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ABSTRACT 

An efficient transient analysis of lossy lines with nonlin- 
ear loads requires the ability to compute and represent 
a suitable set of line impulse responses. In this paper, 
we propose the evaluation of the matched-line impulse 
responses by means of an algorithm for the numerical in- 
version of the Laplace Transform. Based on a discussion 
of the structure of the impulse responses, we demonstrate 
how, for this class of functions, the method proposed is 
particularly effective and convenient, in comparison with 
the conventional FFT approach. We also compare the 
line responses due to the exact per-unit-length resistance 
of a circular wire with those due to a simplified model, 
and find a non negligible influence on the integrity of the 
signals that propagate on the line. 

INTRODUCTION 

Owing to the diffusion of nonlinear devices and the ten- 
dency towards decreasing rise times of the signal wave- 
forms, the transient analysis of multiconductor trans- 
mission lines has become of central importance in the 
study of complex electric and electronic systems. In the 
last years, a great deal of work has been done on this 
subject and now many interesting solution scheme are 
available. In particular, the approach consisting in char- 
acterizing the line with impulse responses and solving 
transient equations at the line ends looks very promising 
(e.g., see papers in [l, 21). An example of this technique 
is given by the two matched transient scattering equa- 
tions 

characterizing the lossy line, and the two reflection equa- 
tions for the terminal loads ( p  = l ,  2) 
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where yo is the line transient characteristic admittance, 
gp represents the possibly nonlinear load characteristic 
and ep is a source term. Besides, though this set of 
equations describes a scalar line, its matrix extension to 
the case of a lossy multiconductor line is straightforward, 
by means of the modal decomposition [3]. 

To be feasible and convenient, however, the approach 
based the line transient characterization requires the 
ability to compute and represent a suitable set of line 
impulse responses. Such requirement is not trivial to be 
met, because the line responses affect the precision and 
the efficiency of the transient simulation. In this paper, 
we propose the evaluation of the line impulse resposes of 
(1) and (2) by means of an algorithm for the numerical 
inversion of the Laplace Transform [4]. We choose the 
impulse responses arising from the matched scattering 
formulation, since it seems that this line representation 
is best suited for the inverse transformation. 

Last, please note that, throughout the paper, lower case 
letters denote time domain variables and upper case let- 
ters indicate their counterparts in the frequency domain. 

RLC LINE CHARACTERISTICS 

In the case of the matched scattering characterization, 
a lossy line, whose per-unit-length parameters are L,  C, 
and R(s)  (G is neglected, since its effects usually take 
place only at very high frequencies), is described in terms 
of a transmission function 

S L  ’ 
and a characteristic admittance 

(4) 

where s is the complex angular frequency, C is the line 
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length, v = 1/&? is its phase speed, and YLC = 
is the LC-characteristic admittance 

The line characteristics are expressed here in the fre- 
quency domain, as it is natural. However, for the time 
domain approach of (1) and (2), the transmission im- 
pulse response of the matched line h ( t ) ,  and the transient 
characteristic admittance yo(t), are needed. 

MATCHED-LINE RESPONSE 
In order to obtain a better insight into the structure of 
the line impulse response, it is convenient to introduce 
the following normalized time and complex frequency 
quantities: 

T = u t ,  S = C + j S 2 = s / v I  (5) 
where v = v R ( 0 ) Y ~ c .  Also, the numerical evaluation 
of h ( t )  is facilitated by the extraction of the asymptotic 
linear phase sC/v (that causes a time delay T = C/v in 
h(t)) from the propagation factor y. Then we concen- 
trate on the inverse trasformation of 

- H ( S )  = G ( S )  = S({  j? 1 + - - l}, (6) 

where ( = YL_cR(O)C, r ( S )  = R(Sv)/R(O),  and we ob- 
tain h ( t )  = uh(u(t - r ) ) .  It should be pointed out that 
the normalized line delay 7 = UT = u C / u  coincides with 
<. 

