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 Abstract – A few formal entities for modeling manufacturing 
processes and factories have been outlined in a companion paper 
of this conference. The link between a manufacturing model and 
its implementation in a factory plant has been formulated by 
ordering object drawing and delivery in a sequence of events, 
and by scheduling their starting time. Real-time simulation is 
then viable by providing the production units with a sequence of 
operations to be performed together with their starting times: 
simulation may be referred to as the direct problem. Nothing has 
been said about the synthesis of command sequences from 
higher-level production orders listing quantities of finished 
products to be delivered at certain times. The problem, which 
may be referred to as the inverse problem, is treated in the paper 
with the help of aggregation/disaggregation concepts and 
procedures. They allow to formulate the order sequence as a 
higher-level command sequence dispatched to the higher-level 
production unit in charge of the whole factory. The higher level 
command is then real-time disaggregated into lower-level 
commands (push). The status of the lower-level units is in turn 
transmitted to higher-level units (pull) for building-up their 
aggregated status. Simulation results of the factory model driven 
by the designed real-time control are provided. 

 
 Index Terms - Manufacturing Algebra, aggregation, 

production control, control unit. 

I. I. INTRODUCTION 
A few mathematical entities for modelling manufacturing 

processes (objects, types, manufacturing operations (MO)) 
and factories (storage, production and resource units) have 
been outlined in a companion paper [1]. The link between a 
manufacturing process and its implementation in a factory 
plant has been formulated by ordering part drawing and 
delivery as an event sequence, and by scheduling their starting 
times. Real-time simulation is viable by providing production 
units with a sequence of operations to be performed together 
with starting times: simulation is a direct problem.  

Nothing has been said about how to synthesize command 
sequences from higher-level production orders (the demand) 
listing quantities of finished product to be delivered at certain 
times (master production scheduling [2]). The problem that 
may be referred to as the inverse problem, is approached with 
the help of aggregation and disaggregation concepts, that 
allow to formulate the order sequence as a higher-level 
command sequence to the higher-level production unit in 

charge of controlling the whole factory. Real-time production 
control should blend push and pull strategies and data, 
according to the definition in [2]. Push strategy must 
disaggregate orders (top-down data flow) down to the factory-
level operations. Pull strategy must aggregate the factory-level 
status up to data compatible with the demand itself (bottom-up 
data flow) for authorizing implementation.  

The aggregation process (Section II) starts from 
manufacturing operations. Two ways of composing them are 
strictly related to precedence, series and parallel. The different 
compositions influence input and output quantities and the 
resulting cycle time. Real-time implementation of the 
composition is obtained by scheduling the composition events 
(disaggregation process). It is thus possible to view the 
composition as a new operation having its own events, input-
output and balance models like elementary operations [1].  

Among the possible compositions the ‘balanced MO’ are 
of interest, as they are composed in a way that does neither 
require nor deliver semifinished materials. Their model can be 
thus simplified, since semifinished quantities and events may 
be dropped, and the relevant operation is referred to as 
aggregate MO. Any (balanced) production order can be 
formulated as an aggregate MO having finished products as 
output objects and raw materials as input objects. The 
aggregation process continues by aggregating the set of 
production units (PU, station) in charge of the aggregated 
operations as a single aggregated PU. The aggregation process 
can be organized into several layers, which reduce to a pair in 
the case study, since all the factory stations are aggregated 
into a single PU, encompassing the whole factory. Once 
aggregated, a MO can be real-time disaggregated, since it 
contains a relocatable schedule of the elementary MO. In turn, 
the information lost by the aggregated MO (semifinished 
objects) is recovered by the model of the elementary MO.  

The paper concentrates on a four-step design of the 
aggregated MO. The procedure is demonstrated with the help 
of the case study (Section III). The design deploys well known 
problems of production planning and control: product mix 
planning, scheduling, capacity utilization. All of them may be 
solved using literature techniques. Examples of solution are 
provided for the case study. The design result is the set of the 
feasible MO of an aggregate PU, which latter can be treated 
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and commanded as an elementary unit. The task of real-time 
scheduling and routing the elementary MO to the elementary 
PU is the task of the control unit (CU), taking into account the 
actual object quantities at the storage units and the actual 
event occurrence times (pull strategy), because of micro and 
macro irregularities with respect to the designed MO model. 
An aggregate PU is the set of elementary PU plus a CU.  

