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Abstract: 

 
In this paper a thermoeconomic analysis of district heating systems is performed. The analysis aims at 
comparing possible options to supply heat to the users, using low temperature networks. Thermoeconomic 
analysis consists a powerful tool to perform such analysis as it allows one to evaluate the possible options in 
terms of primary energy cost or economic costs. In the first case, the use of exergy as the quantity that is 
transported along the network makes it possible to properly consider the various qualities of energy that are 
used to supply heat to the network and to distribute it to the users. In the case of economic cost, the various 
cost contributions are considered: investment cost, cost of heat supplied to the network, pumping cost. A 
different cost can be calculated for the various users depending on their position and characteristics of the 
heating devices. This is a useful information in order to compare possible options for supply them heat. 
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1. Introduction 
District heating is a rational and reliable way to supply heat to multiple users from a unique or few 

centralized thermal plants. Heat is mainly produced with systems as combined heat and power 

plants, biomass boilers and industrial processes heat recovery systems, integrated with high 

efficiency boilers to cover peak loads. One of the most interesting contributions of district heating 

networks to future energy systems is the opportunity to integrate heat productions from renewables 

[1]. 

The use of renewables in district heating may involve reduction of the operating temperatures. This 

idea is behind the concept of “low temperature district heating”. Low temperature district heating is 

typically characterized by supply temperatures between 75°C and 50 °C (even if lower temperatures 

may be considered) and return temperatures between 40 °C and 20 °C [2,3]. This allows the direct 

use of renewable energy sources as solar [4] and geothermal [5] or in combination with large-scale 

heat storages [6]. In addition, there is big potential for utilization of waste heat from cogeneration 

plants, waste-to-energy plants, heat pumps and industrial processes [7,8]. Low temperature 

networks allow one to increase the amount of heat recovery from exhausts and also to recover heat 

from low temperature processes. 

The main issue on this kind of systems is referred to investment and operating costs. As any other 

system it needs to be more convenient than the alternatives. In addition, its energy sustainability 

should be carefully analyzed in order to ensure that the total primary energy required to supply heat 

to the users is smaller than possible alternatives.  

To build district heating networks several years are usually necessary, with large expenses and 

discomfort to the community. For this reason, the system must be designed in its final structure, 

with few possibilities of making changes. In particular it is necessary to determine the possible 

users to be connected, the topology and the pipe diameter of each branch. Such a problem can be 

solved as a synthesis problem, i.e. an optimization where the system structure is not defined a priori 
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[9]. In this way it is possible to define the optimal network that minimize (or maximize) an 

objective function, such as the minimum cost of heat or the maximum benefit. 

This paper deals with the problem of district heating network (DHN) synthesis, i.e the search for the 

optimal configuration of the network, which consists in the identification of users that should be 

connected to the network and those to which heat should be supplied through alternative systems. In 

particular, a low temperature district heating network fed with solar energy is considered. The 

analysis is conducted considering a supply temperature between 55 °C and 40 °C, while the return 

temperature is assumed 25 °C or 20 °C. Groundwater heat pumps run with solar photovoltaic are 

considered as the possible alternative, in order to obtain 100% renewable configurations. 

A thermoeconomic approach [10] is applied to a small network by considering both monetary and 

energy cost as the objective functions in the optimization.  

2. Thermoeconomic analysis 
The optimal synthesis of energy systems is here approached by starting with a superstructure, which 

is a DHN involving all of the possible zones and thus all the users. The use of a superstructure is the 

most common approach to synthesis problems (see for example [11]). Once the superstructure is 

built, the synthesis problem can be solved as an optimization problem, provided that particular 

values of the variables associated with the components or with the internal flows correspond to the 

condition of absence of that component or flow. In the case of DHN when the optimal mass flow 

rate in a pipe is zero means that the pipe must be eliminated from the structure. 

The procedure starts with the evaluation of the objective function in the initial configuration, 

corresponding to all the users connected with the network. The network is then reduced, through 

successive elimination of the users characterized by high costs and the corresponding pipes 

connecting these users with the rest of the network. The selection of the user to be disconnected to 

the network is operated using a probabilistic approach. The probability of a user to be disconnected 

increases with increasing unit cost of heat supplied to that user. As this procedure is not 

deterministic, it should be repeated several times in order to increase the possibility to find the true 

optimal configuration. The procedure is stopped when all the users are disconnected. 

The details of the selected procedure are shown by considering the average primary energy 

consumption of heat provided to the users as the objective function to be minimized. This quantity 

is calculated as the exergetic unit cost of heat. The first step consists then in calculating the 

productive function: 

    
    

  
 

                      

  
 (1) 

The cost of network Cnet is the amount of primary energy required to produce and install the 

insulated pipes. Components as heat exchangers, pumps, valves have been neglected in the analysis. 

