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Abstract: The determination of disturbances in random
cable bundles requires a statistical approach combined
with the solution of non uniform transmission lines. The
analysis of such a bundle of wires is typically performed
in three steps: the generation of the bundle and its
subdivision in a chain of uniform lines, the evaluation of
the per-unit-length (p.u.l.) parameters in each cross
section, and the solution of the line. In this paper, we
propose a fractal generation of cables that is very fast
and it is able to generate realistic cables by means of one
tuning parameter. Line p.ul. capacitances and
inductances are evaluated through a very efficient
implementation of the method of moments with Fourier
expansion of the charge on conductors. The electrical
simulation of the line is then performed via a chain
matrix product of uniform sections.

Since a statistical characterisation of a random non
uniform line is extremely time consuming, Kriging
method is adopted, because it is based on a very
efficient fitting model that is able to describe the real
situation with a limited number of simulations.

1. Introduction

Crosstalk,  susceptibility =~ and  emissions from
interconnects are phenomena that are not negligible in
modern electronic applications. In a large number of
situations, these phenomena are of primary importance
because they are the cause of anomalies on electronic
equipments that may concern the safety of human beings
(for example, cruise controls in avionics and safety
systems in road vehicles).

Although the research activity in this field is well
developed, the study of EMC effects (interferences,
susceptibility, internal crosstalk) in random cables is
only at the beginning. The randomness of interconnects
having non-uniform cross section has an effect quite
important on the determination of disturbances in
practical cases. For example, if we turn attention to a
specific bundle of wires in a car, it shows a great
variability from one car to another because cables are
not completely fixed inside the body of the car and
because their physical realisation is not deterministic.
This means that it is not sufficient to study a single
realisation of a wire but a statistical approach is needed,

in order to analyse a great number of realisations of the
same interconnect. In fact, the most useful information
for the designer is the statistics of the disturbances on a
given interconnect, and not simply their value due to a
single realisation.
The analysis of randomly twisted bundles of wires
requires the following steps:
- the construction of the random non-uniform line
- the evaluation of the p.u.l. parameters (depending on
the longitudinal coordinate)
- the computation of the line response
the statistical elaboration of the results.
The simulated construction of a non-uniform bundle of
wires is a critical task, because a detailed description of
the physical processes producing the random twisting
(some of which are unclear) is unaffordable. Therefore,
an empirical model is sought, but the difficulty arises in
deciding how it is representative of reality. So far, in the
literature, a method is presented, where the random
bundle consists of a cascade of uniform lines whose
cross-sections are randomly extracted from a given
probability distribution, and each cross section is
determined in a completely independent way from all
the others ([1],[2]). Due to this assumption, the resulting
bundle may be far from a realistic one, because it is
difficult to control the smoothness degree of wires
windings.
In this paper, we present a simple and powerful way to
generate random cables with the possibility of
controlling the twisting characteristics by means of one
parameter. This approach is based on the Random:
Midpoint Displacement (RMD) method, widely used for
the generation of fractal curves.
The second task in order to simulate a non-uniform line
is the evaluation of p.u.l. parameters along the line itself.
This task is usually very time consuming, because the
line cross-section is non homogeneous (due to the
presence of wires’ dielectric insulation) and non uniform
(due to the changes of position of the wires along the
line length): the non homogeneity requires the use of 2D
numerical methods (e.g., finite elements, finite
difference, moment method), and the non uniformity
asks for highly repeated applications of the above
techniques. In the literature, the analytical formula for



widely spaced wires is often used to reduce the
simulation time, but it has clear limitations. In this
paper, we present an optimised implementation of the
method of moments with Fourier expansion of the
charge on conductors and dielectrics [3]. This method
gives p.u.l. parameters with high efficiency and good
accuracy, even if the conductors are very close each
other, because it approximates the charge distribution on
circular conductors with circular functions.

The line solution necessary to obtain the frequency
behavior of the electrical variables is performed by
subdividing the non-uniform line into a chain of uniform
segments, and by chain matrix product [4].

Finally, the statistical analysis is in general extremely
time consuming, since it requires to repeat the line
simulation for a large number of parameters values,
randomly chosen (Monte Carlo approach). We adopt an
idea that avoids Monte Carlo simulation by computing a
limited number (order of tens) realizations of cables and
performing a fit of the results. The powerful Kriging [5]
method that allows us to efficiently elaborate the
statistical results is presented in Sec. 5.

2. Generation of a bundle of wires

In this Section, we introduce our proposed method to
generate random cables that resemble to industrial
cables and have a degree of randomness easily tuneable
with only one parameter. The differences between the
method we propose here and the methods available in
literature are the iterative process of subdivision of the
line and the determination of the position of wires in the
cross sections identified by the subdivisions.