A brief mention of the CU discrete-event model and of the 
control strategies is done in Section IV. Simulation results of 
the factory model driven by the designed real-time production 
control are provided and assessed with respect to standard 
performance indices in Section V. 

II. THE AGGREGATION PROCESS 
Optimization problems arise in the aggregation process. 

They will be neither formulated nor generically solved, but 
only mentioned and manually solved in the case study.  
A. Composition of manufacturing operations 

The elements of a basis M  can be combined depending 
on their representation. Event-sequence representations are 
composed by fixing the starting times ( )wt m  of each MO m  
and adding the time-shifted sequences ( )( ),q wm t mσ  and 

( )( ),w wm t mσ  into a single one  
( )( ) ( )( ), ,  ,q q w w w wm m

m t m m t mσ σ σ σ= =∑ ∑ , (1) 

where underline denotes aggregation. The procedure 
providing sequences in (1) is indicated as ‘re-locatable a priori 
schedule’, or schedule. Up to now no constraint has been 
mentioned in fixing starting times: for instance, the constraint 
that the interval between successive starting times 

( ) ( )2 1w wt m t m>  is larger than the cycle time ( )1mτ  of the 
former operation.  

Precedence among elementary operations entering the 
composition can be expressed without explicit mentioning 
time, just through algebraic rules over the input/output 
representations. Operations can be composed either in series 
or in parallel. The series imposes an order to operations so that 
the MO m b= , which must employ the object types produced 
by m a= , has to start after a  has been completed. The series 
composition, expressing precedence of a , is denoted by 
c ba= , and applies to the ordered pair ( ) ( )( ),a a a= u y  and 

( ) ( )( ),b b b= u y . It is defined by ( ) ( )( ),c c c= u y  where 

 
( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

min ,

min ,

c a b a b

c a b a b

= + −

= + −

u u u y u

y y y y u
. (2) 

Series imposes a time constraint to the operation schedule as 
their starting times must satisfy ( ) ( ) ( )w wt b t a aτ≥ + . As a 
consequence the cycle time [1] of c  must satisfy 

 ( ) ( ) ( )c a bτ τ τ≥ + . (3) 
When equality holds, (3) is the ‘linearity condition’.  

The parallel composition is denoted by c a b= +  and it is 
defined by ( ) ( )( ),c c c= u y  where 

 ( ) ( ) ( ) ( ) ( ) ( ),  c a b c a b= + = +u u u y y y . (4) 
A parallel composition does not entail any time precedence: 
start times can be arbitrary and cycle times satisfy  

 ( ) ( ) ( )( )max ,c a bτ τ τ≥ . (5) 

The latter inequality is referred to as the ‘bottleneck 
principle’, since the least parallel cycle time is imposed by the 
longer operation, i.e. the bottleneck as defined in [2]. 

The balance vectors ( )cb  of the series and parallel 
compositions are the same and hold  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c a b a b= − = + − +b y u y y u u , (6) 
which is coherent with the loss of information of the balance 
vector representation. Series and parallel compositions are 
employed to build up a set of possible schedules. 

As an example consider the composition of , ,a b c : 
 ( )d c a b= + , (7) 

to be adopted later, and implying precedence of the parallel 
a b+  with respect to c . Meaning is that the operation c  
needs the semi-finished objects produced by a  and b . Only 
the start time of c  is constrained and must satisfy 

( ) ( ) ( ) ( ) ( ){ }max ,w w wt c t a a t b bτ τ≥ + + . The cycle time 
satisfies  

 ( ) ( ) ( ) ( )( )max ,d c a bτ τ τ τ≥ + , (8) 

and shows relation to max-plus algebra [3]. 
Of interest are those compositions void of semi-finished 

quantities in their balance vector, because they leave inviolate 
the possible stock of semifinished types (the ‘crib inventory’ 
in [2]). They are called balanced operations. The balance 
vectors b  of a basis M  can be composed through linear 
combinations, that are expressed in a matrix form as B=b a . 
The entries ( )a m  of the vector a  define the so-called Bill-of-
Manufacturing-Operations (BOMO) of the complex operation 
having balance vector b . The entry ( )a m  denotes the number 
of times an elementary operation m  has to be repeated in the 
composition. A composition Ba  is said to yield a feasible 
operation if b  is integer and a  is a non negative rational 
vector. A typical balance problem is to find a  and the raw 
material quantity rb  given a desired quantity fb  of finished 
products and zero semifinished types. Using the partition of 
B  in Part I [1], the problem can be split in two parts: 
1) BOMO computation from  

