
Politecnico di Torino

Porto Institutional Repository

[Proceeding] DNS to the rescue: Discerning Content and Services in a
Tangled Web

Original Citation:
Ignacio Bermudez; Marco Mellia; Maurizio M. Munafò; Ram Keralapura; Antonio Nucci (2012). DNS
to the rescue: Discerning Content and Services in a Tangled Web. In: ACM Internet Measurement
Conference - IMC ’12, Boston, Usa, November 2012. pp. 413-426

Availability:
This version is available at : http://porto.polito.it/2502299/ since: September 2012

Publisher:
ACM

Published version:
DOI:10.1145/2398776.2398819

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

Publisher copyright claim:
c© ACM 2012. This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution.

(Article begins on next page)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11429584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/2502299/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1145/2398776.2398819
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2502299

DNS to the Rescue: Discerning Content
and Services in a Tangled Web

Ignacio Bermudez
Politecnico di Torino

ignacio.bermudez@polito.it

Marco Mellia
Politecnico di Torino

marco.mellia@polito.it

Maurizio M. Munafò
Politecnico di Torino

maurizio.munafo@polito.it

Ram Keralapura
Narus Inc.

rkeralapura@narus.com

Antonio Nucci
Narus Inc.

anucci@narus.com

ABSTRACT
A careful perusal of the Internet evolution reveals two major
trends - explosion of cloud-based services and video stream-
ing applications. In both of the above cases, the owner (e.g.,
CNN, YouTube, or Zynga) of the content and the organiza-
tion serving it (e.g., Akamai, Limelight, or Amazon EC2)
are decoupled, thus making it harder to understand the asso-
ciation between the content, owner, and the host where the
content resides. This has created a tangled world wide web
that is very hard to unwind, impairing ISPs’ and network ad-
ministrators’ capabilities to control the traffic flowing onthe
network.

In this paper, we present DN-Hunter, a system that lever-
ages the information provided by DNS traffic to discern the
tangle. Parsing through DNS queries, DN-Hunter tags traffic
flows with the associated domain name. This association has
several applications and reveals a large amount of useful in-
formation: (i) Provides a fine-grained traffic visibility even
when the traffic is encrypted (i.e., TLS/SSL flows), thus en-
abling more effective policy controls,(ii) Identifies flows
even before the flows begin, thus providing superior net-
work management capabilities to administrators,(iii) Un-
derstand and track (over time) different CDNs and cloud
providers that host content for a particular resource,(iv)
Discern all the services/content hosted by a given CDN or
cloud provider in a particular geography and time, and(v)
Provides insights into all applications/services runningon
any given layer-4 port number.

We conduct extensive experimental analysis and show that
the results from real traffic traces, ranging from FTTH to 4G
ISPs, that support our hypothesis. Simply put, the informa-
tion provided by DNS traffic is one of the key components
required to unveil the tangled web, and bring the capabilities
of controlling the traffic back to the network carriers.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Mis-
cellaneous; C.4 [Performance of Systems]: Measure-
ment Techniques

General Terms
Measurement, Performance

Keywords
DNS, Service Identification.

1. INTRODUCTION
In the past few years, the Internet has witnessed an

explosion of cloud-based services and video streaming
applications. In both cases, content delivery networks
(CDN) and/or cloud computing services are used to
meet both scalability and availability requirements. An
undesirable side-effect of this is that it decouples the
owner of the content and the organization serving it.
For example, CNN or YouTube videos can be served
by Akamai or Google CDN, and Farmville game can
be accessed from Facebook while running on Amazon
EC2 cloud computing platform, with static content be-
ing retrieved from a CDN. This may be even more
complicated since various CDNs and content owners
implement their own optimization mechanisms to en-
sure “spatial” and “temporal” diversity for load distri-
bution. In addition, several popular sites like Twitter,
Facebook, and Google have started adopting encryption
(TLS/SSL) to deliver content to their users [1]. This
trend is expected to gain more momentum in the next
few years. While this helps to protect end-users’ pri-
vacy, it can be a big impediment for effective security
operations since network/security administrators now
lack the required traffic visibility. The above factors
have resulted in “tangled”world wide web which is hard
to understand, discern, and control.
In the face of this tangled web, network/security ad-

ministrators seek answers for several questions in order
to manage their networks: (i) What are the various
services/applications that contribute to the traffic mix
on the network? (ii) How to block or provide certain
Quality of Service (QoS) guarantees to select services?
While the above questions seem simple, the answers

1

to these questions are non-trivial. There are no existing
mechanisms that can provide comprehensive solutions
to address the above issues. Consider the first ques-
tion above. A typical approach currently used by net-
work administrators is to rely on DPI (deep packet in-
spection) technology to identify traffic based on packet-
content signatures. Although this approach is very ef-
fective in identifying unencrypted traffic, it severely falls
short when the traffic is encrypted. Given the popular-
ity of TLS in major application/content providers, this
problem will amplify over time, thus rendering typical
DPI technology for traffic visibility ineffective. A sim-
ple approach that can augment a DPI device to identify
encrypted traffic is to inspect the certificate during the
initial handshake1. Although this approach gives some
visibility into the applications/services, it still cannot
help in identify specific services. For instance, inspect-
ing a certificate from Google will only reveal that it is
Google service, but cannot differentiate between Google
Mail, Google Docs, Blogger, and Youtube. Thus admin-
istrators need a solution that will provide fine-grained
traffic visibility even when the traffic is encrypted.
Let us now focus on the second question which is even

more complex. Consider the scenario where the net-
work administrator wants to block all traffic to Zynga
games, but prioritize traffic for the DropBox service.
Notice that both of these services are encrypted, thus
severely impairing a DPI-based solution. Furthermore,
both of these services use the Amazon EC2 cloud. In
other words, the server IP-address for both of these ser-
vices can be the same. Thus using IP-address filtering
does not accomplish the task either. In addition the
IP-address can change over time according to CDN op-
timization policies. Another approach that can be used
in this context is to introduce certain policies directly
into the local name servers. For example, the name
server does not resolve the DNS query for zynga.com in
the above example, thus blocking all traffic to Zynga.
Although this approach can work effectively for block-
ing certain services, it does not help when adminis-
trators are interested in prioritizing traffic to certain
services. Administrators face the same situation when
they want to prioritize traffic to mail.google.com and
docs.google.com, while de-prioritizing traffic blogpot.com
and youtube.com since all of these services can run over
HTTPS on the same Google platform.
In this work, we propose DN-Hunter, a novel traffic

monitoring system that addresses all of the above issues
in a completely automated way. The main intuition be-
hind DN-Hunter is to correlate the DNS queries and
responses with the actual data flows in order to effec-
tively identify and label the data flows, thus providing
a very fine grained visibility of traffic on a network.

1During TLS negotiation, the server certificate contains a
plain text string with the name being signed.