Let's start the explanation for a single wire of the
bundle. The 3D position of the wire can be constructed
from its projections into two orthogonal planes having
the z-axis (the one along the line length) in common.
These two projections are determined by means of RMD
algorithm that generates fractal curves, with the iterative
mechanism described in Fig 1 [6]. The algorithm starts
with two extreme points in the plane (z,x) (say, (z;x;)
and (z,,x,) that can be imagined as the connectors points
of the considered wire) and evaluates:

7 +2,
Zap == (2.12)
+
X,/ =x‘—2x”—+d (2.1b)

where d is a parameter extracted from a gaussian
distribution having zero mean and variance depending
on the fractal dimension and on the iteration number.
Then, the algorithm proceeds on subdividing again the
intervals on the z axis, and extracting new related
positions on the x axis. The result is a set of nodes (z;,x;)
representing the projections in the (z,x) plane (i is an
index belonging to [/,n], and n is the total number of
cross sections). The same procedure must be applied to
determine the projections of the wire in the (z,y) plane,
getting (z;,y;). At this stage, the position (x;y;z;) of one
wire in the bundle in each cross section is defined. If the
wire is out of the space assigned to the bundle in one or
more cross sections, the position is forced to lay on the
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Fig. 1: Random Midpoint Displacement algorithm.
The construction of the fractal curve is performed in
a finite number of iterations that add details, step by
step. The coordinates of a new point between two old
ones are determined according to eq. (2.1).

boundary of the bundle. If the bundle is not too narrow,
this operation is seldom required. To build the entire
bundle, the procedure of the generation of a single wire
is repeated as many times as the number of wires
assigned to the bundle. During the wire assembling
process, it may occur that some wires overlap in one or
more cross sections. In this case, we proceed in the
following manner to avoid wire overlap: '

1. the algorithm looks for free positions around
overlapping wires and, if a free position is available,
moves the conductor that needs the minimum
displacement;

2. if overlapping situations still exist, the algorithm
moves all wires outside the bundle boundary in order
to gain more free space, eliminates overlaps, and
moves again the wires inside the bundle, starting
from the wire nearest to the centre of the bundle.

The choice of the above algorithm is motivated by its

efficiency; in fact, it is very fast and perturbs the wire

position as little as possible.

The main advantage of using fractals for random wires

is that, through a single parameter, the fractal dimension,

we can control the degree of irregularity of the curve
described by a wire. The fractal dimension ranges from

1 to 2, where 1 represents a straight rectilinear segment,

and 2 refers to a very jagged curve that fills the entire

2D space.

Fig. 2 shows a 10-cm cut of a realisation of a 9 wires

bundle having fractal dimension 1.1. The total length of

the bundle (2 m) is subdivided into 128 sections of 1.56

cm each. Figs. 3 and 4 differ only for the fractal

dimension of the cable that is 1.4 and 1.7, respectively.



From Figs. 2, 3, 4 it appears that the proposed algorithm
is able to generate realistic cables whose degree of
twisting is easily controlled by one parameter (the
fractal dimension). It is also worth noting that the
algorithm is very fast: in fact, the cables of Fig. 2, 3, 4
are generated for their entire length in a few seconds on
a Pentium PC.

3. Non uniform line solution

The computation of the p.u.l. parameters is generally a
critical task for the accuracy of the results and for the
simulation time. The practical case at hand (bundles of
wires in close proximity and surrounded by a dielectric
layer) imposes that p.u.l. parameters are determined by
means of a numerical method, since explicit analytical
formula are not available in the literature. A statistical
approach to crosstalk evaluation on random cables, as
the one we deal with in this paper, requires to repeat the
computation of p.u.l. parameters thousands of times
(number of cross sections times number of bundle
samples), and therefore asks for a very fast software. We
limit our simulations to lossless lines, thus requiring
only the computation of p.ul. capacitance and
inductance matrices.

In this work, we have adopted the moment method
formulation that expands the charge on the wires in
Fourier series [3]. This method gives very accurate
results because it is based on expansion functions that
are a natural choice for the circular contour of the
conductors. A good number of harmonics for the charge
expansion is about 10-15, even in the worst case of
dielectrics in contact.

We have developed an optimised implementation of the
above method in MATLAB using its powerful functions
on matrices. We are able to evaluate the p.ul
parameters of a cross-section having 10 insulated
conductors in few seconds on a Pentium PC. The same
structure, solved with the Finite Element method, takes
more than 2 hours on the same PC because this method
needs a thoroughly refined mesh with at least thousands
triangles, in order to gain the same accuracy. The
conventional Moment method with piecewise constant
expansion of the charges is not considered because it
may produce unphysical results on bundles of circular
conductors in close proximity. Also, a finite difference
approach is discarded on the obvious consideration that
its mesh hardly fits circular conductors.