Primary energy associated with excavation, installation and paving restoration has been also 

considered. Cnet is an annual cost. Year is the best unit time to be used for thermoeconomic analysis 

of such system due to the production variation depending on the average external temperature and 

during the day. Cost functions used in this analysis are discussed in the annex. 

The energy unit cost of heat has been calculated considering heat production from solar collectors 

only. The following expression for collector efficiency has been considered [12]: 
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T is the difference between the average temperature of the fluid inside the collectors and the air 

temperature and It is the total radiation. Ambient temperature and solar radiation of Turin have been 

considered (see Table 1). 

 

 



Table 1.  Solar radiation and temperature for Turin 

 

 

In the case of the available collectors: 0 =0.718, 1a =0.974 W/m
2
K, 2a =0.004 W/m

2
K

2
. Excess 

heat produced when the heating demand is small is considered to be stored in a seasonal storage 

system. Efficiency is considered to be linearly dependent on the difference between the internal 

temperature and ground temperature. Efficiency is assumed 0.9 when the internal temperature is 90 

°C and ground temperature is 13 °C [13].  

Heat request by the users Qu and heat supplied by the thermal plant QF differ because of heat losses 

QL. Heat losses have been calculated by considering each branch.  
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where k is the overall heat transfer coefficient and T is the average temperature between outgoing 

an return network, Tg is the ground temperature an t is time period (a year).  

Last term on numerator of equation (1) accounts for the primary energy association with electricity 

required for pumping, being cP the exergetic unit cost of electricity and Lp is the annual electricity 

consumption, calculated as: 
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where p is the average pump efficiency, G is the water mass flow rate, v is the water specific 

volume (constant) and p the total pressure losses due to pipe friction and localized resistances. 

The last term on the right hand side of equation (1) is the cost of heat supplied to the users fed with 

alternative systems. This is obtained as the product of the exergetic unit cost of the heat produced 

with these systems (ca) times the annual heat supplied to the users not connected with the district 

heating (Qa). In the initial network configuration this term is zero.  

Terms in equation (1) depend on the thermal load supplied by the network and on its extension. The 

possible area to be heated by the thermal plant must be chosen. This area can be divided into zones, 

each including one or more buildings. The number of zones should be selected as trade-off between 

result accuracy (large number of zones) and time required for design and calculation (small number 

of zones). For each zone, the total volume of buildings is determined. The thermal barycentre can 

be easily located in the area by considering the position of buildings and their respective volume 

(the geometric barycentre can be used as well, especially when the building structure is sufficiently 

regular). At this point, the network connecting the thermal plant with TBs can be traced. 

The annual heat load of each single zone Qz is calculated by considering, for the whole heating 

season, the daily difference between the internal temperature (20 °C) and the external temperature, 

the average thermal transmittance of buildings (through walls, windows, floor, etc.), the number of 

daily heating hours (hh). The thermal transmittance of building can be multiplied for a shape factor 

defined as the ratio of external surface and building volume; this quantity, here indicated as r, 

expresses the volumetric heat losses per unit temperature difference. This value has been measured 

for several buildings; an average value of 0.9 W/(m
3
K) can be assumed. The annual heat load for a 

zone, in kWh, is then calculated as 
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where Vz is the total volume of buildings in the zone and DTD is the summation of daily difference 

between internal and external temperature, calculated for the whole heating season (degree day). 

The number of daily heating hours is considered to be the same as for buildings with individual 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

It (MJ/month/m2) 155 218.4 378.2 340 607.6 645 728.5 573.5 405 288.3 165 145.7

T (°C) 1.7 5.3 8.5 15.7 19.1 20.5 21.3 24 20.3 13.2 7.7 4.1



heating system, which is established by law, depending on DTD. In the specific case analyzed in 

this paper, this quantity is about 2730 °C, being the heating season from the middle of October to 

the middle of April, while the number of heating hours is 12 per day.   

The total heat load is calculated as summation of the contributions of all zones. The network 

operates for longer time than specified, mainly due to four causes: 1) non contemporary request by 

the users, 2) presence of particular users, like hospitals, that requires heat for more than 14 hours 

per day and for an extended period, 3) domestic water demand, 4) presence of users that requires 

heat in summer for air conditioning through absorption chillers. For all these reason, the total load 

calculated through equation (5) has been considered as spread on 18 hours per day in the seasonal 

heating, moreover the thermal flow outside this period has been assumed non null, but calculated on 

the basis of the thermal losses. 