It helps network administrators to keep track of the
mapping between users, content owners, and the hosts
serving the content even when this mapping is changing
over time, thus enabling them to enforce policies on the
traffic at any time with no manual intervention. In ad-
dition, network administrators can use DN-Hunter to
dynamically reroute traffic in order to use more cost-
effective links (or high bandwidth links as the policies
might dictate) even as the content providers change the
hosts serving the content over time for load balancing
or other economic reasons.
At a high level, the methodology used in DN-Hunter

seems to be achievable by performing a simple reverse
DNS lookup using the server IP-addresses seen in traffic
flows. However, using reverse DNS lookup does not help
since it does not return accurate domain (or the sub-
domain) names used in traffic flows.
The main contributions of this work are:

• We propose a novel tool, DN-Hunter, that can pro-
vide fine-grained traffic visibility to network administra-
tors for effective policy controls and network manage-
ment. Unlike DPI technology, using experiments on real
traces, we show that DN-Hunter is very effective even
when the traffic is encrypted clearly highlighting its
advantages when compared to the current approaches.
DN-Hunter can be used either for active or passive mon-
itoring, and can run either as a stand-alone tool or can
easily be integrated into existing monitoring systems,
depending on the final intent.
• A key property of DN-Hunter is its ability to identify
traffic even before the data flow starts. In other words,
the information extracted from the DNS responses can
help a network management tool to foresee what kind
of flows will traverse the network. This unique abil-
ity can empower proactive traffic management policies,
e.g., prioritizing all TCP packets in a flow (including
the critical three-way-handshake), not just those pack-
ets that follow a positive DPI match.
• We use DN-Hunter to not only provide real-time traf-
fic visibility and policy controls, but also to help gain
better understanding of how the dynamic web is or-
ganized and evolving today. In other words, we show
many other applications of DN-Hunter including: (i)
Spatial Discovery: Mapping a particular content to the
servers that actually deliver them at any point in time.
(ii) Content Discovery: Mapping all the content de-
livered by different CDNs and cloud providers by ag-
gregating the information based on server IP-addresses.
(iii) Service Tag Extraction: Associating a layer-4 port
number to the most popular service seen on the port
with no a-priori information.
• We conduct extensive experiments using five traffic
traces collected from large ISPs in Europe and North
America. The traces contain full packets including the
application payload, and range from 3h to 24h. These

2

Table 1: Dataset description.
Trace Start Duration Peak DNS #Flows

[GMT] Responses Rate TCP
US-3G 15:30 3h 7.5k/min 4M

EU2-ADSL 14:50 6h 22k/min 16M
EU1-ADSL1 8:00 24h 35k/min 38M
EU1-ADSL2 8:40 5h 12k/min 5M
EU1-FTTH 17:00 3h 3k/min 1M

ISPs use several different access technologies (ADSL,
FTTH, and 3G/4G) to provide service to their cus-
tomers, thus showing that DN-Hunter is effective in
several different contexts. Furthermore, DN-Hunter has
been implemented and currently deployed in three op-
erative vantage points since March 2012.
Although DN-Hunter is a very effective tool in any

network administrator’s arsenal to address issues that
do not have a standard solution today, there are some
limitations as well. First, the effectiveness of DN-Hunter
depends on the visibility into the DNS traffic of the
ISP/enterprise. In other words, DN-Hunter will be ren-
dered useless if it does not have visibility into the DNS
queries and responses along with the data flows from the
end-users. Second, DN-Hunter does not help in pro-
viding visibility into applications/services that do not
depend on DNS. For instance, some peer-to-peer appli-
cations are designed to work with just IP-addresses and
DN-Hunter will be unable to label these flows.
Paper organization: Sec. 2 introduces the datasets

we use in this paper. In Sec. 3 we describe the architec-
ture and design details of DN-Hunter. Sec. 4 presents
some of our advanced analytics modules while Sec. 5
provides extensive experimental results. We discuss cor-
rect dimensioning and deployment issues in Sec. 6. We
highlight the major differences between DN-Hunter and
some existing approaches in Sec. 7 and conclude the pa-
per in Sec. 8.

2. DATASETS AND TERMINOLOGY
In this section, we provide insight into the datasets

used for experimental evaluation along with some basic
DNS terminology used henceforth in this paper.

2.1 Experimental datasets
All our datasets are collected at the Points-of-Presence

(PoP) of large ISPs where the end customers are con-
nected to the Internet. The five datasets we use in this
paper are reported in Tab. 1. In all of these traces activ-
ities from several thousands of customers are monitored.
In all the 5 datasets we capture full packets including
the application payload without any packet losses. For
the sake of brevity, Tab. 1 only reports the start time
and trace duration, the peak time DNS response rate,
and the number of TCP flows that were tracked. Each
trace corresponds to a different period in 2011. The first
dataset is a trace collected from a large North Ameri-

can 3G/4G mobile operator GGSN aggregating traffic
from a citywide area. The second dataset originates
from a European ISP (EU2) which has about 10K cus-
tomers connected via ADSL technology. The last three
datasets correspond to traffic collected from different
vantage points in the same European ISP (EU1). The
vantage points are located in three different cities - two
ADSL PoPs and one Fiber-To-The-Home access tech-
nology PoP.
Currently, DN-Hunter has been implemented in a

commercial tool as well as Tstat [2]. The latter has been
deployed in all the three vantage points in EU1 and has
been successfully labeling flows since March 2012. Some
of the results in this paper are derived from this deploy-
ment.

2.2 DNS Terminology
DNS is a hierarchical distributed naming system for

computers connected to the Internet. It translates “do-
main names” that are meaningful to humans into IP-
addresses required for routing. A DNS name server
stores the DNS records for different domain names.
A domain name consists of one or more parts, tech-

nically called “labels”, that are conventionally concate-
nated, and delimited by dots, e.g., www.example.com.
These names provide meaningful information to the end
user. Therefore labels naturally convey information about
the service, content, and information offered by a given
domain name. The labels in the domain name are or-
ganized in a hierarchical fashion. The Top-Level Do-
main (TLD) is the last part of the domain name - .com
in the above example; and sub-domains are then pre-
pended to the TLD. Thus, example.com is a subdomain
of .com, and www.example.com is a subdomain of exam-
ple.com. In this paper we refer to the first sub-domain
after the TLD as “second level domain”; it generally
refers to the organization that owns the domain name
(e.g., example.com). Finally Fully Qualified Domain
Name (FQDN) is the domain name complete with all
the labels that unambiguously identify a resource, e.g.,
www.example.com.
When an application needs to access a resource, a

query is sent to the local DNS server. This server re-
sponds back with the resolution if it already has one,
else it invokes an iterative address resolution mechanism
until it can resolve the domain name (or determine that
it cannot be resolved). The responses from the DNS
server carry a list of answers, i.e., a list of serverIP
addresses that can serve the content for the requested
resource.
Local caching of DNS responses at the end-hosts is

commonly used to avoid initiating new requests to the
DNS server for every resolution. The time for which
a local cache stores a DNS record is determined by
the Time-To-Live (TTL) value associated with every

3

Wire

Real-time Sniffer Offline Analyzer

Flow
Tagger

Flow
Sniffer

DNS
Response

Sniffer

DNS
Resolver

Flow
Database

Service Tag
Extractor

Content
Discovery

Spatial
Discovery

...

Policy
Enforcer

Figure 1: DN-Hunter architecture overview

record. It is set by the authoritative DNS name server,
and varies from few seconds (e.g., for CDN and highly
dynamic services) to days. Memory limit and timeout
deletion policies can affect caching, especially for local
caches at client OS. As we will see, in practice, clients
cache responses for typically less than 1 hour.

3. DN-Hunter ARCHITECTURE
A high level overview of DN-Hunter architecture is

shown in Fig. 1. It consists of two main components:
real-time sniffer and off-line analyzer. As the name in-
dicates, the sniffer labels/tags all the incoming data
flows in real time. The output from the sniffer can
be used for online policy enforcement (using any avail-
able policy enforcing tool) and/or can be stored in a
database for off-line analysis by the analyzer compo-
nent. Note that the sniffer can be a passive component
instead of being active by not implementing a policy
enforcer. For the ease of exposition, in this work, we
assume that the real-time sniffer component is a pas-
sive monitoring component.

3.1 Real-Time Sniffer Component
The sniffer has two low-level sniffing blocks: (i) Flow

sniffer which reconstructs layer-4 flows by aggregating
packets based on the 5-tuple Fid = (clientIP, serverIP,
sPort, dPort, protocol), and (ii) DNS response sniffer
which decodes the DNS responses, and maintains a lo-
cal data structure called the DNS Resolver. The DNS
resolver maintains a mapping between client IP, domain
names queried, and the server IP(s) included in the DNS
response. In particular, for each response, it stores the
set of serverIP addresses returned for the fully qual-
ified domain name (FQDN) queried, associating them
to the clientIP that generated the query.
All data flows reconstructed by the flow sniffer is

passed on to the Flow Tagger module. The flow tag-
ger module queries the DNS resolver to tag the incom-
ing clientIP, serverIP pair. The flow tagger will tag
the incoming flow with the “label” (i.e., the FQDN) and
sends the flow to the policy enforcer (to enforce any
policy on the flow including blocking, redirection, rate
limiting, etc.) and/or the database for off-line analysis.