In order to deal with an explicit form of (6), we consider 
the simple per-unit-length resistance model of a coaxial 
cable [5], i.e., 

r(s) = ~JTs)QJ~(~~QJTs))/J~(~~QJTs)) (7) 
where JO and J1 are Bessel functions, and Q = 
d-. 
Figure 1 shows the numerical approximation of h com- 
puted from (6) by means of the Hosono algorithm [4] , for 
Q = 0.547 ( e . g . ,  v = 3 x 10' m/s, YLC = 0.01 a-'), and 
< = 0.1, t = 5. Logarithmic scales are needed to visu- 
alize on the same plot both the short and the long time 
parts of the h function, since they have markedly differ- 
ent time constants. In order to verify the results of the 
numerical inversion, it is convenient to take advantage 
of the fact that the high- and low-frequency approxima- 
tions of G(S)  produce two asymptotically exact short- 
and long-time parts of h [3], i.e., 

G,(S) =2(Q& - 
h,(T) = q A  exp{-l/Tq} , ('1 4- 

where q = (4/tQ)' znd 11 the modified Bessel func- 
tion. The shapes of h, and h, are also shown in Fig. 1, 
on a log-log scale; an example of their appearence on 
linear scales can be found in [3]. 
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Figure 1: Impulse response X(T) of an R L C  line, com- 
puted by numerical  inversion of the Laplace 23-azsform 
h o l i d  line), and i t s  exact asymptot ic  behaviors h, and 
h,  (dashed and dotted curves ,  respectively) (Q = 0.547 
and = 0.1, 5). Logarithmic scales are used for both 
normalized funct ion and normalized t i m e  axes. 

The curves of Fig. 1 are useful to assess the dependence 
of the function h on the agount  of line losses. For small 
E ,  h nearly coincides with h, for small t iEe  values, while, 
at larger t;mes, h nearly coincides with hc For large e ,  
however, h, is inadequate to  approximate h for small val- 
ues of T .  The transitions between these two behaviours 
can be extimated around ( = 2. Therefore, the type of 
the time response can be effectively classified with the 
help of the parameter (. In fact, the impulse response of 
a line with ( < 2 (low-loss l ine)  is characterized by an 
initial peak due to high-frequency losses, with a duration 
much shorter than the line delay T ,  and a slow evolution 
for longer times, for which h cx 1/@. Additio_nally, 
the time instant T, (T, % 1 in Fig. 1) a t  _which h of a 
low-loss line switches from the ha to the h, behaviour 
appears almost independent of (. This means that the 
impulse response of a low-loss line is mainly determined 
by skin losses up to t ,  = UT,, and by DC losses beyond 
t ,  . 
The normalized form of (4) is 

J r ( S )  - 
Y ( S )  = YO(SU)/YLC = 1/ 1 + - S , (10) 

and yo(t) = uy(vt) .  Figure 2 shows, on a log-log scale, 
the numerical approximation of -g  computed from (10) 
by means of the method [4], and for Q = 0.547. 

As for h, we compare the result of the numerically com- 
puted J with its exact short- and long-time parts, which 
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are obtained from the indicated high- and low-frequency 
approximations of F: 

+ J,((T) =6(T) - -  (11) 
- 

2m ’ 
Y , ( S )  = 1 - - 

2 J s  

The functions -J, and -J,. are shown for comparison in 
Fig. 2. 
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Figure 2: Transient admittance J ( T )  of an RLC line, 
computed b y  numerical inversion of the Laplace Trans- 
form (solid line), and its exact analytical short- (dashed 
curve) and long-time (dotted curve) behaviours (Q = 
0.547). Logarithmic scales are used for both normalized 
function and normalized time axes. 

COMPUTATIONAL COST 
AND ACCURACY 

The difficulty to obtain the line transient impulse re- 
sponses via the inverse FFT algorithm is widely recog- 
nized in the literature. For example, the standard FFT 
algorithm would require lo5 uniformly spaced time sam- 
ples to represent the curves of Fig. 1 for < = 0.1 in a 
time window [0,10] and with a resolution of On 
the contrary, the adoption of a Laplace Transform inver- 
sion algorithm, working for arbitrary time points, allows 
us to effectively evaluate those functions that contain dif- 
ferent time scales. In fact, the h curves of Fig. 1 were 
obtained for 50 samples, logarithmically spaced in time, 
each of which was computed by means of the method 
[4] that required the function evaluation at 13 frequency 
values. 

The method adopted was tested for the functions G, 
and G, , whose corresponding exact impulse responses 
are known. Possible values of the method parameters 
were determined: k = 10, m = 3, a = 5 (the meaning of 
such parameters is omitted here for brevity: see [4]) and 
were found adequate to obtain a relative error less than 

5 ~ 1 0 - ~  for T > Tpeak, Tpeak being the time where 5; is 
maximum. 

