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Abstract

We consider a model for the heat equation with memory, which
has infinite propagation speed, like the standard heat equation. We
prove that, in spite of this, for every T > 0 there exist square integrable
initial data which cannot be steered to hit zero at time T , using square
integrable controls.

We show that the counterexample we present complies with the
restrictions imposed by the second principle of thermodynamics.
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1 Introduction

Heat equation with memory has a long history and it is now an active field of
research (see the book [1]). Controllability problems for this equation have
been studied in recent times by many authors, with different methods (see
references below). In the linear approximation, the equation boils down to
the following integrodifferential equation (see for example [6]):

∂u(x, t)

∂t
+ γu(x, t) +

∫ t

−∞
M(t− s)u(x, s) ds

= k0∆u(x, t) +

∫ t

−∞
N(t− s)∆u(x, s) ds . (1)

Here x ∈ Ω, a smooth region, and ∆ denotes the laplacian. In order to have
a well posed problem, we need initial conditions, which are

u(x, t) = φ(x, t) for t < 0, u(x, 0) = u0(x) (2)

and suitable boundary conditions (in this paper we consider Dirichlet bound-
ary conditions).

Problem (1)-(2) with boundary conditions of Dirichlet type may or may
not be well posed depending on the values of the constants γ and k0 and the
properties of the kernels M(t) and N(t) but, even if well posed, the equations
might contrast with the principles of thermodynamics: conditions have to be
imposed on the constants and the kernels not only for the well posedness of
the equation but also in order to have a process which is acceptable from
the point of view of thermodynamic. The condition k0 ≥ 0 is obvious, while
the assumptions on the kernels required further investigation, based on the
second principle of thermodynamics, see for example [10]. We recall these
conditions in Section 3.

We mention now that Eq. (1) was first introduced to model heat diffusion
in materials with memory (or in the extreme case of very low temperature)
but it turned out to be important also to model nonfickian diffusion in materi-
als with complex molecular structure, like polymers. See [7, 18] for overviews
on these applications.

The dynamical behavior of Eq. (1) strongly depends on whether k0 = 0
or k0 > 0. The case k0 = 0 was proposed by Gurtin and Pipkin in [11]
(and in a special case by Cattaneo) in order to have a “hyperbolic” type
of behavior (in particular, finite propagation speed. This requires smooth
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kernels with N(0) > 0.) Instead, if k0 > 0 we have infinite propagation
speed, more similar to the standard (memoryless) heat equation. The case
k0 > 0 corresponds to a general model proposed in [4, 5] by Boltzmann (and
in a special case by Maxwell.)

Now we discuss the results on controllability which are available up to
now. In order to study controllability, we can assume u = 0 for t < 0 so that
integrals are restricted to [0, t] and only the initial condition u(x, 0) = u0(x)
is required. In fact, the history up to time t0 = 0, if nonzero, contributes
a known additive term to the equation. When studying controllability, we
can assume that this contribution is equal to zero and this does not change
positive results on exact controllability or negative results concerning lack of
controllability. So, from the point of view of controllability, we have to study
the Volterra integrodifferential equation

∂u(x, t)

∂t
+ γu(x, t) +

∫ t

0

M(t− s)u(x, s) ds

= k0∆u(x, t) +

∫ t

0

N(t− s)∆u(x, s) ds (3)

with known initial condition u(x, 0) = u0(x).
Furthermore, the control can act either on ∂Ω or in a subregion of Ω.

We shall study the case that the control acts in the boundary condition of
Dirichlet type.

It is easy to guess that it is not possible to control the system to the
rest, i.e. to have u(x, t) = 0 for every t large enough (unless u0 = 0) a fact
rigorously proved in [12]. So, the control problem to be studied is whether we
can hit any prescribed target ξ(x) at a certain time T , i.e. if we can achieve
u(x, T ) = ξ(x), starting with a known initial condition. This problem has
been studied for the Gurtin-Pipkin equation (i.e. the case k0 = 0) in several
papers with several different methods (see [3, 13, 14, 15, 16, 17] for boundary
control and [9] for internal control.) The result is similar to the results which
hold for the wave equation without memory: there exists a time T such
that every square integrable target can be reached using square integrable
controls.