Client IP

Map

Server IP

Maps FQDN Clist

213.254.17.14

213.254.17.17
itunes.apple.com

216.74.41.8
216.74.41.10

216.74.41.12

data.flurry.com
93.58.110.173

37.241.163.105

Figure 2: DNS Resolver data structures

3.1.1 DNS Resolver Design

The key block in the real-time sniffer component is
the DNS Resolver. Its engineering is not trivial since it
has to meet real-time constraints. The goal of the DNS
Resolver is to build a replica of the client DNS cache by
sniffing DNS responses from the DNS server. Each entry
in the cache stores the FQDN and uses the serverIP

and clientIP as look-up keys. To avoid garbage col-
lection, FQDNs are stored in a first-in-first-out FIFO
circular list, Clist, of size L; a pointer identifies the
next available location where an entry can be inserted.
L limits the cache entry lifetime and has to properly
match the local resolver cache in the monitored hosts.
Lookup is performed using two sets of tables. The

first table uses the clientIP as key to find a second ta-
ble, from where the serverIP key points to the most
recent FQDN entries in the Clist that was queried by
clientIP . Tables are implemented using C++maps2, in
which the elements are sorted from lower to higher key
value following a specific strict weak ordering criterion
based on IP addresses. LetNC the number of monitored
clients, and NS(c) the number of servers that client c

contacts. Assuming L is well-dimensioned, the look-up
complexity is O(log(NC)+log(NS(c))). NC depends on
the number of hosts in the monitored network. NS(c)
depends on the traffic generated by clients. In general
NS(c) does not exceed few hundreds. Note that when
the number of monitored clients increase, several load
balancing strategies can be used. For example, two re-
solvers can be maintained for odd and even fourth octet
value in the client IP-address.
Fig. 2 depicts the internal data structures in the DNS

resolver, while Algorithm 1 provides the pseudo code
of the “insert()” and “lookup()” functions. Since DNS
responses carry a list of possible serverIP addresses,
more than one serverIP can point to the same FQDN

entry (line 11-22). When a new DNS response is ob-
served, the information is inserted in the Clist, even-
tually removing old entries (line 12-15)3. When an en-

2Unordered maps, i.e., hash tables, can be used as well to
further reduce the computational costs
3In this case the information about the old FQDN is lost
and may cause confusion. See Sec. 6 for some analysis.

4

1: INSERT(DNSresponse)
2: Input: DNSresponse
3: (FQDN,ClientIP, answerList)← decode(DNSresponse)
4: DNEntry ← newDNEntry(FQDN)
5: mapServer ← mapClient.get(clientIP)
6: if mapServer = null then

7: mapServer ← new MapServer()
8: mapClient.put(clientIP,mapServer)
9: end if

10: for all serverIP in answerList do

11: /* replace old references */
12: if exists mapSever.get(serverIP) then

13: OLDEntry← mapSever.get(serverIP)
14: OLDEntry.removeOldReferences()
15: end if

16: /* Link back and forth
17: references to the new DNSEntry */
18: mapServer.put(serverIP,DNEntry)
19: MSEntry← mapServer.get(serverIP)
20: DNEntry.insert(MSEntry)
21: end for

22: /* insert next entry in circular array */
23: OldDNEntry← Clist.nextEntry()
24: OldDNEntry.deleteBackreferences()
25: Clist.nextEntry← DNEntry

26:
27: LOOKUP(ClientIP, ServerIP)
28: Input: ClientIP and ServerIP of a flow
29: Output: FQDN of ServerIP as requested by ClientIP

30: mapServer ← mapClient.get(clientIP)
31: if mapServer contains serverIP then

32: DNEntry← mapServer.get(serverIP)
33: return DNEntry.FQDN

34: end if

Algorithm 1: DNS Resolver pseudo-code

try in the DNS circular array is overwritten, the old
clientIP and serverIP keys are removed from the maps
before inserting the new one (line 25).

3.1.2 DNS traffic characteristics

Using the above algorithm to for tagging (or labeling)
incoming data flows, we conducted several experiments
to accomplish the following goals: (i) Understand how
much information DNS traffic can expose in enabling
traffic visibility, and (ii) Understand how to correctly
dimension the DNS resolver data structures.
To address the first goal, we compute the DNS hit ra-

tio. In other words, DNS hit ratio represents the frac-
tion of data flows that can be successfully associated
with a FQDN. The higher is the hit ratio, the more suc-
cessful is DN-Hunter in enabling traffic visibility. Intu-
ition suggests that all client-server services/applications
rely on the DNS infrastructure and hence DN-Hunter
will be able to accurately identify them. However, cer-
tain peer-to-peer services/applications do not use the
DNS infrastructure and thus evade detection in DN-
Hunter. Tab. 2 confirms this intuition. It details, for
each trace, the number of DNS hits and the correspond-
ing percentage of flows that were resolved, considering
the subset of HTTP, TLS, and P2P flows. In this ex-
periment we consider a warm-up time of 5 minutes.

Protocol EU1-ADSL1 EU1-ADSL2 EU1-FTTH
HTTP 92% (4.4M) 90% (2.7M) 91% (683k)
TLS 92% (0.4M) 86% (196k) 84% (50k)
P2P 1% (6k) 1% (1.3k) 0% (48)

EU2-ADSL US-3G
HTTP 97% (5.8M) 75% (445k)
TLS 96% (279k) 74% (83k)
P2P 1% (4.2k) 8% (8k)

Table 2: DNS Resolver hit ratio

As expected, HTTP and TLS flows show a very high
hit ratio, with the majority of cache-miss occurring in
the initial part of the trace when the end host oper-
ating system local resolver cache resolves the query lo-
cally and limits the queries to the DNS server. P2P
data flows are hardly preceded by DNS resolutions, and
hence it results in a very low hit ratio4.
When considering only HTTP and TLS data flows,

we see that the hit ratio mostly exceeds 90% for all
traces except US-3G. When considering only the last
hour of each trace, the DNS hit ratio increases further
close to 100% in all traces but US-3G. In the case of
US-3G, we hypothesize that the adoption of tunneling
mechanisms over HTTP/HTTPS for which no DNS in-
formation is exposed may be the cause of lower DNS Re-
solver efficiency. Furthermore, device mobility may also
affect our results: our tool may observe flows from de-
vices entering the coverage area after performing a DNS
resolution outside the visibility of our monitoring point.
Thus our tool might miss the DNS response resulting
in a cache-miss. More details about the DNS traffic
characteristics that affects DN-Hunter dimensioning is
provided in Sec. 6.

3.1.3 DN-Hunter vs. DNS reverse lookup

The information that the sniffer component extracts
is much more valuable than the one that can be obtained
by performing active DNS reverse lookup of serverIP
addresses. Recall that the reverse lookup returns only
the designated domain name record. Consider Tab. 3
where we randomly selected 1,000 serverIP for which
the Sniffer was able to associate a FQDN. We have con-
sidered the EU1-ADSL2 dataset for this experiment.
We then performed active DNS reverse lookup queries
of the serverIP addresses and compared the returned
FQDN with the one recovered by the sniffer. In 29%
of cases, no answer was returned by the reverse lookup
while in 26% of the lookups the two answers were to-
tally different from each other. All the other queries
had at least had a partial match. In fact, only 9% of
the reverse lookups completely matched the results from
the sniffer while the rest of the 36% only matched the
second-level domain name. These results are not sur-
prising since single servers are typically serving several
FQDNs (see Sec. 5). In addition to this, reverse lookup

4P2P hits are related to BitTorrent tracker traffic mainly.