The closeness of the numerical approximation to both 
the short- and long-time asymptotic solutions can be 
directly appreciated from Fig. 1: this is a remarkable 
feature of the method for this class of functions. Be- 
sides, the inherent erior of this method for the h func- 
tions is bounded by h(T)  exp{ -2u) for any T > Tpeak 
[4]. However, the approximation error grows for T +. 0, 
and increasingly higher values of the method parameters 
(k, m, U) are required to obtain acceptable results at 
time values smaller than those shown in Fig. 1 .  Usu- 
ally, this problem appears only at the very begitning of 
the approximated curve, where the behaviour of h is not 
relevant (in fact, the line model applies only for a finite 
band, and therefore the time response is uncertain be- 
fore a minimum time value); in any case, the inversion 
method of [SI works effectively for short times, and can 
be applied, if needed, to reconstruct the initial part of h.  

Also the transient characteristic admittance is not easily 
computed via the FFT algorithm. In fact, yo has a finite 
asymptotic value and a singularity of the type l/fi for 
t = 0 (see (4) and Fig. 2), which prevents from a direct 
application of the FFT inversion. 

The accuracy and efficiency considerations given for 5; 
hold also for J, including the agreement with the short- 
and long-time reference solution. A further remarkable 
feature is the insensitivity of the numerical method to 
the b(T) term of the impulse response, since the curve of 
Fig. 2 is obtained without the extraction of the asymp- 
totic part of (10). 

EFFECT OF THE RESISTANCE MODEL 

An important question, not yet addressed, is the influ- 
ence of the per-unit-length line resistance model on the 
line impulse response and on the transient simulations. 
Regardless of the line transverse geometry, the frequency 
behaviour of its per-unit-length resistance is usually ap- 
proximated by the Holt’s model [7], whose normalized 
form reads 

rh(s)  = 1 + Q/&, (13) 

where Q’ E Q for a circular wire. Figure 3 compares 
the h functions obtained with the method of [4] for the 
exact resistance model of a circular wire (7) and for the 
Holt’s resistance model. The impulse responses shown in 
Fig. 3 mainly differ in the transit@ between the short- 
and the long-time regime, where h correponding to the 
accurate resistance model presents a more pronounced 
kink. This is explained by the observation that the time 
interval where the impulse responses differ corresponds 
to the frequency interval where the resistance models 
switch from the DC to the skin effect behaviour: in this 
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region, the approximated resistance model is smoother 
than the accurate one. 
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Figure 3: Comparison of functions of a coaxial RLC 
line obtained with the approximate resistance model 
(dashed curve) and with the exact resistance model (solid 
curve). (Q = 0.547, ( = 1). 
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Figure 4: Far-end response of a matched line computed 
b y  means of the impulse responses of Fig. 3. The solid 
line refers to the exact resistance model, the dashed line 
to the approximate model, and the dotted line is the input 
signal. 

This difference can have a non negligible influence on 
the deformation of the signals that propagate on the line, 
and this consideration provides a good motivation for the 
application of the proposed numerical inversion methods 
that are able to handle more accurate line parameter 
models. We believe that this motivation applies also to 
the work of [8], where, however, no discussion of the 
impulse response structure and of the results obtained is 
given. 

As an example, Fig. 4 shows the voltage signal at the 
end of a matched transmission line for the two impulse 
responses of Fig. 3 and for a raised cosine input signal of 
amplitude 1 V and unit normalized rise time. The dif- 

ferent waveform distortion estimated by the two models 
can be clearly seen. 

CONCLUSIONS 

Impulse responses of RLC lines are analysed with the 
help of a numerical Laplace Transform inversion algo- 
rithm. This approach is shown to be well suited in this 
case, since two very different time scales are present in 
the function behaviour. In fact, the absence of need for 
a linear sampling increases the efficiency of this method 
over the conventional FFT algorithm. Additionally, this 
method guarantees a very good accuracy of the results at 
a reduced computational cost and is superior to the FFT 
algorithm. Finally, we can handle more accurate models 
of the frequency dependence of the per-unit-length line 
parameters. The results of this work can be exploited 
for an efficient and accurate implementation of the tran- 
sient analysis of electrical networks containing nonlinear 
elements interconnected by lossy and possibly multicon- 
ductor lines. 
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