The cost of the network is calculated by considering each single branch and depends on its 

diameter. Internal diameter of pipes is calculated by first determining the mass flow rate in each 

branch. The mass flow rate is imposed by the thermal requirement of each user downstream that 

branch: 

 
 ro hhG   (6) 

where  is the thermal flow provided to the users (the maximum load is considered in design), G 

the water mass flow rate, h0 and hr the enthalpies of fluid feeding and returning from the users. The 

diameter is determined by imposing the maximum velocity vmax allowed in the pipes. This value is 

mainly defined on the basis of economic criterion, since friction losses and thus pumping cost 

depend on the square of velocity. On the other hand, a too low velocity would determine a large 

pipe diameter, thus high investment costs. In this analysis a value of 1.5 m/s is considered. The 

water mass flow rate G is expressed as: 
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A thermoeconomic analysis is then implemented for the designed network, where all the possible 

users are connected. In particular, a useful approach that can be adopted for this purpose is that 

proposed by Valero and co-workers in the eighties [14, 15]. One of its main characteristics is the 

matrix based approach, in particular the use of incidence matrix for  expressing the equation of cost 

conservation.  The only auxiliary equation to be applied is the assignment of the same unit cost to 

the flow exiting each bifurcation [16]. 

The unit cost of a flow c can then be calculated, by dividing the costs for the corresponding exergy 

flow:  
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Where B is the exergetic cost of a general flow and  its exergy.  

At this point, the unit cost for each user, can be calculated. This cost is not the same for all of them 

because of the different exergy destruction (mainly due to friction) and the pipe cost associated to 

the different paths joining the thermal plant with the users. 

The network is then optimized using a probabilistic approach similar to simulated annealing [17]. 

The probability of users to be disconnected to the district heating network is assumed to be 

dependent on their unit cost. In the optimization procedure, users are progressively disconnected 

from the network. Each iteration the user to be disconnected is randomly selected from an ensemble 

where the number of samples for each user is proportional to its probability. The users disconnected 

with the network are considered to be heated through the alternative system, which is, in this case a 

solar photovoltaic driven groundwater heat pump. The average COP of the heat pump is assumed 
equal to 4 in the case of unperturbed groundwater temperature. In the case of multiple installations, 

possible interferences between heat pumps are considered, as discussed in [18]. A simplified 



expression for the effects of the distance d between an upstream installation on a downstream 

installation is assumed:  

                              (9) 

Since a probabilistic approach has been considered, the complete optimization procedure has been 

repeated several times in order to increase the probability to find the true optimum. 

The entire procedure is similar in the case of economic costs, the only difference is that unit costs 

are expressed in monetary units. Costs of insulated pipes have been considered as in [10], while the 

cost of solar collectors and storage system have been taken from [13]. No incentives have been 

considered for solar energy. 

In the cases where minimum primary energy and minimum economic cost are competing, the 

optimization has been performed by imposing a variable constraint on the maximum acceptable cost 

of heat (i.e. the economic objective function), so that the problem can be treated as single objective 

optimization. Once an optimal point is found, the optimization is repeated by modifying the 

maximum acceptable cost of heat.  

3. Application 
Figure 1 shows a schematic of the district heating network that has been considered as the case 

study. It is a network located in a small town in the north west part of Italy. The maximum thermal 

request is about 7 MW [19]. Heat to this network is supplied by an internal combustion engine 

(about 3 MW) and gas boilers. This case study is considered since it is a reasonable size of network 

that can be fed with renewable energy and because there is availability of groundwater to feed 

groundwater heat pumps, that can be considered as potential alternatives to the district heating 

network.  

 

 

Fig. 1. Schematic of the District Heating Network. 

 

The network shown in the figure corresponds to all the users connected to the district heating 

system. This superstructure is progressively simplified in order to discover the optimal 

configuration. The analysis is conducted by considering various combinations of the supply 

temperature and return temperature, which are here assumed as parameters in the analysis instead of 

design variables. Therefore, several optimal curves are obtained for each couple of these 

parameters. These results are shown in figure 2 for the following cases: 40-20 °C, 45-20 °C, 50-20 

°C, 55-20 °C and 55-25 °C.  



 

Fig. 2. Optimization results. 

Results show that the two objective functions are competing for the values of the supply and return 

temperatures here considered. The lowest exergetic unit cost of heat is obtained in the case of 

smallest supply and return temperature. This also corresponds to the highest economic cost. This 

configuration corresponds to 54% of the users connected to the district heating network. This 

percentage refers to the annual heat demand with respect to the total heat demand of the users in the 

urban area. Increasing the supply temperature, the number of users connected to the district heating 

network in this condition (i.e. minimum exergetic cost of heat) increases. It becomes 67% in the 

case of supply temperature of 45 °C, 80% in the case of supply temperature of 50 °C and 93% in the 

case of supply temperature of 55 °C. The reason of such behaviour can be analyzed by considering 

the diagram in figure 3.   