 
0 s

sf
f f

B
B

B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

a a
b

, (9) 

2) raw material computation given a from r rB=b a . 
At least a solution of (9) exists if rank sfB M= , where M  is 
the dimension of a  and M . The previous rank condition is 
more restrictive than rankB M=  [1], and requires that each 
MO m ∈ M  has at least one output type which is different 
from the other ones (as in the case study, see Figure 1).  

Event sequences and input/output representations of a 
composition may become rather complicated to be employed. 
For instance the event sequence of a balanced composition 
includes all delivery/drawing events of the semifinished types. 
A simpler model, aggregate MO (MO), is attached.  

Given a balanced composition b  of a basis M , the 
aggregate m  is defined by a pair of event sequences.  
1) The sequence ( )q mσ  of delivery and drawing events 
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reports quantities of input and output types only – semi-
finished being dropped. Addition of input and output 
quantities defines the vectors ( )mu  and ( )my . 

2) The sequence ( )w mσ  of the start and end events  
( ) ( ) ( ) ( ) ( ),0 , 1 ,  ,1 ,1w w w we m t m e m t m mτ= − = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,(10) 

associated to each elementary operation m .  
The BOMO equation ( ) ( ) ( )m m B m− =y u a  of m  shows 

the quantity of each elementary operation entering the 
composition. The first sequence ( )q mσ  allows treating 
aggregated operations as elementary ones. The second 
sequence ( )w mσ  allows disaggregating a MO into 
elementary operations (push strategy). 
B. Aggregated production units and their design 

A basic concept in the Manufacturing Algebra is the 
aggregated production unit (PU for short). An aggregated unit 

( )p c  is the PU-like model of a set of elementary units 
( ) ( ) ( ){ }0 1,..., ,...,c p c p c pπ Π −=P , that are real-time 

controlled by a single control unit c  and are connected to a 
set ( )pS  of storage units. To respect the PU model outlined 
in the companion paper ([1], Section V.B), one must define 
1) the set ( )pM  of the admissible operations m ,  
2) the production state variables ( ),px p t  and ( ),pz p t . 

The key element is the set ( )pM , that is the set of the 
aggregated and balanced operations obtained by suitable 
compositions of the admissible operations of the elementary 
stations ( )p cπ . Given a set ( )cP , the construction (or 
planning) of ( )pM  is a fundamental issue in production 
control design, and is dealt with through four steps, that are 
further detailed in Section III.  
1) Balancing. First is the computation of the BOMO ( )ma  

of an aggregate (balanced) operation m  satisfying (9). 
The solution can be made dependent on some free 
parameters λ  of the balance matrix ( )B λ , as in the 
matrix of the case study in [1], Eq. (3). Finding λ  may be 
interpreted as a ‘product mix planning’ problem [2], but 
unlike [2]the solution must involve scheduling steps. 

2) Scheduling. Second is the a-priori (nominal) scheduling of 
the elementary operations to the production units of the set 

( )cP , with the constraint that each unit can only process 
a series of operations. The result is the sequence ( )w mσ  
of the start and end events and an estimation of the cycle 
time ( )mτ  when performed on the aggregated PU. To 
this end, consider a station ( )p c∈P , and denote a series 
of operations ( ){ } ( )1,..., ,..., M pm m m pμ ∈ M  of size 

( )M p  to be scheduled on the unit p  with 

 ( ) ( )( )
1

M p as p m μ
μμ =

= ∏ , (11) 

where ( )a μ  is the number of repetitions of the operation 
mμ  (an entry of the BOMO ( )sa ). Assuming linearity 
conditions (Section II.A), the series working time holds 
 ( )( ) ( ) ( ), ,s p a mμμ

τ μ τ= ∑λ λ , (12) 

where λ  is the vector of free parameters to be optimized.  
Moreover, since the series operations ( )s p  that have been 
scheduled on the various units ( )p c∈P  can be performed 

in parallel, the aggregated cycle time of the paralleled 
series operation (aggregated operation) denoted with m  
satisfies the bottleneck principle (Section II.A) and holds  
 ( ) ( ) ( )( ){ } ( )( )