Once the p.u.l. parameters are evaluated in all cross
sections, the non-uniform line is solved by the
conventional approach that replaces the line with a
cascade of uniform lines and computes its response by
means of the product of the chain matrices of the
uniform sections [4].

4. Statistical results
The model presented in the previous sections has a large
variety of applications, because it allows the prediction
of disturbances on real random interconnects.
In this section, we investigate the influence of the fractal
dimension of 1-m long cable made of 9 wires on the
transfer function between two terminations.
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Fig. 2: Plot of 10 cm of a bundle with 9 wires and
total length of 2 m (only 3 wires are plotted in order
to preserve the readability of the picture). The
fractal dimension is 1.1 (wires almost rectilinear).
The external diameter of each wire (including
dielectric insulation) is 2.30 mm. The bundle is
bounded by a cylinder having a radius of 6 mm. Axes
quotation is expressed in mm, and the representation
“is to scale, so that this image is directly comparable
to a real bundle.
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Fig. 3: Same as Fig. 2, except for the fractal
dimension that is 1.4. Wires’ meandering starts to
appear.

We have performed 3 sets of simulations (100 samples
each) on bundles of wires having fractal dimensions 1.4,
1.1, and 1.7, respectively.
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Fig. 4: Same as Fig. 2, except for the fractal
dimension that is 1.7. Wires’ meandering is well
developed.

All simulated cables have the following common
characteristics that are representative of real industrial
bundles. The radius of the conductors is 0.75 mm, the

radius of the dielectric jacket (€, = 2.6) surrounding the

conductors is 1.15 mm, and the radius of the bundle is 6
mm. The height of the centre of the bundle above the
ground plane is 9 mm. The geometry of the first and the
last cross-sections of the bundles is plotted in Fig. 5.
Each wire is terminated at both ends with a 1-kQ
resistance connected to the ground, except for the left
end of wire 1 that is loaded with a 50 ) resistance in
series with a sinusoidal signal source V, of amplitude 1
V and frequency ranging from 1 kHz to 1 GHz. The
output V4 (0) is measured on left end of wire 9 (that is

the central conductor of the bundle). We approximate 1
m of the real cable with 64 uniform lines that are much
shorter than the minimum wavelength considered; in
fact, the length of each segment is 1.56 cm, compared to
30 cm wavelength at 1 GHz.

The results of the three sets of simulations are reported
in Figs. 6, 7, 8 and in Table 1 where the amplitude of the
transfer function H =V, (0)/V, is considered. Fig. 6

collects the transfer functions of the 100 realisations of
cables having fractal dimension 1.4. Similar results,
obtained for bundles with fractal dimensions of 1.1 and
1.7, are not shown due to space limitations. Instead, we
concentrate on a further elaboration, aiming at the
statistical characterisation of the transfer function at
fixed frequency. The histogram of the absolute values of
the transfer functions computed for the 100 realisations
of bundles having a given fractal dimension are shown
in Fig. 7, for a frequency of 243 kHz, corresponding to
the low frequency band of the transfer function, away
from the region affected by line resonances. Figs. 7a, 7b
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Fig. 5: Cross section of both ends of simulated cables.
It corresponds to the geometry of wires on
connectors. The external dashed circle indicates the
trace of the cylinder that contains the bundle.
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Fig. 6: Amplitude of the coupling transfer function H
between wire 1 (excitation on the left end) and wire 9
(left end), evaluated for 100 realisations of bundles of
wires having fractal dimension 1.4.

and 7c refer to experiments with bundles having fractal
dimensions 1.1, 1.4 and 1.7, respectively. Table 1
reports the means and the standard deviations of the
histograms plotted in Fig. 7a, 7b and 7c. For both means
and variances, a range is given, corresponding to a 5%
confidence level. Finally, in order to investigate the
frequency behaviour of statistical characteristics, Fig. 8
is presented, where means and standard deviations of the
three sets of simulations are shown vs. frequency.