 

 
 

Fig. 3. Effect of weighted distance from the thermal plant to the unit cost of heat in (kWh/kWh). 
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Figure 3 shows the exergetic cost of heat associated to the users when they are all connected to the 

network. In the figure this is represented as the function of L*, which is the ratio between the 

distance of the user from the thermal plant and the mass flow rate required by the user. The graph 

shows that when the users are far from the plant, the efficient use of primary energy decreases. The 

only exception is represented by very small users (i.e. small mass flow rate required to satisfy the 

thermal request) located quite close to the thermal plant. 

When the supply temperature is increased from 40 °C (crosses) to 55 °C (circles), the behaviour 

remains the same, but the exergetic costs increases of about 3%. This is due to the increase in the 

term due to heat production, which is basically associated to the efficiency of solar collectors, 

which decreases (of about 4.5%) because of the larger operating temperature. 

Starting from the points in figure 2 corresponding with all users connected with the network (for 

each series, these are the points on the left part of the diagram), it is possible to reduce the economic 

unit cost of heat by disconnecting some users from the network (those characterized with larger 

economic unit cost of heat) and supplying them heat with groundwater heat pumps.  

This can be observed by analyzing the exergetic and economic unit costs of heat as the users are 

disconnected to the network. This is analyzed in figure 4 in the case of supply temperature of 55 °C 

and return temperature of 20 °C.  

 

 
 

Fig. 4. Trends of exergetic and economic unit costs during a iterative network simplification. 

The reasons why the exergetic unit cost tends to increase as the users are disconnected is that solar 

district heating is more efficient than the alternative. In addition, there are interactions between the 

various heat pump installations that affect their efficiency, as discussed above. In contrast, the 

economic cost tends to decrease. The minimum economic cost is obtained with few users still 

connected with the district heating system (about 6-10% of the annual heat, depending on the 

combination of temperatures). This is due to the interferences between heat pumps, that cause a 

reduction in the COP of downstream installation and thus an increase in the primary energy 

consumption.   

Also, it is interesting to compare the unit costs corresponding to a fixed amount of heat supplied to 

users connected with the district heating network, for the various supply temperatures and fixed 

return temperature (20 °C). The amount of heat supplied through district heating network is 

considered to be 55% of the total annual request. Figure 5 shows that an increase in the supply 

temperature causes an increase in the exergetic unit cost but a decrease in the economic unit cost. 
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The latter is due to the reduction of the investment costs associated with heat storage and pipe 

network. Nevertheless the economic advantage obtained increasing the supply temperature tends to 

decrease with increasing temperature, in fact the distance between points at fixed increase in the 

supply temperature tends to reduce. 

 

Fig. 5. Unit costs for fixed users connected to the network as the function of supply temperature. 

In the case of higher return temperature (e.g. 25 °C), the Pareto front presents sudden increase in the 

economic unit cost of heat with decreasing exergetic cost. It should be also mentioned that in the 

case of high temperatures (65-40 °C, 70-35 °C, 75-30 °C...) no Pareto front takes place and the 

optimal system is obtained with most users heated through groundwater heat pumps.  

4. Conclusions 
In this paper the energy and economic optimization of a district heating network is conducted using 

a thermoeconomic based probabilistic procedure. The procedure is applied to a small low 

temperature district heating network. Groundwater heat pumps are considered as the possible 

alternative systems to supply heat to the users not connected to the district heating network. 

A multi-objective optimization is performed for various combinations of the supply and return 

temperatures. The analysis shows that supply and return temperatures play a crucial role in the 

optimal configuration. In particular a reduction of both temperatures allows one to achieve smaller 

cost of heat in terms of required primary energy, but causes an increase in the economic costs. An 

increase in the return temperature causes an increase in both costs, which conducts to non 

competing objective functions. 

The most important terms that affect to optimal configuration are the efficiency of solar collectors 

and the possible thermal interferences between heat pump, and, from the economic viewpoint only, 

the investment cost due to the seasonal thermal storage and the pipe network. 
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Appendix: cost calculation 
Purchase cost for pre-insulated pipes has been calculated through the following equation [20]:  

                                 

where D is the internal diameter and L the length of the pipe, 1.25 is a corrective factor used to 

include the cost of special components also determined through available data and 2 accounts for 

the double pipe. The values of polynomial coefficients have been updated with respect to those 

available in [20]: a0=11.7 €/m, a1=133.7 €/m
2
, 1575 €/m

3
. 

Installation costs include the excavation (5.2 €/m
3
) and pavement restoring (10.3 €/m

2
). 

Concerning heat generation, the following specific equipment costs are considered: solar collectors 

250 €/m
2
, photovoltaic panels 2500 €/kW, heat pumps 500 €/kW [21], seasonal storage tank 80 

€/m
3
 [13]. Linear cost functions have been considered for these components. 

 

 

 