5

Same FQDN 9%
Same 2nd-level domain 36%

Totally different 26%
No-answer 29%

Table 3: DN-Hunter vs. reverse lookup

poses scalability issues as well.

3.2 Off-Line Analyzer Component
Although the sniffer module provides deep visibility

into the services/applications on the wire in real-time,
some analytics cannot be performed in real-time. In
other words, dissecting and analyzing the data in differ-
ent ways can expose very interesting insights about the
traffic. The off-line analyzer component does exactly
this. It contains several intelligent analytics that can
extract information from the flows database by mining
its content. In this work, we will present a few insight-
ful analytics in the next section. However, several other
analytics can be added into the system easily.

4. ADVANCED ANALYTICS
In this section we describe some advanced analytics

using the data stored in the labeled flows database to
automatically discover information and discern the tan-
gled web.

4.1 Spatial Discovery of Servers
Today, CDNs and distributed cloud-based infrastruc-

tures are used to meet both scalability and reliability
requirements, decoupling the owner of the content and
the organization serving it. In this context some inter-
esting questions arise: (i) Given a particular resource
(i.e., a FQDN) what are all the servers or hosts that de-
liver the required content?, (ii) Do these servers belong
to the same or different CDNs?, and (iii) Do the CDNs
catering the resource change over time and geography?
(iv) Are other resources belonging to the same organi-
zation served by the same or different set of CDNs?
DN-Hunter can easily answer all of the above ques-

tions. Algorithm 2 shows the pseudo-code for the Spa-
tial Discovery functionality in DN-Hunter. The spatial
discovery module first extracts the second-level domain
name from the FQDN (line 4), and then queries the la-
beled flows database (line 5) to retrieve all serverIP ad-
dresses in flows directed to second-level domain (i.e., the
organization). Then, for every FQDN that belongs to
the organization, the spatial discovery module will ex-
tract the serverIP addresses that can serve the request
(line 6-9) based on the DNS responses. This enables
the module to: (i) Discover the information about the
structure of servers (single server, or one/many CDNs)
that handle all queries for the organization, (ii) Dis-
cover which servers handle a more specific resource. For
example, different data centres/hosts may be serving

1: SPATIAL DISCOVERY(FQDN)
2: Input: The targeted FQDN
3: Output: ranked list of serverIP addresses
4: 2ndDomain ← FQDN.split()
5: ServerSet←

F lowDB.queryByDomainName(2ndDomain)
6: FQDNset← 2ndDomain.query()
7: for all FQDN in FQDNSet do

8: FQDN.ServerSet←
F lowDB.queryByDomainName(FQDN)

9: end for

10: Return(FQDN.ServerSet.sort(), ServerSet.sort())

Algorithm 2: Spatial Discovery Analytics Alg

the content for mail.google.com and scholar.google.com,
and (iii) Automatically keep track of any changes (over
time) in serverIP addresses that satisfy a given FQDN.
Note that the ability of DN-Hunter to easily track tem-
poral and spatial changes in the FQDN-serverIP ad-
dress mapping also enables some basic anomaly detec-
tion. While out of scope of this paper, consider the
case of DNS cache poisoning where a response for cer-
tain FQDN suddenly changes and is different from what
was seen by DN-Hunter in the the past. We can easily
flag this scenario as an anomaly, enabling the security
operator to take some action if required.

4.2 Content Discovery
As we saw in the previous subsection, a particular re-

source can be served by one or more CDNs or cloud in-
frastructures, and the spatial discovery analytics mod-
ule provides deep insights into this. However, it is also
important to understand tangle from another perspec-
tive. In other words, we need to answer the following
questions: (i) Given a particular CDN what are the dif-
ferent resources that they host/serve? (ii) What is the
popularity of particular CDNs in different geographies?
(iii) Given two CDNs, what are the common resources
that they both host?, and (iv) Does a given CDN fo-
cus on hosting content for certain types of services (like
real-time multimedia streaming, mail, etc.)?
Once again DN-Hunter can answer the above ques-

tions easily based on the mapping stored in the flows
database and using the whois database to associate IP
addresses to CDNs. The complete algorithm for the
content discovery module is shown in Algorithm 3. The
algorithm takes a ServerIPSet, e.g., the set of serverIP
addresses belonging to one or more CDNs, and extracts
all the FQDNs associated with them (line 4-7). Depend-
ing on the desired granularity level, either the complete
FQDN or only part of the FQDN (say, the second-level
domain) can be considered. If only the second-level do-
mains are considered, then the algorithm will return
all the organizations served by the set of serverIP ad-
dresses provided as input. However, if only service
tokens are used (we will discuss this in the next sub-
section), then the algorithm will return which popular

6

1: CONTENT DISCOVERY(ServerIPSet)
2: Input: The list of targeted serverIP

3: Output: The list of handled FQDNs
4: DomainNameSet← F lowDB.query(ServerIPSet)
5: for all FQDN in DomainNameSet do

6: TokenSet← DomainName.split(FQDN)
7: end for

8: for all Token in TokenSet do

9: Token.score.update()
10: end for

11: Return(Tokens.sort())

Algorithm 3: Content Discovery Analytics Alg

services are hosted by the input serverIP addresses.

4.3 Automatic Service Tag Extraction
Identifying all the services/applications running on a

particular layer-4 port number is a legacy problem that
network administrators encounter. Even today there
are no existing solutions that can identify all application
on any given layer-4 port number. In fact, the network
administrators depend on DPI solutions to address this
problem. DPI technology can only provide a partial so-
lution to this problem due to two reasons: (1) Several
services/applications use encryption and hence bypass
DPIs, and (2) DPI devices can only identify those ser-
vices/applications for which they already have a signa-
ture, thus severely limiting the coverage.
DN-Hunter provides a simple automated way to ad-

dress the above issue. The algorithm for extracting
service tags on any layer-4 port number is shown in
Algorithm 4. The input to the algorithm are the tar-
get port number and the k value for the top-k ser-
vices to be identified. The algorithm first retrieves all
FQDNs associated to flows that are directed to dPort

(line 4). Each FQDN is then tokenized to extract all
the sub-domains except for the TLD and second-level
domain. The tokens are further split by considering
non-alphanumeric characters as separators. Numbers
are replaced by a generic N character (lines 5-7). For
instance, smtp2.mail.google.com generates the list of to-
kens {smtpN, mail}.
We use the frequency of tokens as measure of “rele-

vance” of the token for the targeted port (lines 8-10).
To mitigate the bias due to some clients generating a
lot of connections to a FQDN having the same token X ,
we use a logarithmic score. Mathematically, let NX(c)
be the number of flows originated by clientIP c having
the token X . Then the score of X is:

score(X) =
∑

c

log(NX(c) + 1) (1)

Tokens are then ranked by score and the top-k tokens
are returned to the users (line 11). Depending on the
final goal, different criteria can be applied to limit the
list of returned tokens. For instance, the list can simply

1: TAG EXTRACTION(dPort, k)
2: Input: targeted dPort, k of tags to return
3: Output: The ranked list of tags
4: DomainNameSet← F lowDB.query(dPort)
5: for all FQDN in DomainNameSet do

6: TokenSet← DomainName.split(NoTLD|NoSLD)
7: end for

8: for all Token in TokenSet do

9: Token.score.update()
10: end for

11: Return(Tokens.sort(k))

Algorithm 4: Service Tag Extraction Analytics Alg

be limited to the top 5%, or to the subset that sums to
the n-th percentile. Typically, the score distribution is
very skewed, as we will show in Sec. 5.