1
max , ,  P c

p c p
m s p m s pτ τ∈ =

= = ∑λP . (13) 

Equation (13) says that a bottleneck unit exists and holds 
 ( ) ( )( ){ }max arg max p cp s pτ∈= P . (14) 

Bottleneck severity can be measured by the PU (capacity) 
utilization defined as the ratio of the average to the largest 
cycle time (bottleneck) 
 ( ) ( ) ( )( ) ( )( )( )1

1
, 1P c

p
m P c m s pυ τ τ

−

=
= ≤∑ λ . (15) 

Equation (15) extends the definition of ‘utilization’ in [2], 
where the numerator is taken as the job ‘arrival rate’, to an 
aggregate PU. In [2] the term ‘balanced’ is reserved to 
machines in series with maximum utilization, ( ) 1mυ = . 

3) Optimization of the utilization. It is a balancing task [2] to 
make ( )mυ  to approach unity, by equalizing the cycle 
times of the series operations ( )s p . This may be obtained 
by maximizing ( )mυ  with respect to free parameter λ  in 
the matrix ( )B λ  as it will be done in the case study.  

4) WIP reduction. The ratio of the manufacturing time over 
the cycle time may be referred to as the work-in-process 
(WIP) ( )w m  as it marks the number of unfinished 
operations of an aggregated production unit: 

 ( ) ( ) ( )/ 1w m T m mτ= ≥ . (16) 
Notice that ( )mτ  may be much shorter than the 
aggregated time ( )T m , the latter depending on how the 
series operations ( )s p  to be performed in parallel are 
actually sequenced. Thus a sequencing goal is to minimize 

( )w m . In [2] WIP is defined in terms of the inventory 
between start and end points of a product routing, but 
excluding end products. The definition derives from the 
concept of job. Here the definition just refers to the job 
logical information, i.e. to aggregated operations. 

III. THE CASE STUDY 
The case study allows clarifying meaning and construction 

rules of the aggregate operations, as they play a key role in 
control design and actuation. Aggregate operations have been 
defined as the simplified model of MO compositions built 
over the basis M  of the manufacturing process.  

Several criteria may lead to aggregate operations: 
1) to provide the requested mix of finished products,  
2) to guarantee high utilization of factory capacity.  
Here we are simple:  
1) four aggregate operations ,  0, ,3jm j = …  are constructed, 

one for each finished product 7n j= + , as in Figure 1, 
2) each MO yields an integer quantity jp  of finished 

products,  
3) the input composition of the different finished products 

7n j= +  is made to correspond to different capacity 
utilizations by selecting the input quantity ratio /j jβ γ ,  

4)  the design procedure outlined in Section II.A is pursued.  
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2m =

1m =

2

3
4m j= +

0m =
4

5
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3m =
6
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2PU

0PU

, 0,1,2,3jm =

1 11

1 1

1 α−

α 1 ε

1 ε−

jβ

jγ jδ

 
Figure 1 Manufacturing model and aggregated units. 

A. Balancing: the BOMO computation 
First, the BOMO computation is made. In general, given a 

desired finished product quantity jp , the balance equation 
( )B=b λ a  with the balance matrix derived in Part I [1], must 

be solved for a  with the constraint of zero semi-finished 
quantities. The balance matrix can be found in [1], Eq. (3). 
The vector of free parameters for  each j  is 

 T
j j j jβ γ δ⎡ ⎤= ⎣ ⎦λ . (17) 

Then the raw material quantities ( )0q−  and ( )1q− , and the 
discarded quantity ( )6q  are solved for. To this end, consider 
a single finished product 7n j= + , which implies different 
balance equations ( )j j j jB=b λ a  of reduced size as follows:  

 

( )
( )

( )

( )
( )
( )
( )

( )

1 0 0 0 0- 0
0 1 0 0 01

01 0 1 0 00
10 1 0 00
2    0 0 1 00
30 0 1 10

40 0 0 0
0 0 0 06

j

j
j

j
j

j

j
j

jj

j

q
q

a
a
a
a

a j
p

q

γ
α

α ε β
δ

ε

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−−⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. (18) 

Full rank of jB  guarantees the unique solution  

 ( )

( )
( )

( )

