→ {1,−1} such that for g ∈ G(TC):

g.ψ̃ = χ(g)ψ̃

A simple example where the above character χ is not trivial is given
by the domain I2,2. Indeed, in this case

ψ̃ =
(dz1 ⊗ dz4 − dz2 ⊗ dz3)

2

dz1 ∧ dz2 ∧ dz3 ∧ dz4

where Z =

(
z1 z2

z3 z4

)
∈ I2,2. The transposition τ(Z) = Zt belongs to

Aut(I2,2) and τ ∗ψ̃ = −ψ̃ since

τ ∗(dz1∧dz2∧dz3∧dz4) = dz1∧dz3∧dz2∧dz4 = −dz1∧dz2∧dz3∧dz4 .

4.3. Necessary conditions found classically. Here we construct
explicitly ψ̃ for the classical bounded symmetric domains of tube type
D whose rank r divides the dimension n = dim(D). We give a simpler

direct proof of the semi-invariance of our tensor ψ̃ by Aut(D) the full
automorphism group of the domain D.

We will follow the standard Elie Cartan’s notation.

Domains of type In,n
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The Cartan - Harish Chandra realization of In,n := SU(n, n)/S(U(n)×
U(n)) is the domain Ω = {Z ∈Mn,n(C) : In − Zt · Z > 0}.

To an element γ ∈ SU(n, n) corresponds the transformation

γ(Z) = (AZ +B) · (CZ +D)−1.

As in [CaFr09, p. 174] the function γ 7→ χ(γ) ∈ C∗ defined by the
equation:

det(dγ(Z)) = χ(γ) · det(CZ +D)−2 · det(dZ)

is a character of SU(n, n).
Indeed, if γ′ ∈ SU(n, n) is another isometry, say
γ′(Z) = (A′Z +B′) · (C ′Z +D′)−1, then

det(d(γ ·γ′)(Z)) = χ(γ.γ′) ·det((CA′+DC ′)Z+CB′+DD′)−2 ·det(dZ)

and by direct computation we have

det(d(γ · γ′)(Z)) = χ(γ) · det(Cγ′(Z) +D)−2 · det(dγ′(z))

= χ(γ)χ(γ′) · det(Cγ′(Z) +D)−2 · det(C ′Z +D′)−2 · det(dZ)

so that we only have to show that

det((CA′+DC ′)Z+CB′+DD′)−2 = det(Cγ′(Z)+D)−2·det(C ′Z+D′)−2

which is equivalent to

det((CA′ +DC ′)Z + CB′ +DD′) = det(Cγ′(Z) +D) · det(C ′Z +D′)

but indeed

det(Cγ′(Z) +D) · det(C ′Z +D′) = det(C(A′Z +B′) · (C ′Z +D′)−1 +D) · det(C ′Z +D′),

= det(C(A′Z +B′) +D(C ′Z +D′)),

= det((CA′ +DC ′)Z + CB′ +DD′).

This shows that χ(γ) is a character of SU(n, n). Actually, any char-
acter of SU(n, n) is trivial since SU(n, n) is a connected semisimple
Lie group. Hence the

Claim 4.3. χ(γ) ≡ 1, i.e. , the character χ is trivial.

Thus, for γ ∈ SU(n, n), we get the formula

det(dγ(Z)) = det(CZ +D)−2 · det(dZ).
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The Jacobian determinant of γ is det(CZ + D)−2n, i.e. γ∗K =
det(CZ + D)−2nK, where K is the holomorphic volume form of In,n.

For In,n our tensor ψ̃ is given by

ψ̃ =
det(dZ)n

K

Then for γ ∈ SU(n, n) we have

γ∗ψ̃ =
det(dγZ)n

γ∗K

=
(det(CZ +D)−2 · det(dZ))n

det(CZ +D)−2nK

=
(det(CZ +D)−2)n

det(CZ +D)−2n
ψ̃

= ψ̃

This shows that ψ̃ is SU(n, n)-invariant. Hence it is Aut(In,n)-semi-
invariant.

Domains of type II2k.

This is the subdomain of I2k,2k given by the skew-symmetric matrices.

Here ψ̃ is given by

ψ̃ =
det(dZ)

2k−1
2

K
The Jacobian determinant of an isometry γ is given by

γ∗K = det(CZ +D)−(2k−1)K .

So

γ∗ψ̃ =
det(dγZ)

2k−1
2

γ∗K

=
(det(CZ +D)−2 · det(dZ))

2k−1
2

det(CZ +D)−(2k−1)K

= ψ̃

This shows that ψ̃ is invariant by Aut0(II2k). Actually, in this case

ψ̃ is invariant by Aut(II2k) since this last group is connected by [Car35,
page 152] .

Domains of type III2k+1.