5. EXPERIMENTAL RESULTS
In this section, we present the results from using DN-

Hunter on the traces mentioned in Sec. 2. We begin the
discussion here by showing evidence of how tangled is
the web today in terms of content, content providers,
and hosts serving the content. We then present the
results that clearly highlight the advantages of using
DN-Hunter in an operational network compared to the
existing solutions for traffic visibility and policy enforce-
ment. In fact, DN-Hunter is now implemented as part of
two different DPI tools and is deployed to provide traf-
fic visibility to network operators. In the second half of
this section we will present results from our advanced
analytics modules to demonstrate the wide applicability
and usefulness of DN-Hunter.

5.1 The Tangled Web
The basic hypothesis of this paper is that the web

today is intertwined with content, content providers,
and hosts serving the content, and we need a method-
ology to untangle this mess. In addition, the tangle
keeps changing over time and space. The top plot of
Fig. 3 reports, for each FQDN, the overall number of
serverIP addresses that serve it. In the bottom plot
of Fig. 3 we show the opposite - the number of differ-
ent FQDNs a single serverIP address serves. Fig. 3
was generated using the EU2-ADSL dataset, however,
all the other datasets produced very similar result. We
can clearly see that one single serverIP is associated
to a single FQDN for 73% of serverIP s, and 82% of
FQDNs map to just one serverIP . But more impor-
tant to note is that there are FQDNs that are served
by hundreds of different serverIP addresses. Similarly
a large number of FQDNs are served by one serverIP .
Notice the x-axis in this figure is presented in log scale.
Just looking at the one-to-many mapping between

FQDN and serverIP addresses reveals only a small
part of the complexity. Now let us add time into the
mix. Fig. 4 shows the number of serverIP addresses

7

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 1 10 100 1000

C
D

F

IP

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 1 10 100 1000

C
D

F

Domain Names

Figure 3: Number of serverIP addresses asso-
ciated to a FQDN (top) and number of FQDN
associated to a ServerIP (bottom). EU2-ADSL.

that have been observed responding to some selected
well-known second-level domains. We consider time
bins of 10min, covering a 24h period from EU1-ADSL2
dataset. For some of the domains (like fbcdn.net and
youtube.com) we can clearly see a diurnal pattern with
more serverIP s being used during late evening when
compared to early morning. In fact, for youtube.com

we can see that there is a big and sudden jump in the
number of serverIP s between 17:00 and 20:30. This re-
flects a change in the YouTube policies, triggered by the
peak-time load. The domain fbcdn.net (owned by Aka-
mai and serving Facebook static content) shows similar
characteristics with more than 600 different serverIP

addresses serving content in every 10min interval be-
tween 18:00 and 20:00. Finally, some of the other do-
mains like blogspot.com (aggregating more than 4,500
total FQDN) are served by less than 20 serverIP s even
during peak traffic hours.
Fig. 5 reports the number of different FQDNs that

were served every 10min by different CDNs and cloud
providers over a period of 24h. The MaxMind organiza-
tion database was used to associate serverIP addresses
to organization. We can clearly see that Amazon serves
more than 600 distinct FQDN in every 10 min interval
during peak hours (11:00 to 21:00). In total, Amazon
served 7995 FQDN in the whole day. While Akamai
and Microsoft also serve significant number of FQDNs
during peak hours, other CDNs like EdgeCast serve less
than 20 FQDNs.
Another aspect worth noting here is that association

between FQDNs and CDNs change over time and space
(i.e., geography). Due to space constraints we do not
present these results here. However, all of the above
results clearly show why it is very hard to discern and
control the traffic in today’s networks! In fact, there is
clear need for a solution like DN-Hunter that can track
these changes seamlessly to ensure traffic visibility at
any point in time. Surprisingly, the results presented in

 0

 100

 200

 300

 400

 500

 600

 700

00:00 04:00 08:00 12:00 16:00 20:00

nu
m

be
r

of
 s

er
ve

rI
P

time

twitter.com
youtube.com

fbcdn.net
facebook.com
blogspot.com

Figure 4: Number of IP addresses serving some
particular 2nd-level domain name. EU1-ADSL2.

 0

 100

 200

 300

 400

 500

 600

 700

00:00 04:00 08:00 12:00 16:00 20:00

nu
m

be
r

of
 a

ct
iv

e
F

Q
D

N

time

akamai
amazon
google
level 3

leaseweb
cotendo

edgecast
microsoft

Figure 5: Number of FQDN served by CDNs
through a day. EU1-ADSL2.

this section for motivating the need for a solution like
DN-Hunter could not have been produced if we did not
have DN-Hunter!

5.2 Traffic Visibility and Policy Enforcement
The key feature of DN-Hunter is to provide a “label”

(i.e., the FQDN that the client was contacting) to every
flow in the network automatically. To show how this la-
beling evolves over time, we show the results from our
live deployment in EU1-ADSL2 for a period of 18 days
in April, 2012. In Fig. 6 we report the total number of
unique FQDNs over time. The plot shows the growth
of unique entities - FQDNs, second-level domains, and
serverIP - over time. Once again we can clearly see
the diurnal pattern where the increase in unique enti-
ties is much higher during the day than the night. Af-
ter a steep growth during the first few days, the num-
ber of unique serverIP addresses and second-level do-
mains reach a saturation point and do not grow much.
This result basically indicates that the same serverIP

addresses are used to serve the contents for the same
organizations (i.e., second-level domains). However, a
surprising result is regarding the unique FQDNs. As we
can see, the number of unique FQDNs keeps increasing
even after 18 days of observation. In 18 days we saw

8

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

04/01 04/03 04/05 04/07 04/09 04/11 04/13 04/15 04/17

to
ta

l n
um

be
r

FQDN
2nd-level-domain

serverIP

Figure 6: Unique FQDN, 2nd level domain
names and IP birth processes. EU1-ADSL2 live.

more than 1.5M unique FQDNs and it was still growing
at the rate of about 100K per day. This reflects the fact
that the content being accessed on the Internet keeps
growing, with new services popping up regularly. The
main take away point is that in order to get fine-grained
traffic visibility (and thus be applied for policy enforce-
ment), it is critical to use a tool like DN-Hunter that
can dynamically keep track of the content and their as-
sociation with content providers and the hosts serving
the content.

5.2.1 The Case of Encrypted Traffic

As we mentioned earlier, one of the main advantages
of DN-Hunter when compared to traditional DPI solu-
tions is its ability to label encrypted (TLS/SSL) flows.
Traditional DPI solutions cannot identify encrypted traf-
fic by inspecting the packet content and matching it
against a signature. However, the DPI solution can be
modified to inspect the certificates exchanged during
the TLS/SSL handshake to figure out the server name
of the organization that will provide the content.
In order to compare the certificate inspection ap-

proach with DN-Hunter, we implement the certificate
inspection functionality in Tstat. Tab. 4 compares cer-
tificate inspection approach with DN-Hunter for all TLS
flows in the EU1-ADSL2 dataset. Results show that
DN-Hunter clearly outperforms the certificate inspec-
tion approach. For 23% of the flows in the trace there
was no certificate, while for 40% of the flows the server
name in the certificate was totally different from the
FQDN. For the other 37% of the flows that matched
the second-level domain name in the FQDN, only 18%
matched the complete FQDN. The main problems with
the certificate inspection approach are three-fold: (i)
The server name can be “generic”, e.g., ∗.google.com,
thus not giving the fine-grained visibility into the actual
services. (ii) The server name may indicate the server
used by the hosting CDN and may not reflect anything
about the service, e.g., a248.akamai.net in the certifi-
cate for providing Zynga content, and (iii) Certificate

Certificate equal FQDN 18%
Generic certificate 19%

Totally different certificate 40%
No certificate 23%

Table 4: Comparison between the server name
extracted from TLS certificate-inspection and
the FQDN using DN-Hunter. EU1-ADSL2.

exchange might happen only the first time a TLS/SSL
server is contacted and all other flows following that will
share the trust. Thus using such an approach is almost
infeasible.