1

1

0
1

0 00
0 00

,
0 00
0 00

6

j

j

j

j j

j j j j j

jj

jj j

q
q

q
p

β
εα

β
εα

β
γ γ

μ μ μ

εαβεα
δδ

−

−

− −−
− −−

= = ≅b λ  (19) 

and 

 ( )

1

1

1

,

11

j

j

j

j

j j

j j j j jj

j

β
εα

β
εα
β
εα

β
γ γ

μ μ μβ
αβα

−

−

−

= ≅ a λ , (20) 

where /j j jpμ δ= , and the approximations in (20) and in 
(21) hold if the product αε  can be kept as negligible, being 
the product of defective part probability. Alternatively 0αε =  
can be kept as a nominal condition. The entries of the BOMO 

ja  must be selected to be nonnegative integers. In practice, 
the problem arises of finding a symbolic solution as in (21), in 
the case of complex manufacturing and factory models: a 
possible solution is to pass through Monte Carlo realizations 
in the expected range of the free parameters. 
B. Scheduling 

Second is the definition of an a-priori operation sequence 
to be achieved in two steps:  
1) the series composition of the operations performed on the 

same production unit p  provides intermediate aggregate 
operations ( )js p  as in (11), 

2) composition of ( )js p  provides the assembly plant 
sequence.  

Using the approximation 0εα , the series compositions 
( )js p  of the elementary operations in Figure 1, that must be 

performed on each p  in agreement with the BOMO solution 
(20), are the following:  

 
( )
( )
( )

1 0

3 2

4

PU        series composition

0           0

1           1

2           2

j j j j

j j j j

j

j

j

j j

p

s m m

s m m

s m

γ μ β μ

αβ μ β μ

μ
+

=

=

=

. (21) 

The exponents in (22) indicate repetition of the same 
operation, where operations have to be performed from right 
to left. Equation (22) imposes an a-priori schedule to each 
station. This implies for instance that j jβ μ  repetitions of 0m  
must be performed before the j jγ μ  series of 1m . Notice that 
sequences in (22) are not unique, as, for instance, the order of 

0m  and 1m  may be exchanged since they do not share 
semifinished objects. However series in (22) is preferable as 

0m  must produce the object 2 to be consumed by 2m  as 
shown in Figure 1. A generic solution to the problem is out of 
the paper [4]. Their cycle times, under the linearity condition 
that has been defined in (3), hold  

 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

0 0 1

1 2 3

2 4

j j j j

j j j

j j j

τ μ β τ γ τ

τ μ β τ ατ

τ μ τ

= +

= +

= +

. (22) 

C. Utilization optimization 
Third is the design of the entries of the BOMO ja  in (21), 

where 1α <<  is given, but j jβ μ  and j jγ μ  are still 
unknown. Approaching, but not reaching unitary utilization is 
the goal, as mentioned in Section II.B, upon definition of the 
utilization index jυ  from (15) and 3P = , as follows 

 ( ){ }( ) ( )
1 2

0,1,2 0
3maxj p j jp

p pυ τ τ
−

= =
= ∑ . (23) 

The largest utilization, i.e. 1jυ = , implies equal cycles in 
(23), namely 

 ( ) ( ) ( ) ( )0 1 ,  1 2j j j jτ τ τ τ= = . (24) 
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The latter equation can be rewritten as  

 
( ) ( ) ( ) ( )

( ) ( ) ( )
03 2 0 1

43 2 0
j j

j j jj
β ματ τ τ τ
γ μ τ ματ τ

⎡ + − − ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥++ ⎣ ⎦ ⎣ ⎦⎣ ⎦

, (25) 

and must be solved in the integral domain, The latter solution 
can be approximated by a suitable selection of the free integer 
scale factor 1jμ ≥ . Here jμ  is minimized to dispose of 
aggregate operations with the shortest cycle time. More 
generically, when switching between operations requires setup 
times, jμ  should be selected to reduce the impact of the setup 
time on the overall cycle time. The problem is not treated 
here. The solution of (26) in the real number domain is 

 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

{ }

{ }( )

3 2 0 80 26 1.3 1 2
1 20

4 75,60,90,90
3 2 80 36

2.1,1.7,2.5, 2.5 1 ,  2

j

j

j

j

γ ατ τ τ α η
β τ

τ
β

ατ τ α

η η α

+ − +
= = = +

+
= = ≅

+ +

≅ − ≅

. (26) 