When k0 > 0 the dynamical behavior of the systems is more similar to
that of the heat equation, and we can conjecture analogous controllability
results: using square integrable controls, a dense subset of L2(Ω) can be hit
starting from zero (a fact proved in [3] for a special and important class of
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kernels) and every initial condition u0 can be steered to hit zero at a certain
time T which, in the case of the heat equation, can be taken arbitrarily
small. Our goal here is to disprove this last conjecture. We present a simple
example which has the following property: for every T > 0 there exist square
integrable initial conditions u0 such that the condition u(x, T ) = 0 is not
achievable using square integrable controls. In order to see this, we present
a counterexample and, furthermore, we shall see that this counterexample is
not artificial, since this simple model is acceptable from the thermodynamics
point of view.

2 The counterexample

The counterexample is the following simple model:

∂u(x, t)

∂t
+ u(x, t)−

∫ t

0

e−(t−s)u(x, s) ds

=
∂2u(x, t)

∂x2
+

∫ t

0

e−(t−s)∂
2u

∂x2
(x, s) ds

u(x, 0) = ξ(x) x ∈ [0, π] , u(π, t) = 0 ∀t ≥ 0 . (4)

The control acts at x = 0:

u(0, t) =

√
π

2
g(t) (5)

(the multiplicative constant is used to simplify the following computations.)
Define

un(t) =

√
2

π

∫ π

0

u(x, t) sinnx dx

Using (4) we see that

u′n = −(n2 + 1)un − (n2 − 1)

∫ t

0

e−(t−s)un(s) ds+ nf(t). (6)

where f(t) and g(t) are related by

f(t) = g(t) +

∫ t

0

e−(t−s)g(s) ds ,

g(t) = f(t)−
∫ t

0

e−2(t−s)f(s) ds .

(7)
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In order to solve (6), we first study the case that f(t), hence g(t), is of class
C1. So, we can differentiate both the sides and we obtain

u′′n = −(n2 + 1)u′n − (n2 − 1)un + (n2 − 1)

∫ t

0

e−(t−s)un(s) ds+ nf ′(t).

The integral term is computed from (6) and we get

u′′n = −(n2 + 2)u′n − 2n2un + nf(t) + nf ′(t) (8)

with the initial conditions{
un(0) = ξn =

√
2/π

∫ π

0
ξ(x) sinnx dx ,

u′n(0) = −(n2 + 1)un(0) + nf(0) = −(n2 + 1)ξn + nf(0) .
(9)

The characteristic equation of Eq. (8) is λ2 +(n2 +2)λ+2n2 = 0 and the
eigenvalues are λ1 = −2, λ2 = −n2. So, the solutions of Eq. (8) are

un(t) = Ae−2t +Be−n2t +

+
n

2− n2

∫ t

0

[
e−n2(t−s) − e−2(t−s)

]
[f(s) + f ′(s)] ds =

= e−2t

[
A+

n

2− n2
f(0)

]
+ e−n2t

[
B − n

2− n2
f(0)

]
+

n

2− n2

∫ t

0

f(s)
[
(1− n2)e−n2(t−s) + e−2(t−s)

]
ds

Imposing the initial conditions (9) we see that

A =
n

n2 − 2
f(0)− ξn

n2 − 2
, B =

n2 − 1

n2 − 2
ξn −

n

n2 − 2
f(0) .

Hence

un(t) =

(
1

2− n2
e−2t +

n2 − 1

n2 − 2
e−n2t

)
ξn+

+
n

2− n2

∫ t

0

[
(1− n2)e−n2(t−s) + e−2(t−s)

]
f(s) ds.

