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Abstract* 

Evaluating the faulty behavior of loiv-cost 
microprocessor-based boards is an increasingly 
important issue, due to their usage in nun2 safety 
critical systems. To address this issue. the paper 
describes a Software-implemented Fault Injection 
system based on the trace exception mode available in 
most microprocessors. The architecture of the complete 
Fault Injection environment is proposed, integrating 
modules for generating a fault list, for performing their 
injection and for gathering the results, respectively. 
Datu gathered from some sample benchmark 
applications are presented. The main advantages of the 
approach are low cost, good portabili5, and high 
efficiency. 

1. Introduction 

Our society is facing an increasing dependence on 
computing systems, even in areas (e.g., air and railway 
traffic control, nuclear plant control, aircraft and car 
control) where a failure can be critical for the safety of 
human beings. A major problem in the development of 
safety-critical systems is the accurate determination of 
the dependability properties of the system. Unlike 
performance, fault-tolerance and reliability can not be 
evaluated through the use of benchmark programs and 
standard test methodologies, only, but requires 
observing the system behavior when a fault appears into 
the system. Since MTBF (Mean Time Between Failure) 
in a safety-critical system can be of the order of years, 
fault occurrence has to be artificially accelerated in 
order to observe the system behavior under faults 
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without waiting for the natural appearance of actual 
faults. 

In many cases, Fault Injection [ClPr95] emerged as a 
viable solution, and has been deeply investigated by 
both academia and industry. Several Fault Injection 
techniques have been proposed and practically 
experimented; they can basically be grouped into 
simulation-based techniques [JAR0941 [DJPr96], 
software-implemented techniques [KKAb95] [CMSi95] 
[HSRo95], and hardware-based techniques [AAACgO] 
[KLDJ94]. As pointed out in [IyTa96], simulated fault 
injection is more suited for the early design phase, 
while physical fault injection (hardware- and software- 
implemented fault injection approaches) is more suited 
for the prototype and production phases of a system. 
The software-implemented approach can be effective 
when simple boards have to be analyzed, and hardware 
fault injectors, although generally less intrusive, are 
often too cumbersome and expensive. 

This paper presents a software-implemented fault 
injection system, which is particularly suited for 
microprocessor-based boards. The main characteristics 
of the approach are the robustness, the reduced 
intrusiveness into the target system, the low cost (it 
does not require any special hardware device), the high 
speed (which allows a higher number of faults to be 
considered), the low requirements in terms of features 
provided by the Operating System, the flexibility (it 
supports different fault types), and the high portability 
(it can be easily migrated to address different target 
systems). 

The kernel of the system is a Fault Injection 
Manager, which is based on the truce exception mode 
available in most microprocessors. A Trace procedure is 
automatically activated after the execution of every 

proper time, and the triggering of possible time-out 
conditions. 

The overall system runs on two different units, 
connected by a serial port interface: a host computer 
and the actual target board. The communication 

instruction, thus allowing the injeotion of the fault at the 
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interface, the downloading of the code into the target 
board, and the analysis of the system behavior, exploit 
the routines available through the built-in ROM 
Monitor of the target board. 

The tool is able to inject faults in the memory image 
of the process (daia and code) and in the user registers 
of the processor. 

The adopted fault model is the transient single bit- 
flip fault. This model is frequently used in fault 
injection tools [KKAb95] [DJPr96] since it is highly 
representative of faults occurring in real systems 
[LalaGI. Nevertheless, the approach can be easily 
extended to other fault models. Moreover, since Fault 
Injection aims at reproducing the behavior of actual 
faults that can appear in any moment during the system 
operation, the injection time is an additional degree of 
freedom that has to be taken into account while 
generating the fault list. Each fault is thus characterized 
by the following information: 

fault injection time: each fault is injected at the 
assembly level, before the execution of an 
instruction. The fault injection time is thus expressed 
in terms of number of instructions executed since the 
beginning of thi: application execution; 
fault location: the address of the memory location or 
the register where the fault has to be injected; 
fault mask: the bit mask that selects the bit(s) that 
has (have) to bet flipped. 
Therefore, for the purpose of the experiments 

described in this paper, each fault corresponds to 
flipping a single bit in a microprocessor register or in 
the memory area containing either the code or the data 
at a given time insfant (e.g. executed instruction) during 
the program execulion. 

Our technique is ideally suited to systems whose 
behavior, in presence of a given sequence of input 
stimuli, can be de terministically computed and easily 
reproduced. Moreover, in the present version we do not 
address the issue of checking the system behavior from 
the time point 01’ view: the extension to real-time 
systems composed of several interacting modules is 
currently under development. 