Integral solution is provided by rounding to the nearest 
integer, under assumption of 1η << : 

 
{ }( )( )

( ){ }
round 2.1,1.7, 2.5, 2.5 1 2

round 2 1.3 1 2 3,  1
j

j j

β η

γ η μ

= − =

= ⋅ + = =
, (27) 

which provides a solution independent of j . Any deviation 
from (28) would correspond to a lower capacity utilization 
and to the existence of a bottleneck unit, as defined in (13) 
and shown in Table I under 0α = . Lower utilization has been 
on the purpose assigned to ,  2jm j ≥  by modifying either the 
value of jβ  or that of jγ  in (28). Notice that the modified 
value of , 1j jγ = , in Table I provides a slighly better 
utilization, which shows that the optimal solution should be 
searched for each j . Utilization coming out of (28) is 
reported in bracket for , 1, 2,3jm j = . 
 

TABLE I PROPERTIES OF THE AGGREGATED OPERATIONS 

MO  Finished 
product  

jβ  /j jγ β  Capacity 
utilization  

Cycle time Bottleneck 
unit 

0m  7 2 3/2 0.95 80 PU0 

1m  8 2 1 0.89 (0.88) 72 PU1 
2m  9 2 2 0.87 (0.90) 100 PU0 
3m  10 1 3 0.73 (0.90) 90 PU2  

D. WIP reduction 
Fourth, the series operations ( )js p  have to be each other 

scheduled, aiming to shorten the manufacturing time jT  of 
jm  and thus the WIP defined in (16). The schedule is 

constrained by the input/output representation  
 ( ) ( ) ( )( )2 0 1j j j jm s s s= + , (28) 

indicating that ( )2js  must wait for the output types of ( )0js  
and ( )1js . Actually the parallel of ( )0js  and ( )1js  cannot 
start without pre-production of the semifinished type 2, that is 
the output of 0m =  in Figure 1. Pre-production can be 
eliminated by re-scheduling the parallel (29) as in Figure 2. 
Manufacturing times and a-priori WIP are shown in Table II. 
A-priori WIP jw  has been defined in (16). 

TABLE II MANUFACTURING TIMES AND WIP OF THE AGGREGATE 
OPERATIONS  

MO 
0m  1m  

2m  3m  

Manufacturing time 210 193 236 206 

Nominal WIP  2.65 2.40 2.35 2.30 

IV. CONTROL UNIT AND CONTROL STRATEGIES 
A production control system is defined as a set of 

hierarchically interconnected units, in charge of real-time 
scheduling the operations of production units [5], [6]. A 
control unit c  is a dynamic operator receiving as input the 
sequence ( ) ( ) ( ){ }, , , ,c c ce c j t c j m c jσ = = ⎡ ⎤⎣ ⎦ , where ( ),m c j  
is an admissible aggregate operation of the corresponding PU 

( )p c . The output is the set of the command sequences 
( ) ( ) ( ) ( ){ }, , , ,c c cp e p j t p j m p jσ = = ⎡ ⎤⎣ ⎦ , defined in [1] , 

toward the set ( ) ( ){ }..., ,...c p c=P  of the stations belonging 
to the aggregate production unit ( )p c . Such input and output 
sequences define to the top-down event flow (push) of a 
control unit (see Figure 3). 

Further there exists a bottom-up event flow allowing 
control unit to estimate the state of the controlled units and to 
real-time schedule the relevant operations (pull). The bottom-
up input sequence is the collection of all the output sequences 
of the elementary units, namely ( )q pσ  (drawing/delivery) 
and ( )w pσ (start/end), that have been defined in [1] , Section 
IVB. The bottom-up output sequence contains the output 
events of the corresponding PU, and includes the subset of 
drawing/delivery events in ( )q mσ  restricted to input and 
output objects of the aggregated operations ( )( )m p c∈ M , 
and the start/end sequence ( )( )w p cσ  of the aggregated unit.  

∑

∑

( )c cσ

∑

∑

∑
( )c pσ

( )q pσ

( )w pσ
( ),wx p t

( ),s s tx

( ),cx c t

( ),wx c t( ),w c tσ

 
Figure 2 Block-diagram of the control unit dynamics. 