(10)

Note that the transformation f → un is affine and continuous from
L2(0, T ) to C(0, T ) for every T ≥ 0. Hence, (10) is the solution of Eq. (8)
with initial condition un(0) = ξn for every square integrable f .
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If there exists f ∈ L2(0, T ) such that u(·, T ) = 0 ∈ L2(0, π) then every
component un(T ) has to be zero and this function f solves the moment
problem

n

∫ T

0

[
(1− n2)e−n2s + e−2s

]
f(T − s) ds =

=
(
−e−2T + (1− n2)e−n2T

)
ξn.

(11)

We replace f(t) with its expressions given in (7). We get, when n ≥ 2:∫ T

0

f(T − s)e−n2s ds =

∫ T

0

g(T − s)e−n2s ds+

+

∫ T

0

(∫ T−s

0

e−(T−s−τ)g(τ) dτ

)
e−n2s ds =

=

∫ T

0

g(T − s)e−n2s ds

+

∫ T

0

g(τ)

(∫ T−τ

0

e−(T−τ)e−(n2−1)s ds

)
dτ =

=

∫ T

0

g(T − τ)e−n2τ dτ +

+
1

n2 − 1

[∫ T

0

g(T − τ)e−τ dτ −
∫ T

0

g(T − τ)e−n2τ dτ

]
.

and, analogously,∫ T

0

f(T − s)e−2s ds =

∫ T

0

g(T − s)e−2s ds+

+

∫ T

0

e−2s

(∫ T−s

0

e−(T−s−τ)g(τ) dτ

)
ds

=

∫ T

0

g(τ)e−(T−τ) dτ.

Then, the moment problem (11) takes the form

n(n2 − 2)

∫ T

0

g(T − τ)e−n2τ dτ =

=
[
e−2T − (n2 − 1)e−n2T

]
ξn n ≥ 2 .

(12)
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Our goal now is the proof that this moment problem is not solvable. It is
sufficient that we prove that the equations which correspond to every n > N ,
with N large enough, constitute a moment problem which is not solvable.

Let T > 0 be fixed and let N > 0. We consider the operator TN : l2 7→ l2

defined as follows: the k-entry of the sequence (TN ({ξn}n>N) ) is

(TN ({ξn}n>N) )k = e−2T
[
1− (k2 − 1)e−(k2−2)T

]
ξk .

Clearly, this operator is linear and continuous. Our starting point is the
following simple observation:

Lemma 1 Let T > 0 be fixed. There exists a number N = NT such that the
operator TN is boundedly invertible.

Proof. For every T > 0 there exists N such that for every k > N we have

0 < (k2 − 1)e−(k2−2)T <
1

2
.

Then we have

‖TN({ξn}n>N)‖l2 ≥
e−2T

2
‖{ξn}n>N‖l2

from which the result follows.

We examine now the moment problem (12) with any fixed T > 0 and we
prove that it is not solvable. For this, it is sufficient to prove that the subset
of the equations of index n > NT is not solvable (NT is the number specified
in Lemma 1).

Lemma 1 shows that we can replace (12) for n > NT with

n(n2 − 2)

∫ T

0

e−n2sg(T − s)ds = cn, n ≥ NT . (13)

Here, {cn}n>NT
∈ l2 is arbitrary.

Now we need few definitions and properties of sequences {en} in a Hilbert
space H: 1) the sequence {en} is minimal if we have, for every k, ek /∈
cl span{en , n 6= k}; 2) a sequence {ψn} is biorthogonal to {en} if and only if
〈en, ψj〉H = δnj (δnj is the Kronecker symbol); 3) the sequence {en} admits
biorthogonal sequences if and only if it is minimal and its admits a unique
biorthogonal sequence if and only if it is (minimal and) complete in H; 4)
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any minimal sequence {en} always admits a unique “optimal” biorthogonal
sequence, i.e. a sequence whose elements have minimal norm and this is the
unique biorthogonal sequence whose elements belong to cl span{en}.