The approach resorts to Error Detection Mechanisms 
(EDMs) present in microprocessor-based systems: 
Hardware EDMs (I .e., system exceptions, built-in in the 
processor chip) and Software EDMs (i.e., software 
checks possibly inserted in the target application). 

A case study is presented in which a Motorola 
M68KIDP board [Mot0921 based on a M68040 
microprocessor is (considered; a prototypical version of 
a tool implementing the proposed approach has been 
setup, and some sample application programs are 
considered. 

The paper is organized as follows: Section 2 
describes the Fault Injection environment, and Section 3 
reports some experimental results; some conclusions are 
eventually drawn in Section 4. 

2. The Fault Injection System 

As illustrated in Fig. 1, the fault injection system can 
be divided in three sections: 

the Fault List Manager ( E M )  generates the fault 
list to be injected into the target system; 
the Fault Injection Manager (FIM) injects the 
faults into the target system; 
the Result Analyzer collects the results and 
produces a report concerning the whole Fault 
Iniection exDeriment. 

I 
I Target System 
I 

I 
I 
I 

Host Computer 

Fault-free I 
behavior 

I I  I I 

Fig. 1 : The Fault Injection environment. 

Since one of the main goals when setting up a Fault 
Injection environment is to minimize the intrusiveness 
into the target system, a host computer can be used to 
perform some of the tasks depicted in Fig. 1. The target 
system handles the serial communications exploiting 
the ROM monitor existing in most microprocessor 
system for debugging purposes. The host computer 
stores the relevant input and output information for the 
whole Fault Injection process (e.g., the Fault List, and 
the output statistics) and allows an easy interface 
towards the user, without introducing any overhead 
during the Fault Injection experiment. This solution 
presents several advantages: 

The intrusiveness into the target system is minimal. 
Only a small amount of additional code is present 
on the target system. Nevertheless, no code 
modification is required on the target application. 
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The overall environment is more robust; in fact. if 
the target system crashes, the host computer can 
keep the control of the environment, reset the target 
system, and resume the execution of the 
experiment. 
The fault list and the result information are safe; 
they cannot be corrupted by a target system crash 
or by an error in the memory area storing them. 

The main disadvantage of this approach is the slow- 
down factor caused by the communication through the 
serial interface. Nevertheless, this configuration can run 
the test of the target code in a worlung condition as 
close as possible to the real one. 

2.1. The Fault List Manager 

The Fault List Manager generates a random fault list 
according to some input constraints. To include in the 
proposed Fault Injection system more sophisticated 
fault list generation capabilities, we implemented a set 
of the collapsing rules presented in [BRIM981 and 
briefly outlined in the following. They aim at avoiding 
the injection of those faults whose behavior can be 
foreseen a priori. In particular, we can remove a fault 
from the Fault List when: 

the fault is guaranteed to trigger an Error Detection 
Mechanism; 
the fault is guaranteed not to have any effect on the 
target system behavior; 

0 the fault is equivalent to another fault already 
existing in the fault list. 

From a practical point of view, the implementation 
of the fault collapsing rules requires the availability of 
some information collected during a preliminary fault- 
free run of the target program. In particular we 
generated an instruction trace that includes the 
execution time, the address, and the operative code of 
all the executed instructions. The execution time 
corresponds to the number of instructions executed 
from the beginning of the experiment. The number of 
executed instructions is also exploited to trigger 
possibly time-out conditions during the actual 
experiments . 

Moreover, the system saves a copy of the data 
segment containing the results that it produced at the 
end of the fault-free run. This copy is then used to 
validate the application results at the end of each Fault 
Injection experiment. 

2.2. The Fault Injection Manager 

The Fault Injection Manager (FIM) is the most 
crucial part in the whole Fault Injection System. It is up 

to the FIM to activate and to continuously monitor the 
execution of the target application once for each fault in 
the fault list. When the fault injection time is reached, 
the fault injection is performed according to the fault 
type (e.g., single bit-flip) and location specified in the 
fault list. The pseudo-code of the FIM is reported in 
Fig. 2. 

void sau4t-Injection-Manager ( ) 
{ 

for(every fault f ,  in the fault list) 
( 
Environment-initialization(f,); 

in parallel do 
I 
Execute-target-application() ; 
Inject-fault (f,) ; 
Wait-for-completion(); 

} 

Analyze-results(); 
I 
return ( ) ; 

I 

Fig. 2: Pseudo-code of the Fault Injection Manager. 

Besides the target application code, in order to 
minimize the intrusiveness in the target system and to 
maintain the experiment as close as possible to the 
actual working conditions, only the I n  j ec t-f a u l  t 
and the Wait-for-completion modules are 
executed on the target board. All the other modules run 
on the host computer. 