This is the subdomain of I2k+1,2k+1 given by the symmetric matrices.
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Here ψ̃ is given by

ψ̃ =
det(dZ)k+1

K
The Jacobian determinant of an isometry γ is given by

γ∗K = det(CZ +D)−2(k+1)K .

So

γ∗ψ̃ =
det(dγZ)k+1

γ∗K

=
(det(CZ +D)−2 · det(dZ))k+1

det(CZ +D)−2(k+1)K

= ψ̃

This shows that ψ̃ is invariant by Aut0(III2k+1). Actually, in this

case ψ̃ is invariant by Aut(III2k+1) since this last group is connected
by [Car35, page 152] .

Domains of type IV2k, the so called Lie Balls.

The Cartan - Harish Chandra realization of a domain of type IVn
in Cn is the subset D defined by the inequalities (compare [Helga78],
page 527)

|z2
1 + z2

2 + · · ·+ z2
n| < 1 ,

1 + |z2
1 + z2

2 + · · ·+ z2
n|2 − 2 (|z1|2 + |z2|2 + · · ·+ |zn|2) > 0 .

When n = 2k our tensor ψ̃ is given by

ψ̃ =
(dz1 � dz1 + · · ·+ dzn � dzn)

n
2

dz1 ∧ dz2 ∧ · · · ∧ dzn
.

Indeed, this follows from the proof of Theorem 1.2 and the fact that
the Koecher norm function of D is (

∑n
j=1 z

2
j )

n
2 (see [KoVa79, page

183]).

Here we describe an alternative way to get the explicit formula for
ψ̃, due to the second referee.

The compact dual of D is the hyperquadric Qn ⊂ Pn+1 defined by the
polynomial

∑n−1
j=0 X

2
j −X2

n −X2
n+1. Notice that SO0(n, 2) ⊂ Aut(Qn).

The Borel embedding j : D → Qn is given by

j(z1, · · · , zn) = [2z1 : 2z2 : · · · : 2zn : i(Λ− 1) : Λ + 1] ,

where Λ := z2
1 + · · · + z2

n. The map j identifies the domain D with
the SO0(n, 2)-orbit of the point [0 : 0 : · · · : 1 : i] ∈ Qn, i.e. D ∼=
SO0(n, 2)/SO(n)× SO(2).
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The second fundamental form σ ofQn in Pn+1 is a section of S2(Ω1
Qn)⊗

N , where N is the normal bundle of Qn ⊂ Pn+1. It is well-known
that N , as a sheaf on Qn, is OQn(2). Since the canonical sheaf KQn

is OQn(−n), for n = 2k we have KQn = O(−2)⊗k = (N∨)⊗k. So
σk := σ ⊗ · · · ⊗ σ (k copies) gives a section of Sn(Ω1

Qn)(−KQn) whose

restriction to j(D) induces ψ̃ = j∗σk on D.

Indeed, we have, up to a constant depending on the chosen isomor-
phism KQn = O(−2)⊗k = (N∨)⊗k,

j∗σk = j∗
((dX0)

2 + · · ·+ (dXn−1)
2 − (dXn)2 − (dXn+1)

2)
k

dX0 ∧ · · · ∧ dXn−1

=
((d2z1)

2 + · · ·+ (d2zn)2 − (di(Λ− 1))2 − (d(Λ + 1))2)
k

d2z1 ∧ · · · ∧ d2zn

=
4k ((dz1)

2 + · · ·+ (dzn)2)
k

2ndz1 ∧ · · · ∧ dzn

= ψ̃

5. Proof of the Kazhdan’s type corollary

Consider the conjugate variety Xσ: since KX is ample we may as-
sume that X is projectively embedded by H0(X,OX(mKX).
σ carries X to Xσ and KX to KXσ , hence also Xσ has ample canon-

ical divisor.
Consider a slope zero tensor ψ on X: then ψσ is also a slope zero

tensor, and moreover σ sends the ring of polynomial functions on the
tangent space TXp to the corresponding ring of polynomial functions
on the tangent space TXσ

σ(p): hence the degrees and multiplicities of the
irreducible factors of ψp are the same as the degrees and multiplicities
of the irreducible factors of ψσ(p).

We conclude then immediately by the last assertion of our main
theorems 1.2 and 1.3 that the universal covering of Xσ is X̃.

�

6. Examples

Assume that the polynomial ψp associated to a semi special tensor is
a square ψp = N2, where N is irreducible (the more general case where
N is squarefree follows then right away).

Then the universal covering X̃ is an irreducible symmetric tube do-
main such that d/r = 2.

It follows from Theorem 2.3 that X̃ is either I2,2 or III3. In particular
X has either dimension 4 or 6.
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Proposition 6.1. Assume that KX is ample and X admits a semis-
pecial tensor ψ.