The state equations are defined by the following three state 
variables: (i) the finite event sequence ( ),cx c t  of the 
operations yet to be scheduled (potential events), (ii) the 
activation state ( ),wx c t  of the aggregate PU c , (iii) the 
estimated states ( )ˆ ,s s tx  and ˆ ( , )wx p t of the storage units s  
and of the production units p  under control. The event queue 

( ),cx c t  is updated as soon as a new command event ( ),ce c j  
is received and as soon as the real-time control strategy 
dispatches a pending operation to an elementary unit. A 
simplified block-diagram of the control unit dynamics is 
shown in Figure 3. 
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A. Real-time control strategy 
Real-time control strategies are event-driven closed-loop 

strategies tracking the demand and weakening the effects of 
micro and macro irregularities. They are strictly the same for 
any level of the hierarchical control system. Consider first a 
control strategy in absence of macro-irregularities. It is the 
sequence of three feedback laws arranging the potential event 
queue into tree sub-queues: pending, feasible and 
dispatchable. 
1) Feasible queue: based on the estimated storage state 

( )ˆ ,s s tx , pending operations are declared feasible if their 
input objects are available and the output storages can 
receive output objects. Feasibility synchronizes operations 
with material flow. Kanban and CONWIP strategies [2] 
makes a MO feasible by re-circulating a finite number of 
reusable objects (cards, containers, ..) such to keep 
constant the WIP of production lines. 

2) Dispatchable queue: based on the estimate of the 
production unit state ˆ ( , )pz p t , feasible operations are 
declared dispatchable when the relevant unit is free. The 
law synchronizes operations with the factory plant 
capacity utilization. If applied to aggregated operations 
and production units, it forces the least amount of 
operations in production – work-in-process (WIP) - with 
the consequent reduction of the intermediate stock. The 
step is mandatory as the queued ‘reusable’ objects do not 
know whether downstairs PU are available or not. 

3) Dispatching rule: several dispatching rules can be adopted 
for assigning priorities when more operations may be 
dispatched to a free unit. The criterion to be followed in 
the case study is of shortening the manufacturing time of 
the aggregated operation, thus reducing the WIP. A-priori 
and on-line scheduling serve to the purpose.  

When macro-irregularities occur, i.e. the plant undergoes 
severe modifications, the model of the factory changes and the 
control strategy must be subsequently adapted. Model 
modifications require a self-diagnosis procedure, here not 
treated, to isolate and identify a specific macro-irregularity. 
Then the recovery strategy follows the same rules of the 
standard strategy. For instance, in the case of reworking,  
1) the reworking operation is first declared feasible,  
2) then is declared dispatchable as soon as the relevant unit 

becomes available,  
3) finally it gains the highest priority to keep small the 

manufacturing time of the current MO.  
4) In addition, the cycle time of the current MO is updated to 

slow down the command of a new MO. In this way the PU 
work-in-process is kept reasonably small.  

Similar strategies can be adopted when production/storage 
units break down. 

V. THE CASE-STUDY SIMULATED RESULTS 
Manufacturing and factory model, and the real-time 

production control system have been programmed in C 
language strictly following the outlined formulation [7]. No 
comparison with other strategies is presented. 

A. Performance definition 
Real-time control is assessed against the following a 

posteriori performance indices, strictly related to the criteria 
deployed in the design of the aggregated production unit. 
Performance prediction and dispersion because of 
irregularities is a further subject not treated here. 
1) First is the SU capacity, to be kept small and defined for 

each pair ( ) ( )SU,type ,s n=  by 
 ( ) ( ), max , ,t sx s n x s n t= . (29) 
Small means sufficient not to starve downstream 
production units. 

2) Second is the PU capacity utilization (15), to be kept 
close to the a priori values in Table I, and defined for each 
elementary unit p  or aggregate unit ( )p c  by 

 ( )( )1( , ) max 1 , 1
t T

t wt
p T T x p dυ τ τ

+−= − ≤∫ , (30) 

3) Third is the work-in-process ( )j jw w m= , to be kept 
close to a-priori values in Table II, and defined for each 
finished product 7n j= +  as follows (each finished 
product corresponds to an aggregated MO). Denote with 

( )2, ,sx n t  the state of a virtual storage where product 
quantities are added as soon as their MO is started by the 
aggregated PU0, and with ( )2, ,sx n t  the actual stock of 
products in the output SU 2s = (see Figure 6 in [1]): 