The following paragraphs describe the different 
modules that compose the overall FIM code. 

2.2.1. Environment initialization 
This module is executed before the beginning of 

each new fault injection experiment in order to set up a 
fault-free environment where to execute the target code. 
The fault-free initial environment is necessary to avoid 
that the effects of a previous fault (e.g., corrupted bit in 
data and code memory sections) be still present in the 
environment where the new experiment is run. 

The first task of the 
envi r omrent-ini t i  a 1 i z a t i on module is thus 
to download from the host computer to the target board 
a fault-free copy of the target application program in the 
memory area where the program is going to be 
executed. 

To prevent its corruption during the experiments, the 
fault list is stored on the host computer. The second task 
of this module is thus to transfer on the target board the 
information concerning the fault to be injected and the 
time-out condition (e.g., the maximum number of 
instructions which can be executed before the time-out 
condition is activated. 
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2.2.2. Execute target application 
This module starts the execution of the target code in 

trace mode. The T::ace bit in the Status Register is 
enabled from the host computer using a ROM Monitor 
command. As depicted in Fig. 3, since the trace mode is 
enabled, after the execution of each assembly 
instruction a trace exception is triggered and the trace 
exception routine i:j executed. As explained in the 
following paragraph, this routine is in charge of 
injecting the fault and triggering possible time-out 
conditions. 

Instr 1 
Instr 2 

Instr i-1 
Instr i 
Instr it1 

Instr n 

... 

... 

U 

Fig. 3: Target code execution flow. 

2.2.3. Inject fault 
This module runs on the target board and is 

implemented by tk e trace exception routine. This 
routine is in charge of injecting the fault into the 
system: each time the procedure is executed, a variable 
that stores the number of executed instructions is 
incremented. As soon as this value matches the current 
injection time, the procedure performs the injection, 
e.g., flips a bit in  he target memory on in a target 
microprocessor register. 

2.2.4. Wait for completion 
After the injection of a fault the target code can 

behave mainly in three different ways: 
it can terminate without triggering any hardware 
EDMs, possibly with a failure in some output data 
result; 
it can trigger an hardware EDMs, and therefore 
force the execution of the relative exception 
routine; 
it can enter an mdless loop or force the system in 
an unknown state, and therefore cause a time-out 
condition. 

In the first case it is necessary to understand whether 
the fault caused a Fail-Silent behavior (i.e., the results 
are correct) or a Fail' Silent Violation Behavior (i.e., the 
program terminated correctly but providing wrong 
results). Therefore, t i e  Analyze-results ( ) module 
should be able to vsrify the correctness of the results 

0 

produced by the target application execution when it 
terminates without triggering any exception or time-out 
condition. It is up to the application programmer to 
write this procedure, which is highly dependent on the 
application itself. In our environment, the results 
produced by the target code are just compared with the 
ones computed during the preliminary fault-free run, 
but more sophisticated check procedures can be used if 
needed. 

To detect all faults triggering an exception during the 
system activity, we exploited the microprocessor built- 
in exception handling mechanism. We used the 
exception routines provided by the ROM Monitor 
present on the target board; these routines stop the 
execution of the target code and output an error 
message on the serial interface. 

In the third case, again the Trace exception routine is 
exploited to monitor the instruction counter; if its value 
exceeds a user-defined limit the experiment is 
terminated and a message is output on the serial 
interface. 

In all cases, the host computer captures the 
termination message from the target board, and initiates 
a new experiment. 

2.3. The Result Analyzer 

The Result Analyzer modules processes the system 
output behavior obtained through the Fault Injection 
experiments and produces a report concerning fault 
coverage information. The module runs on the host 
computer. Faults are classified according to four main 
categories: 

Fail-Silent: the fault has no effect on the system 
behavior. 
Detected by an EDM: the faulty system behavior 
triggers the activation of either a software or 
hardware EDM. 
Fail-Silent Violation: the faulty system behavior 
does not trigger any EDM, and the output results 
are different from the fault-free ones. 
Time-out: this category includes faults triggering 
the time-out condition. These faults alter the system 
behavior from a temporal point of view without 
triggering any EDM. 

3. Experimental results 

To evaluate the effectiveness of our Fault Injection 
approach, a case study is described below. 

The prototypical environment we considered is a 
commercial M68KIDP Motorola board [Moto92]. This 
board hosts a M68040 microprocessor with a 25Mhz 
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frequency clock, 2 Mbytes of RAhl memory, 2 RS-232 
Serial U 0  Channels. a Parallel Printer Port, and a bus- 
compatible Ethernet card. 