The average value of crosstalk is not influenced by the
degree of irregularity of the bundle. This outcome is
clearly shown in Fig. 8. Also, Table 1 confirms that the
confidence interval of the average has almost the same
width for the three simulation sets. On the contrary, the
standard deviation of the transfer function depends on
the smoothness degree of wire windings. In particular,
the higher the fractal dimension of bundles is, the
smaller is the variance. This behaviour can be explained
with the fact that, if bundles are quite intricate, the
distance of the two wires between which the crosstalk is
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Fig. 7a: Histogram of the amplitude of the transfer
function H at 243 kHz, for the case of Fig. 6.
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Fig. 7b: Same as Fig. 7a, except that the fractal
dimension of simulated cables is 1.1.

measured tends to be equally distributed along the cable
length, and the cases in which the two wires are either
adjacent or far away all along the line are rare. In this
situation, the resulting standard deviation is low because
crosstalk tends to assume only intermediate values and
the very high or very low values are infrequent.

The outcomes on the average and the standard deviation
of crosstalk just described are not valid in general
(arbitrary cables and loads characteristics). The
investigations aimed at generalising the prediction of
crosstalk are still underway.

5. Kriging approach
In this section we introduce Kriging model in order to
provide a very efficient tool for the statistical
elaboration of the cable transfer functions, that basically
allows to avoid the unaffordable simulation times of
Monte Carlo approach. The voltage or the current
induced on a cable due to crosstalk or to an impinging
electromagnetic wave depends on a large number of
factors such as the length of the cable, its height above a
ground plane, the number of wires, the twisting
characteristics, the loads and the frequency. A
parametric analysis of the voltage (or its average and
maximum values over some frequency band) conducted
over the ranges of all or part of the factors leads to a
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Fig. 7c: Same as Fig. 7a, except that the fractal
dimension of simulated cables is 1.7:
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Fig. 8: Means and standard deviations of three sets
of simulations having fractal dimensions D=1.1, 1.4
and 1.7.

D=1.1 D=14 D=17
(Fig. 7b) (Fig. 7a) (Fig. 7c)
mean of || 546371 | 54-61-67 | 6.0-6.6-7.2
(multiply by 10
std of || 3.844-51 | 303540 | 26-3.034
(multiply by 10

Table 1: Means and standard deviations of the
distributions shown in Figs. 7a, 7b and 7c. D is the
fractal dimension of the bundles of wires. The
intervals of means and variances have been
evaluated at 5% confidence level.

high cost in terms of computing time or prototyping. We
may then think of building an accurate numerical model
that permits prediction of the values of the observable at
a lesser computational cost than with the "classical"
approach based on browsing the complete set of values
of the factors.

This cost-reduction can be looked at in a somewhat
unusual manner, at least as far as electromagnetics is
concerned, if one takes the following considerations into
account:

1. The observable is not equally influenced by all
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factors. It is then possible to call on some specific
tools in data analysis, such as multivariate
regression, to select the main factors and
consequently neglect the others. This will lead to a
significant reduction of the cost of computation and
experimentation.

2. The knowledge of the fine variations of the
observable with respect to the factors is not always
necessary for the understanding of the phenomenon
of interest. Let us consider, for example, the voltage
induced at high frequencies on a cable. The density
of the resonances in the voltage increases with
frequency and it is not generally possible to trace
back the origin of these resonances. The
determination of the trend of the voltage, or its
maximum value over some frequency band, may
then be a sufficient information.

In order to achieve the goals stated above, a multi-factor

parametric approach to system modeling, called Kriging

[5] can be combined with the method of solving the non

uniform transmission lines introduced in the previous

section. The Kriging model states that the observable,
here the transfer function, is the sum of two terms. The
first one is an approximate multivariate regression
mode] and the second is an outcome of a stochastic
process, the covariance function of which is known.

Then a cost function is minimized and optimized values

of the parameters of the regression model are obtained.

In a final step, we build a predictor for the observable

made of a linear combination of a small number of

values of this observable obtained by applying a data
analysis method named experimental design. Kriging
also provides an estimation of the accuracy of the
predicted values through the computation of a standard
deviation. Kriging is not a substitute for traditional
numerical methods, but an efficient tool to bring out
trends which, in particular, indicate where exact
computation should be performed. Applications of
Kriging model on complex systems are available in [7].

6. Conclusions
In this paper, we have provided a statistical model that
describes the disturbances due to crosstalk on random

non-uniform bundles of wires. This model is based on a
very efficient method for generating and solving random
non-uniform transmission lines combined with an
accurate method for the statistical elaboration of results.
In particular, the generation of random bundles of wires
that resemble to real industrial cables is performed by
means of an algorithm controlled by one parameter, the
fractal dimension; also, the fast computation of p.u.L
parameters takes advantage of a moment method based
on a natural expansion of charges on circular
conductors. Finally, the Kriging model will be adopted
as an optimised fitting method for the statistical
elaboration of results in order to avoid the lengthy
Monte Carlo approach.
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