Now we invoke [2, Theorem I.2.1]: the moment problem (13) is solvable if
and only if {n(n2−2)e−n2s}n>NT

is ∗-uniformly minimal i.e. it is minimal and
has (at least) one biorthogonal sequence {ψn}n>NT

which is bounded (see [2,
Definition I.1.15] and note that this terminology is not universally accepted.)

So, our goal is achieved if we prove:
zProof Let T > 0 be fixed, and let NT be the number in Lemma 1. The
sequence {n(n2 − 2)e−n2t}n≥NT

(t ∈ [0, T ]) has no bounded biorthogonal
sequence in L2(0, T ).

Proof. It is sufficient to prove that the sequence {n(n2 − 2)e−n2t} in
L2(0, T ) does not have a bounded biorthogonal sequence. We consider the
sequence {e−n2t} first.

By the Theorem of Muntz (see [19]), the sequence {e−n2t} is minimal and
not complete in L2(0,∞). Denote by E(∞) the closed space generated by
{e−n2t} in L2(0,∞). The subspace E(∞) of L2(0,∞) is known as a Muntz
space (see [8, 19]). Denote by E(T ) the closed linear subspace of L2(0, T )
generated by {e−n2t} and let PT : L2(0,∞) → L2(0, T ) be the operator
PTf = f |(0,T ). The operator PT is linear and bounded and, by a theorem of
Schwartz (see [19, formula (9.a) p. 55]), PT is an isomorphism between E(∞)
and E(T ).

We have to be precise on this point: below we shall consider PT as an
isomorphism between the two Hilbert spaces E(∞) and E(T ) so that its
Hilbert space adjoint acts from the Hilbert space E(T ) to the Hilbert space
E(∞) and it is an isomorphism too.

We introduce a convenient notation: we will denote by en the function
e−n2t considered in L2(0,∞) and by eT

n its restriction to (0, T ).
Suppose that {ψ̃n} is any biorthogonal to {eT

n} in L2(0, T ). Our goal is
the proof that the sequence {ψ̃n} is not bounded (in fact, we shall see that
it is exponentially unbounded.)

Let ψn be the orthogonal projection of ψ̃n on E(T ) = cl span {eT
n}. Then,

{ψn} is biorthogonal to {eT
n} too and

‖ψn‖L2(0,T ) ≤ ‖ψ̃n‖L2(0,T ) .

We have
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δjn = (ψj, e
T
n )L2(0,T ) = (ψj, e

T
n )E(T ) =

= (ψj, PT en)E(T ) = (P ∗
Tψj, en)E(∞)

and it follows that {P ∗
Tψn} is biorthogonal to {en} and furthermore ϕn =

P ∗
Tψn ∈ E(∞) since PT ∈ L(E(∞), E(T )). Hence, {ϕn} is the “optimal”

biorthogonal sequence of {en}.
In [8] the authors construct explicitly the “optimal” sequence {ϕn} biorthog-

onal to {en} and for this sequence {ϕn} the following asymptotic relation is
proved (see [8, Lemma 3.1]):

||ϕn||L2(0,∞) =
2

n2
e[π+O(1)]n, n→∞ . (14)

Since P ∗
T ∈ L(E(T ), E(∞)) is boundedly invertible, there exist positive

numbers m and M such that for every n we have

m‖ψn‖L2(0,T ) ≤ ‖P ∗
Tψn‖L2(0,+∞) ≤M‖ψn‖L2(0,T )

and we noted P ∗
Tψn = ϕn. It follows that

‖ψ̃n‖L2(0,T ) ≥ ‖ψn‖L2(0,T ) ≥
1

M
‖ϕn‖L2(0,∞) ∀n. (15)

We recapitulate: we see from (14) that any biorthogonal sequence of
{e−n2t} in L2(0,+∞) is exponentially unbounded and from (15) we see that
any biorthogonal sequence of {e−n2t}n≥NT

in L2(0, T ) is exponentially un-
bounded too.