 ( ) ( )( )max 2,7 , 2,7 ,j t s sw x j t x j t= + − + . (31) 

B. Micro-irregularity control 
An arbitrary series s  of the four aggregate operations 
,  0, ,3jm j = … ,  
 0 1

0 1
,  0,1, 2,3h

h hj j js m m m jα αα= = , (32) 

with exponents 25 30hα = ÷ , has been assumed to be 
commanded to the CU0 (the control unit of the whole factory) 
by the factory planner CU1 (see Figure 6 in [1]). The resulting 
sequence is arbitrary except that the long-term average 
demand of any finished product is constant (close to 2.5 parts 
per 1000 time units). The factory planner may be formulated 
as the highest-level control unit. The same sequence has been 
applied in absence and under micro-irregularities, the latter 
ones affecting both cycle times and delivery delays to output 
storage units. Time irregularities have been modelled as 
normally distributed around with standard deviation around 
10% of the mean cycle time [1].  
 

TABLE III SIMULATED PERFORMANCE UNDER ARBITRARY PRODUCTION 
PLAN 

Performance Micro/macro irregularities 

Without Micro Micro and macro 

Capacity utilization, PU0 0.83÷0.84 0.83÷0.84 0.76÷0.78 (-8%) 

Capacity utilization, PU1 0.66÷0.74 0.66÷0.74 0.68÷0.75 

Capacity utilization, PU2 0.87÷0.89 0.87÷0.89 0.8÷0.82 (-8%) 

Work-in-process (total 
and long-term) 

2.42 2.7 (+11%) 2.4 

SU capacity, any ( ),s k  ≤4 ≤5 ≤8 

Average cycle time, PU0 87 87 94  

Published in Proc. 2012 IEEE Conf. on Mechatronics and Automation, Chengdu, China, August 5-8, 2012, pp. 1550-1556 

6



 
Performance indices are reported in Table III, showing a 

consistent degradation with respect to a priori values in Table 
I and Table II. A deeper assessment is out of this paper. 

Figure 4 shows a simulated realization of the average 
work-in-process of all finished products, in presence of micro-
irregularities. The time span is about 40000 time units. Micro 
irregularities increase the average WIP of about 11%, which is 
consistent with the cycle time variability.  
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Figure 3 Simulated time evolution of the average work-in-process.  

Figure 4 shows the throughput of the finished product 9 
tending to 2.5 parts every 1000 time units, which is consistent 
with the production order rate. Micro irregularities abate the 
throughput of about 16%, larger than 10% because a single 
type is considered. 
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Figure 4 Throughput of the finished product 9.  

C. Macro-irregularity control 
Reworking macro-irregularities have been introduced, 

with a defective probability 0.05α = .Performance clearly 
degrades, especially the average cycle time of the aggregate 
production unit in Table III, due to extra working time and 
delivery delay imposed by reworking. However work-in-
process in Figure 3 remains almost the same as the case of no 
irregularities, which is significant a control strategy should 
keep bounded and as small as possible WIP. Storage capacity 
is two times greater due to self-diagnosis delay. Of course 
throughput in Figure 4 is further abated. Figure 5 shows the 
utilization of the PU0 with and without macro irregularities. 
Utilization is reduced in the latter case of about 8%.  
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Figure 5 Utilization of PU 0. 

Deeper and more formal assessments should be done by 
comparing predictions and performance under different demand 
scenarios, and using alternative control strategies. Thus the 
above results should be meant as introductory.   

VI. CONCLUSIONS 
Concepts and entities of Manufacturing Algebra have been 

employed to formulate aggregation of manufacturing 
operations and production units. Aggregation is strictly related 
to planning and scheduling problems. Specifically balanced 
operations (leaving intact the semifinished stock) are 
candidate to become aggregate operations. In turn a set of 
aggregate operations defines the capability of an aggregate 
production units, collecting all the stations where elementary 
MO are implemented. The inverse problem of disaggregating 
a finished product demand to the commands of the factory 
stations, requires a careful design of aggregate PU in terms of 
their feasible aggregate MO. A procedure of this sort has been 
outlined and demonstrated with a simple case study, without 
any claim of optimality and generalization. Aggregation is 
strictly related to the control hierarchy, which is two layer in 
the case study. After a brief outline of the control unit 
dynamics, data flow and real-time strategies, simulated results 
have been presented and briefly assessed. 
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