5.3 Spatial Discovery of Servers
The main goal of the spatial discovery module is to

track a particular resource (FQDN or second-level do-
main) to understand which serverIP s and CDNs serve
the requested content. For the ease of exposition, in this
section, we will focus on two specific second-level do-
mains - LinkedIn and Zynga. Fig. 7 shows the mapping
between the various FQDNs of LinkedIn and the CDNs
serving the content in US-3G dataset. The oval nodes
represent DNS tokens extracted from the FQDNs, while
arcs connect the tokens to reconstruct the FQDN. The
numbers in these tokens are represented as a generic
letter, N . The rectangular nodes group tokens by the
CDN hosting them based on the information from the
MaxMind database. To illustrate the concept better let
us consider the leftmost branch in Fig. 7. The complete
FQDN is the concatenation of all the tokens, i.e., me-
diaN.linkedin.com. These FQDNs are served by Akamai
CDN using 2 servers and accounts for 17% of the total
flows destined to linkedin.com. In order to limit the size
of the figure, we have hidden 7 different tokens in the
rightmost branch of the tree.
From the figure, it is easy to see that LinkedIn relies

on the service offered by several CDN providers. Only
the www.linkedin.com FQDN along with 7 other FQDNs
are served by Linkedin managed servers. Most of the
static content is served by hosts in three different CDNs
- Akamai, CDNetwork, and Edgecast. In fact, EdgeCast
serves 59% of all flows with a single serverIP address.
On the contrary, CDNetworks, serves only 3% of flows
with 15 different serverIP addresses.
Let us now consider the second sample domain - Zynga

(see Fig. 8). We can see that Amazon EC2 cloud ser-
vice provides computational resources required for the
games while Akamai CDN hosts most of the static con-
tent. Some services/games like MafiaWars are served
directly by Zynga owned servers. Interestingly, about
500 Amazon serverIP addresses are contacted and they
handle 86% of all Zynga flows. Akamai serves fewer re-
quests (7%); yet, 30 different serverIP are observed.
Given that the off-line analyzer relies on actual mea-

9

Akamai
Servers 2

Flows 17%

CDNetworks
Servers 15
Flows 3%

Edgecast
Servers 1

Flows 59%

Linkedin
Servers 3

Flows 22%

linkedin.com

mediaN media staticNmediaNplatform www7

Figure 7: Linkedin.com domain structure served
by two CDNs. US-3G.

surement of network traffic, it is able to capture both
the service popularity among the monitored customers,
and the bias induced by the server selection and load
balancing mechanisms. To elaborate this further, let
us consider Fig. 9. Each of the three sub-figures corre-
sponds to a different content provider (i.e., the second-
level domain name). For each of these content providers
we plot the access patterns in three of our traces (EU1-
ADSL1, US-3G, and EU2-ADSL). In other words, the
x-axis in each of these graphs are the CDNs hosting the
content and the y-axis represents different traces. No-
tice that for every CDN on the x-axis represents all the
accessed serverIP addresses that belong to the CDN.
Hence the width of the column representing each CDN
is different. Also, the gray scale of each block in the
graph represents the frequency of access; the darker is
a cell, the larger is the fraction of flows that a particular
serverIP was responsible for. The “SELF” column re-
ports cases in which the content providers and content
hosts are the same organization.
The top graph in Fig. 9 shows the access pattern

for Facebook. We can see that in all the datasets,
most of the Facebook content is hosted on Facebook
servers. The only other CDN used by Facebook is Aka-
mai, which uses different serverIP in different geo-
graphical regions. In the middle graph, we can see that
Twitter access patterns are a little different. Although,
Twitter relies heavily on its own servers to host content,
they also rely heavily on Akamai to serve content to
users in Europe. However, the dependence on Akamai
is significantly less the US. The bottom graph shows the
access patterns for Dailymotion, a video streaming site.
Dailymotion heavily relies on Dedibox to host content
both in Europe and US. While they do not host any
content in their own servers in Europe, they do serve
some content in the US. Also, in the US they rely on
other CDNs like Meta and NTT to serve content while
they rely a little bit on Edgecast in Europe.

5.4 Content Discovery
Although the spatial discovery module provides in-

valuable insight into how a particular resource is hosted
on various CDNs, it does not help in understanding the
complete behavior of CDNs. In the content discovery
module our goal is to understand the content distri-
bution from the perspective of CDNs and cloud service

Akamai
Server 30
Flows 7%

Amazon
Servers 498
Flows 86%

Zynga
Server 28
Flows 7%

zynga.com

support

petville

static

treasure

frontierville

iphone.stats

fishville.facebook

frontier

cityville

cafe

fish

petville

toolbar

rewards

sslrewards

zbar

treasure

accounts

glb.zyngawithfriends

www|mwms|navN|zpayN|forum|secureN

track

streetracing.myspaceN

mafiawars

vampires

poker

assets

avatars

zgn

zpay

zbar

12

fb_client_N

fb_N

devN.cclough

myspace.esp

facebookN

facebook

mobile

Figure 8: Zynga.com domain structure served
by two CDNs. US-3G.

providers. Tab. 5 shows the top-10 second-level domains
served by the Amazon EC2 cloud in EU1-ADSL1and
US-3G. Notice that one dataset is from Europe and the
other from US. We can clearly see that the top-10 in
the two datasets do not match. In fact, some of the
popular domains hosted on Amazon for US users like
admarvel, mobclix, and andomedia are not accessed on
Amazon by European users, while other domains like
cloutfront, invitemedia, and rubiconproject are popular
in both the datasets. This clearly show that the popu-
larity and access patterns of CDNs hosting content for
different domains depend on geography; extrapolating
results from one geography to another might result in
incorrect conclusions.

5.5 Automatic Service Tag Extraction
An interesting application of DN-Hunter is in identi-

10

facebook.com

SELF
akamaiUS-3

G
EU2-

ADSL

EU1-
ADSL1

 0
 0.01
 0.02
 0.03
 0.04
 0.05

twitter.com

SELF
akamai

EU1-ADSL1US-3
G

EU2-
ADSL

EU1-
ADSL1

 0
 0.01
 0.02
 0.03
 0.04
 0.05

dailymotion.com

SELF
dedibox

edgecast
meta nttUS-3

G
EU2-

ADSL

EU1-
ADSL1

 0
 0.01
 0.02
 0.03
 0.04
 0.05

Figure 9: Organizations served by several CDN
according to viewpoint.

Rank US-3G % EU1-ADSL1 %
1 cloudfront.net 10 cloudfront.net 20
2 invitemedia.com 10 playfish.com 16
3 amazon.com 7 sharethis.com 5
4 rubiconproject.com 7 twimg.com 4
5 andomedia.com 5 amazonaws.com 4
6 sharethis.com 5 zynga.com 4
7 mobclix.com 4 invitemedia.com 2
8 zynga.com 3 rubiconproject.com 2
9 admarvel.com 3 amazon.com 2
10 amazonaws.com 3 imdb.com 1

Table 5: Top-10 domains hosted on the Amazon
EC2 cloud.

fying all the services/applications running on a particu-
lar layer-4 port number. This application is only feasi-
ble due to the fined grained traffic visibility provided by
DN-Hunter. To keep the tables small, we only show the
results extracted on a few selected layer-4 ports for two
data sets - EU1-FTTH (Tab. 6) and US-3G(Tab. 7).
In these tables we show the list of terms along with the
weights returned by the Service Tag Extraction Analyt-
ics algorithm (Algorithm 4). The last column in each
of these tables is the ground truth obtained using Tstat
DPI and augmented by Google searches and our domain
knowledge.
We can clearly see that the most popular terms ex-

tracted in both the datasets in fact represents the ap-
plication/service on the port. Some of them like pop3,
imap, and smtp are very obvious by looking at the top
keyword. However, some of the other are not very ob-
vious, but can be derived very easily. For example,
consider the port 1337. TCP port 1337 is not a stan-

Port Keywords GT
25 (91)smtp, (37)mail, (22)mxN, (19)mailN,

(18)com, (17)altn, (14)mailin,
(13)aspmx, (13)gmail SMTP

110 (240)pop, (151)mail, (68)popM, (33)mailbus POP3
143 (25)imap, (22)mail, (12)pop, (3)apple IMAP
554 (1)streaming RTSP
587 (10)smtp, (3)pop, (1)imap SMTP
995 (101)pop, (37)popN, (31)mail, (20)glbdns

(20)hot, (17)pec POP3S
1863 (21)messenger, (5)relay, (5)edge, (5)voice,

(2)msn, (2)com, (2)emea MSN

Table 6: Keyword extraction example consider-
ing well-known ports. EU1-FTTH.