The Fault List Manager, the Fault Injection Manager 
and the Result Analyzer have been fully implemented in 
ISO-C and amount to about 2,000 source lines. 

Some simple programs have been adopted as 
benchmark target applications: 
0 Bubble Sort: an implementation of the bubble sort 

algorithm, run on a vector of 10 integer elements; 
Parser: a syntactical analyzer for arithmetic 
expressions written in ASCII format. The program 
also implements a simple software Error Detection 
Mechanism, which consists in verifying the 
correctness of each part of the expression; 
Matrix: a program performing the multiplication of 
two matrices composed of 10x1 0 integer values. 

For each target program, the fault list is composed of 
30,000 randomly selected faults located in the code 
(10,000 faults) and data (10,000 faults) memory area, as 
well as in the microprocessor registers (10,OOO faults). 

Based on the fault list generated by the Fault List 
Manager, the Fault Injection Manager orchestrates the 
Fault Injection experiments, whose results are reported 
in Table 1. 

0 

Sort 
% 

Bubble Sort 
I Code I Data I Reas 

Yo % 

Fail-Silent 
Fail-Silent Violation 
Detected bv an EDM 

60.62 62.86 32.09 
26.35 11.18 52.19 
11.98 24.40 14.54 

Table 1 : Faults injection report for the faults injected in 
the code, data and registers. 

Fault Category 
Fail-Silent 
Fail-Silent Violation 

The results of Table 1 show that the behavior of 
faults injected in the code area is more regular than that 

% % %  
58.10 66.11 70.81 
24.18 3 1.20 2.97 

of the faults injected in the data area, which highly 
depends on the characteristics of the considered 
application. As a further example, the reader should 
observe the very different percentages of Fail-Silent and 
Fail-Silent Violation Faults reported for the three 
benchmarks among those injected in the data area. 
Bubble and Parser are control-dominated programs: 
many variables (e.g., those associated with flags and 
loop indexes) are used for the execution flow control, 
and faults injected in them are likely to either trigger an 
EDM, or be fail-silent. On the other side, Matrix is data- 
dominated, and most variables contain data rather than 
control information. Faults injected in them are 
therefore more likely to generate Fail-Silent Violations. 

The Fault Coverage figures concerning the whole 
fault list are reported in Tab. 2. 

I I Bubble I Parser I Matrix I 

Bubble Sort 
[SI 

To ta 1 Time 1,455 

Parser Matrix 
[SI [SI 

2,279 2,537 Fault Category 
Fail-Silent 
Fail-Silent Violation 
Detected bv an EDM 

I Time-out I 1.06 I 1.56 I 1.19 I 

% % %  
63.96 64.34 82.73 
13.42 10.34 2.99 
20.24 24.30 13.48 

Table 2: Summary of Faults injection results. 

To quantitatively evaluate the time required to 
perform a fault injection experiment using the proposed 
environment, we compared the total time reported in the 
last row of Table 3 with the one required to execute 
30,000 time the same program with the same input data 
and without injecting any fault. The resulting ratio falls 
between 20 and 22 for the considered benchmarks. 

The main cause of this slow-down factor is the time 
spent to exchange information through the serial 
interface, which is equal to about 80% of the total time 
needed for the whole experiment. Nevertheless, this 
configuration can run the test of the target code in a 
working condition very close the real one, with a 
minimal code overhead and intrusiveness, since from 
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the beginning of the target program execution to its 
termination, no communication is required on the serial 
line. 

4. Conclusions 

In this paper we presented a Software-based fault 
injection environment suitable to be used for fault 
coverage evaluation on microprocessor-based boards. 

Our environment is composed of three main parts: 
the Fault list Manager to generate the Fault list, the 
Fault Injection Manager to perform Fault Injection, and 
the Result Analyzer to produce output reports. 

During each fault injection experiment, the target 
application program is executed in trace mode and the 
fault is injected by a suitably modified exception 
handler routine. In this way, faults can be injected into 
any location accessible through an Assembly 
instruction. Faults are injected without any change in 
the target application code and with very limited 
intrusiveness in the system behavior, the only overhead 
being in terms of an increase in the execution time with 
respect to a fault-free system. 

The approach is quite general and flexible, as it is 
based on common features supported by most 
microprocessors. Moreover, it does require neither 
dedicated hardware, nor any Operating System being 
present on the board, thus matching well the constraints 
of many low-cost embedded microprocessor-based 
systems. 

To practically evaluate the feasibility of the 
approach, a software fault injection environment has 
been set up for a Motorola M68KIDP board. The 
preliminary results gathered on some simple benchmark 
programs have kleen reported to demonstrate the 
advantages of the approach. 
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