If the multiplicities of the divisor associated to f =: ψp are at most

2 then X̃ is a product of 1-dimensional disks, of domains of type I2,2
or of type III3.

Moreover, if all multiplicities are 2 then the number of factors of f
and the dimension n of X determine X̃.

Proof. The hypotheses imply that the polynomial f = ψp can be
factorized as

f = c

p∏
j=1

N
ej
j

where ej ≤ 2. If ej = 1 then the corresponding factor is a disk.
If ej = 2 by the previous observation the corresponding factor is is

either I2,2 or III3, and this shows the first assertion.
The hypothesis of the second statement is that

f = c

p∏
j=1

N2
j

Let us denote by a the number of times that I2,2 occurs in X̃ and by

b the number of times that III3 occurs in X̃.
Then {

4a+ 6b = n = dim(X)

a+ b = p

Hence, knowing p and n, we know a, b and also X̃.
�

7. Slope zero tensors of higher degree

Let’s treat first the case where X̃ is an irreducible symmetric bounded
domain of tube type of dimension n and rank r, but where we consider
more generally the sheaf Sk(Ω1

X̃
)(−mKX̃), k,m being positive integers.

Assume that there exists a tensor ψ̃ ∈ H0(X̃, Sk(Ω1
X̃

)(−mKX̃)) semi-

invariant by the full automorphism group Aut(X̃).
Then by the theorem of Korányi-Vági and its corollary 2.2

(2) ψ̃x = Na(z)(dztop)−m

and

(3) k = m · n = r · a

since ψ̃ is invariant by the diagonal subgroup S = {eiθIn}.
Conversely, if condition(3) holds then ψ̃ is semi-invariant by the full

group of automorphisms (the proof is the same as in 4.1), hence ψ̃
descends to any Clifford-Klein form X of X̃: providing a section ψ of
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the sheaf Sk(ΩX)(−mKX) ⊗ η, where η is the sheaf corresponding to
the signature character.

Let now X̃ be the product Ω1 × · · · × Ωh of the irreducible sym-
metric bounded domains of tube type of dimension nj and rank rj,
j = 1, · · · , h.

If ψ̃ ∈ H0(X̃, Sk(Ω1
X̃

)(−mKX̃)) is invariant by Aut(Ω1) × · · · ×
Aut(Ωh) then

(4) ψx = Na1
1 (z1) . . . N

ah
h (zh)(dz

top
1 ∧ · · · ∧ dz

top
h )−m.

k = m · n and aj · rj = m · nj for j = 1, · · · , h.
Conversely, if the numerical conditions aj · rj = m · nj hold for

j = 1, · · · , h, then the above formula for ψx defines a section of the
sheaf Sk(Ω1

X̃
)(−mKX̃) invariant by Aut(Ω1)× · · · × Aut(Ωh).

Now notice that, for any product Ω1×· · ·×Ωh of irreducible symmet-
ric bounded domains of tube type of dimension nj and rank rj, we can
always find integers m, a1, · · · , aj such that the numerical conditions
aj · rj = m · nj hold for j = 1, · · · , h.

By using the 2-torsion invertible sheaf η corresponding to the signa-
ture (of S ⊂ Sh) we get a non zero section

ψ ∈ H0(Smn(Ω1
X̃

)(−mKX̃)⊗ η).

If η is nontrivial, replace ψ by ψ2: we obtain in this way a slope zero
tensor. Hence

Theorem 1.3
Let X be a compact complex manifold of dimension n.

Then the following two conditions:

(1) KX is ample
(2) X admits a slope zero tensor ψ ∈ H0(Smn(Ω1

X)(−mKX)), where
m is a positive integer;

hold if and only if X ∼= Ω/Γ , where Ω is a bounded symmetric domain
of tube type and Γ is a cocompact discrete subgroup of Aut(Ω) acting
freely.

Moreover, the degrees and the multiplicities of the irreducible factors

of the polynomial ψp determine uniquely the universal covering X̃ = Ω.

In particular, for m = 2, we get that the universal covering X̃ is a
polydisk if and only if ψp is the square of a squarefree polynomial.

The proof is identical to the proof of Theorem 1.2 taken into account
the observation made above (for the existence part) that it is possible
to find the numbers m, a1, · · · , aj such that the numerical conditions
aj · rj = m · nj holds for j = 1, · · · , h.

Here is one more example.
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Let X be a compact 3-dimensional complex manifold with KX ample
and such that ψ ∈ H0(S3m(Ω1

X)(−mKX)⊗ η).

Then either X̃ = H×H×H or X̃ is the Lie ball, i.e., the domain of
type IV and dimension 3.

In this last case the sheaf S6(Ω1
X)(−2KX) has a section.

Notice that the rank=2 does not divide the dimension=3 and that
the divisor of the section is not reduced.
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