Port Keywords GT
1080 (51)opera, (51)miniN Opera Browser
1337 (83)exodus, (41)genesis BT Tracker
2710 (62)tracker, (9)www BT Tracker
5050 (137)msg, (137)webcs,

(58)sip, (43)voipa Yahoo Messager
5190 (27)americaonline AOL ICQ
5222 (1170)chat Gtalk
5223 (191)courier, (191)push Apple push services
5228 (15022)mtalk Android Market
6969 (88)tracker, (19)trackerN,

(11)torrent, (10)exodus BT Tracker
12043 (32)simN, (32)agni Second Life
12046 (20)simN, (20)agni Second Life
18182 (92)useful, (88)broker BT Tracker

Table 7: Keyword Extraction for frequently used
ports; Well-known ports are omitted. US-3G.

dard port for any service and even a google search for
TCP port 1337 does not yield straight forward results.
However by adding “exodus” and “genesis”, the main
keywords extracted in DN-Hunter, to the google search
along with TCP port 1337 immediately shows that this
port in US-3G dataset is related to www.1337x.org Bit-
Torrent tracker.

5.6 Case Study - appspot.com Tracking
In this section, we want to present a surprising phe-

nomenon that we discovered using DN-Hunter’s ability
to track domains. Let us consider the domain appspot.com.
Appspot is a free web-apps hosting service provided by
Google. The number of applications, CPU time and
server bandwidth that can be used for free are limited.
Using the labels for various flows in the labeled flows
database we extract all traffic associated with services
and subsequently understand the kind of applications
are hosted here.
Fig. 10 shows the most relevant applications hosted

on appspot as a word cloud where the larger/darker
fonts represent more popular applications. Although
appspot is intended to host legacy applications, it is easy
to see that users host applications like “open-tracker”,
“rlskingbt”, and the like. A little more investigation re-
veals that these applications actually host BitTorrent
trackers for free. With the help of the information from

11

Figure 10: Cloud tag of services offered by
Google Appspot. EU1-ADSL2 live.

Service Type Services Flows C2S S2C
Bittorrent 56 186K 202MB 370MB
Trackers
General 824 77K 320MB 5GB
Services

Table 8: Appspot services. EU1-ADSL2 live.

DN-Hunter and also the Tstat DPI deployed at the Eu-
ropean ISP, we find that there are several trackers and
other legacy applications running in the appspot.com
site. We present the findings in Tab. 8. As we can
see, BitTorrent trackers only represent 7% of the ap-
plications but constitute for more flows than the other
applications. Also, when considering the total bytes
exchanged for each of these services, the traffic from
client-to-server generated by the trackers is a signifi-
cantly large percentage of the overall traffic.
In Fig. 11 we plot the timeline (in 4hr intervals) of

when the trackers were active over a period of 18 days.
A dot represents that the tracker was active at that
time interval. We assign each tracker an id, starting at
1 and incrementally increasing based on the time when
it was first observed. Of all the 45 trackers observed in
this 18 day period, about 33% (red ids 1-15) of them re-
mained mostly active for all the 18 days. Trackers with
ids 26-31 (blue) exhibit a unique pattern of on-off peri-
ods. In other words, all of these trackers are accessed
in the same time intervals. Such a synchronized behav-
ior indicates, with high probability, that one BitTorrent
client may be part of a swarm. Interestingly, checking
the status of the trackers, we verified that most of them,
while still existing as FQDN, run out of resources and
made unavailable from Google. They live as zombies,
and some BitTorrent clients are still trying to access
them.

6. DIMENSIONING THE FQDN CLIST
In Sec. 3, we presented the design of the DNS resolver.

One of the key data structures of the DNS resolver is
the FQDN Clist. Choosing the correct size for the Clist
is critical to the success of DN-Hunter. In this section
we will present a methodology to choose the correct
value of L (size of the Clist) and the real-time constraint
implication.
Fig. 12 shows the Cumulative Distribution Function

(CDF) of the “first flow delay”, i.e., the time elapsed

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

01/04 03/04 05/04 07/04 09/04 11/04 13/04 15/04 17/04

id

time

Figure 11: Temporal evolution of the BitTorrent
trackers running on Appspot.com. EU1-ADSL2
live.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01
 0.1

 1 10
 300

 1800
 3600

 7250

C
D

F

time [s]

EU1-ADSL1
EU1-ADSL2

EU1-FTTH
US-3G

EU2-ADSL

Figure 12: Time elapsed between DNS response
and the first TCP flow associated to it.

between the observation of the DNS response directed
to clientIP and the first packet of the first flow di-
rected to one of the serverIP addresses in the answer
list. Semilog scale is used for the sake of clarity. In all
datasets, the first TCP flow is observed after less than
1s in about 90% of cases. Access technology and snif-
fer placement impact this measurement; for instance,
FTTH exhibits smaller delays, while the 3G technology
suffers the largest values.
Interestingly, in all traces, for about 5% of cases the

first flow delay is higher than 10s, with some cases larger
than 300s. This is usually a result of aggressive pre-
fetching performed by applications (e.g., web browsers)
that resolve all FQDNs found in the HTML content be-
fore a new resource is actually accessed. Table 9 quan-
tifies the fraction of “useless” DNS responses, i.e., DNS
queries that were not followed by any TCP flow. Sur-
prisingly, about half of DNS resolutions are useless. Mo-
bile terminals are less aggressive thus resulting in lower
percentage of useless responses.
Fig. 13 shows the CDF of the time elapsed between

12

Trace Useless DNS
EU1-ADSL1 46%
EU1-ADSL2 47%
EU1-FTTH 50%
EU2-ADSL 47%

US-3G 30%

Table 9: Fraction of useless DNS resolution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01
 0.1

 1 10
 300

 1800
 3600

 7200

C
D

F

time [s]

EU1-ADSL1
EU1-ADSL2

EU1-FTTH
US-3G

EU2-ADSL

Figure 13: Time elapsed between a DNS re-
sponse and any TCP flow associated to it.

the DNS response and any subsequent TCP flow the
client establishes to any of the serverIP addresses that
appeared in the answer list. It reflects the impact of
caching lifetime at the local DNS resolver at clients.
The initial part of the CDF is strictly related to the
first flow delay (Fig. 12); subsequent flows directed to
the same FQDN exhibit larger time gaps. Results show
that the local resolver caching lifetime can be up to
few hours. For instance, to resolve about 98% of flows
for which a DNS request is seen, Clist must handle an
equivalent caching time of about 1 hour.
Fig. 14 shows the total number of DNS responses ob-

served in 10m time bins. As we can see, at the peak
time about 350,000 requests in EU1-ADSL1 dataset. In
this scenario, considering a desired caching time of 1h,
L should be about 2.1M entries to guarantee that the
DNS resolver has an efficiency of 98%.
We have also checked the number of serverIP ad-