Let now {ψ̂n}n>NT
be a biorthogonal sequence of {n(n2 − 2)e−n2t}n≥NT

in L2(0, T ). The sequence of the vectors ψ̂n/n(n2 − 2) is a biorthogonal to
{e−n2t}n≥NT

in L2(0, T ) and we have seen that such biorthogonal sequence

must be exponentially unbounded. So, the sequence {ψ̂n}n>NT
is exponen-

tially unbounded too.

In conclusion, any biorthogonal sequence of {n(n2 − 2)e−n2s}n>NT
in

L2(0, T ) is unbounded and so, from [2, Theorem I.2.1], the moment prob-
lem (13) is not solvable and we conclude:

Theorem 2 Let T > 0 be arbitrary. There exist initial conditions ξ(x) ∈
L2(0, π) such that the condition u(·, T ) = 0 ∈ L2(0, π) cannot be achieved
using g ∈ L2(0, T ).

So, system (4)-(5) is the counterexample to controllability we were looking
for.

9



3 Thermodynamics conditions

Finally we show that our counterexample, i.e. Eq. (4) has been given for
an equation which is physically significant, since it satisfies the conditions
in [10, Sect. 2], derived from the constraints imposed by the second law of
thermodynamics. In order to check this, we must recall the Boltzman model,
which is as follows: the internal energy ε(x, t) and the heat flux q(x, t) are
related by

ε(x, t) = ε0 + α0u(x, t) +

∫ t

−∞
α′(t− s)u(s) ds

q(x, t) = −k0∇u(x, t)−
∫ t

−∞
k′(t− s)∇u(x, s) ds

where u denotes temperature (the reason why the kernels are written as
derivatives depends on the usual presentation of the Boltzman model, first
written using Stieltjes integrals which are then integrated by parts. So, this
notation is of no consequence here).

Equation (1) is obtained combining these relations with conservation of
energy, i.e.

dε(x, t)

dt
= −∇ · q(x, t)

which gives

α0ut + α′(0)u(x, t) +

∫ t

−∞
α′′(t− s)u(s) ds =

= k0∆u(x, t) +

∫ t

−∞
k′(t− s)∆u(x, s) ds .

The conditions to be imposed to the constants and the kernels are:

• α0 > 0;

• α′(t) ∈ L1(0,+∞), k′(t) ∈ L1(0,+∞) (vanishing memory);

• second law of of thermodynamics, which holds if and only if{
k0 +

∫ +∞
0

k′(s) cosωs ds > 0 ∀ω ∈ R ,

ω
∫ +∞

0
α′(s) sinωs ds > 0 ∀ω 6= 0 .

(16)
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Comparing with (4), we see that

α0 = 1 , α′(0) = 1 , α′′(t) = −e−t , k0 = 1 , k′(t) = e−t .

So, k′(t) and α′(t) = e−t belong to L1(0,+∞). The cosine Fourier transform
of k′(t) and the sine Fourier transform of α′(t) are respectively 1/(1 + ω2)
and ω/(1 + ω2) from which conditions (16) are easily seen.

Remark 3 Essentially with the same computations as in Section 2, we can
see that controllability does not hold for the equation

ut = uxx − u+

∫ t

0

uxx(s) ds i.e. vt = vxx +

∫ t

0

e(t−s)vxx(s) ds

(replace v(x, t) = etu(x, t)). We didn’t present the computations for this
equation which does not satisfies the physical constraints. The point is not
so much that the kernel is not integrable on [0,+∞). In fact, when working
on [0, T ] we can redefine the kernel to be equal to 0 for t > T . The point is
that such a kernel would not satisfy the positivity constraints (16).
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