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00
02:00

04:00
06:00

08:00

D

N
S

 r
es

po
ns

es

Time

EU1-ADSL1
EU1-ADSL2

EU1-FTTH
US-3G

EU2-ADSL

Figure 14: DNS responses observed during a day
by intervals of 10 minutes in EU1-ADSL1.

dresses returned in each DNS response. Since the clientIP
can choose any one of the serverIP addresses to open
the data connection, all of the serverIP addresses must
be stored in the DNS resolver. The results from all the
datasets are very similar with about 40% of responses
returning more than one serverIP address. About 20-
25% of responses include 2-10 different ip-addresses.
Most of these are related to servers managed by large
CDNs and organizations. For example, up to 16 serverIP s
are returned when querying any Google FQDN. The
maximum number exceeds 30 in very few cases.
Finally, we consider the eventual confusion that can

occur in case the same clientIP is accessing two or
more FQDNs hosted at the same serverIP . DN-Hunter
would return the last observed FQDN, thus possibly re-
turning incorrect labels. We examined the our traces
to see how frequently such a situation occurs. What we
observed was that most common reason for this is due
to http redirection, e.g., google.com being redirected to
www.google.com and then to www.google.it. Excluding
these cases, the percentage of possible confusion reduces
to less than 4%. Note that DN-Hunter could easily be
extended to return all possible labels.

6.1 Deployment issue
DN-Hunter is a passive sniffer which assumes to ob-

serve DNS and data traffic generated by the end-users.
The natural placement of the sniffer is at the network
boundaries, where end-users’ traffic can be observed.
The Flow Sniffer and the DNS Response Sniffer may
also be placed at different vantage points, e.g., the latter
may be located in front of (or integrated into) the inter-
nal DNS server to intercept all DNS queries. Consider-
ing DNS traffic sniffing, DNSSEC [3] poses no challenge
since it does not provide confidentiality to DNS traffic.
DNSCrypt [4], a recent proposal to encrypt DNS traffic,
on the contrary, would make the DNS Response Sniffer
ineffective. DNSCrypt is not yet widely deployed and
it requires significant DNS infrastructure [4] changes to
be pragmatic in the near future [5].

7. RELATED WORK
DNS has been a popular area of research over the

past few years. I this section we will highlight the main
differences between DN-Hunter and some of the other
related works.
The first set of related work focusses on exploring the

relationship between CDNs and DNS mainly to study
the performance and load balancing strategies in CDNs [6–
8]. Ager et al. [9] complement this by proposing an au-
tomatic classifier for different types of content hosting
and delivery infrastructures. DNS traces actively col-
lected and provided by volunteers are analyzed, in an
effort to provide a comprehensive map of the whole In-
ternet. DN-Hunter is similar in spirit, but leverages

13

DNS information in a completely passive manner and
focuses on a broader set of analytics.
Similar to our work, [10,11] focus on the relationship

between FQDNs and the applications generating them
mainly in the context of botnet detection. However, in
DN-Hunter, we mainly focus on identifying and label-
ing various applications in the Internet. Furthermore,
we focus on some advanced analytics to shed light on
problems that are critical for untangling the web.

[12] analyze the DNS structure using available DNS
information on the wire. The authors define 3 classes
of DNS traffic (canonical, overloaded and unwanted),
and use the “TreeTop” algorithm to analyze and visu-
alize them in real-time, resulting in a hierarchical rep-
resentation of IP traffic fractions at different levels of
domain names. DN-Hunter goes beyond the visualiza-
tion of DNS traffic as the set of domain names being
used by users in a network, and provides a much richer
information to understand today’s Internet.
The same authors above extend their analysis on DNS

traffic in [13]. Their proposal is similar to the DN-
Hunter Sniffer goal, even if not designed to work in real
time: flows are labeled with the original resource name
derived from the DNS (as in the Flow Database). Then,
flows are classified in categories based on the labels of
the DNS associated entries. This allows to recover the
“volume” of traffic, e.g., going to .com domain, or to
apple.com, etc. Authors then focus on the study of
breakdown of traffic volumes based on DNS label cate-
gories. As presented in the paper, DN-Hunter Analyzer
performs much more advanced information recovery out
of DNS traffic.
In [14], the authors focus on security issues related to

DNS prefetching performed by modern Internet browsers,
specifically the fact that someone inspecting DNS traf-
fic can eventually reconstruct the search phrases users
input in the search boxes of the browser. Their method-
ology is somewhat similar to the one DN-Hunter uses
to associate tags to network ports, but the objective is
completely different.

8. CONCLUSIONS
In this work we have introduced DN-Hunter, a novel

tool that links the information found in DNS responses
to traffic flows generated during normal Internet usage.
Explicitly aimed at discerning the tangle between the
content, content providers, and content hosts (CDNs
and cloud providers), DN-Hunter unveils how the DNS
information can be used to paint a very clear picture,
providing invaluable information to network/security
operators. In this work, we presented a several differ-
ent applications of DN-Hunter, ranging from automated
network service classification to dissecting content de-
livery infrastructures.
We believe that the applications of DN-Hunter and

of the Analyzer in particular, are not limited to the
ones presented in this work, and novel applications can
leverage the information the labeled flows database.

9. REFERENCES
[1] V. Gehlen, A. Finamore, M. Mellia, and

M. Munafò. Uncovering the big players of the
web. In TMA Workshop, pages 15–28, Vienna,
AT, 2012.

[2] A. Finamore, M. Mellia, M. Meo, M.M. Munafo,
and D. Rossi. Experiences of internet traffic
monitoring with tstat. Network, IEEE, 25(3):8
–14, may-june 2011.

[3] R. Arends et. Al. RFC 4033 - DNS Security
Introduction and Requirements, March 2005.

[4] Introducing DNSCrypt (Preview Release),
February 2011. http:
//www.opendns.com/technology/dnscrypt/

[5] B. Ager, H. Dreger, and A. Feldmann. Predicting
the DNSSEC Overhead using DNS Traces. In
40th Annual Conference on Information Sciences
and Systems, pages 1484–1489. IEEE, 2006.

[6] S. Triukose, Z. Wen, and M. Rabinovich.
Measuring a Commercial Content Delivery
Network. In ACM WWW, pages 467–476.,
Hyderabad, IN, 2011.

[7] A.J. Su, D.R. Choffnes, A. Kuzmanovic, and F.E.
Bustamante. Drafting Behind Akamai: Inferring
Network Conditions Based on CDN Redirections.
IEEE/ACM Transactions on Networking,
17(6):1752–1765, 2009.

[8] C. Huang, A. Wang, J. Li, and K.W. Ross.
Measuring and Evaluating Large-scale CDNs. In
ACM IMC, pages 15–29, Vouliagmeni, GR, 2008.

[9] B. Ager, W. Mühlbauer, G. Smaragdakis, and
S. Uhlig. Web Content Cartography. ACM IMC,
pages 585–600, Berlin, DE, 2011.

[10] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet
Detection by Monitoring Group Activities in DNS
Traffic. In IEEE CIT , pages 715–720.,
Fukushima, JP, 2007.

[11] S. Yadav, A.K.K. Reddy, AL Reddy, and
S. Ranjan. Detecting Algorithmically Generated
Malicious Domain Names. In ACM IMC, pages
48–61., Melbourne, AU, 2010.

[12] D. Plonka and P. Barford. Context-aware
Clustering of DNS Query Traffic. In ACM IMC,
pages 217–230., Vouliagmeni, GR, 2008.

[13] D. Plonka and P. Barford. Flexible Traffic and
Host Profiling via DNS Rendezvous. In Workshop
SATIN, 2011.

[14] S. Krishnan and F. Monrose. An Empirical Study
of the Performance, Security and Privacy
Implications of Domain Name Prefetching. In
IEEE/IFIP DSN, Boston, MA, 2011.

14

