
Novel Non-Recursive max∗ Operator with Reduced

Implementation Complexity for Turbo Decoding

Stylianos Papaharalabos*, P. Takis Mathiopoulos*, Guido Masera**, and Maurizio Martina**

December 2, 2011

(*) Institute for Space Applications and Remote Sensing (ISARS), National Observatory of Athens,

Metaxa and Vas. Pavlou Str., Palaia Penteli, GR-15236, Athens, Greece.

(**) VLSI Lab, Dipartimento di Elettronica, Politecnico di Torino, corso Duca degli Abruzzi 24,

10129 Torino, Italy.

E-mail: spapaha@space.noa.gr

This work was supported by the European Commission in the framework of the FP7 Network of

Excellence in Wireless COMmunications NEWCOM++ (contract no. 216715).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11426100?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this paper, we deal with the problem of how to effectively approximate the max∗ oper-

ator when having n > 2 input values, with the aim of reducing implementation complexity

of conventional Log-MAP turbo decoders. We show that, contrary to previous approaches,

it is not necessary to apply the max∗ operator recursively over pairs of values. Instead,

a simple, yet effective, solution for the max∗ operator is revealed having the advantage

of being in non-recursive form and thus, requiring less computational effort. Hardware

synthesis results for practical turbo decoders have shown implementation savings for the

proposed method against the most recent published efficient turbo decoding algorithms by

providing near optimal bit error rate (BER) performance.

1 Introduction

In the past, several algorithmic approaches have been proposed aiming to simplify the well-

known max∗ operator [1] for decoding turbo codes [2], including Improved Max-Log-MAP,

Constant Log-MAP [3], Linear Log-MAP, Average Log-MAP, etc. A detailed comparative

study among these techniques was published in [4], in which the max∗ operator was ap-

proximated using the max operator and a small number of piecewise linear (PWL) terms,

denoted as r. As shown in [4], the implementation of the r = 3 approximation is very

simple and has similar complexity with the Constant Log-MAP algorithm. Additionally,

the r = 4 approximation requires higher complexity and it is comparable, in terms of com-

plexity, with the most recent known algorithms, such as the Linear Log-MAP, the Average

Log-MAP, etc. [4]. The penalty paid for all these well-known reduced complexity imple-

mentation techniques is a small bit error rate (BER) performance degradation as compared

to the BER performance achieved by the optimal Log-MAP algorithm [5]. Currently, the

best trade-off between turbo code performance and complexity is achieved by the Constant

Log-MAP algorithm.

Conventionally, for Log-MAP turbo decoding the max∗ operator is defined only for

n = 2 input values [1] and for n > 2 it is applied n − 1 times in a recursive form [5]. In

2

this paper, we show how the max∗ operator with n > 2 input values can be computed

effectively in a non-recursive form with the aim of reducing implementation complexity

of the Log-MAP turbo decoder. Performance evaluation results are depicted for both bi-

nary and duo-binary turbo codes showing the near-optimal and essentially optimal BER

performance of the proposed method, respectively. Furthermore, hardware synthesis re-

sults indicate implementation advantages against the most recent published efficient turbo

decoding algorithms, such as the r = 3 and r = 4 approximations [4], which makes our

proposed method quite appealing in practical communication systems.

2 Novel Non-Recursive max∗ Operator

The max∗ operation, i.e. Jacobian logarithm, used in Log-MAP turbo decoding, is defined

as [1]

max∗(x1, x2)
4
= log{exp(x1) + exp(x2)} = max(x1, x2)

+ log {1 + exp(− |x1 − x2|)} = max(x1, x2) + fc(|x1 − x2|)

(1)

where fc(|x1 − x2|) is a non-linear function referred to as ‘correction term’ [5] and |.| denotes

absolute value. Typically, for more than two input values, the Jacobian logarithm is applied

recursively [5]. For example, considering three values, it yields

max∗(x1, x2, x3) = max∗ {max∗(x1, x2), x3} (2)

For the Log-MAP algorithm, a look-up table (LUT) substitutes fc(|x1 − x2|), which

is usually implemented with eight values [5]. If the LUT is omitted, then the Log-MAP

simplifies to the Max-Log-MAP algorithm.

From (2) it is evident that for n input values the max∗ operator is applied recursively

n− 1 times. Let us consider the Chebyshev inequality [6, p. 186, Eq. 36.11]

{

n
∑

i=1

ai

}{

n
∑

i=1

bi

}

≤ n
n
∑

i=1

aibi (3)

3

where a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. For a1 = exp(x1), a2 = exp(x2), . . . ,

an = exp(xn) and b1 = n, b2 = n− 1, . . . , bn = 1 the Chebyshev inequality yields

{

n
∑

i=1

exp(xi)

}

{n+ (n− 1) + . . .+ 1} ≤ n {exp(x1)n+ exp(x2)(n− 1) + . . .+ exp(xn)} (4)

Taking the logarithm on both sides of the above inequality and considering only two terms

in the right-hand side (RHS), the following approximation is obtained

log

{

n
∑

i=1

exp(xi)

}

+ log {n(n+ 1)/2} ≈ log(n) + x1 + log {n+ exp(x2 − x1)(n− 1)} (5)

or equivalently

max
i=1:n

∗(xi) ≈ log {2n/(n+ 1)}+ max
i=1:n

(xi) + log {[1 + exp(−δ)(n− 1)/n]} (6)

where x1 = maxi=1:n(xi), δ = x1 − x2, and x2 is the second maximum value among n

values.

Since the first term in the RHS of (6) is positive constant it can be ignored, and because

for large values of n, (n− 1)/n ≈ 1, (6) is further simplified to

max
i=1:n

∗(xi) ≈ max
i=1:n

(xi) + log {[1 + exp(−δ)]} (7)

denoted as Log-MAP Delta. From (7) it is evident that the max∗ operator having n input

values can be computed non-recursively since it requires only knowledge of the maximum

among n values and an additive correction term depending on the second maximum value

among n values.

3 Turbo Code Performance Evaluation Results

Performance evaluation results have been obtained by means of computer based simulations

for both binary and duo-binary turbo codes, in terms of BER against bit energy Eb in an

4

additive white Gaussian noise (AWGN) channel having one-sided power spectral density

No. The binary turbo code used in simulations is a 16-state code with overal coding rate

R = 1/2 and generator polynomials (1, 33/23)o in octal form representing the feed-forward

and backward polynomials, respectively. An information sequence length of N = 103 bits is

assumed together with a pseudo-random turbo interleaver. The modulation type is binary

phase shift keying (BPSK). Additionally, the duo-binary turbo code used in simulations is

an 8-state code proposed in the Digital Video Broadcasting by Satellite-Return Channel

(DVB-RCS) [7] and Worldwide Interoperability for Microwave Access (Wi-MAX) [8] stan-

dards with overall coding rates R = 1/3, 2/3, and 4/5, and information sequence length

of N = 752 bit couples (MPEG packets). The modulation type in this case is quadra-

ture phase shift keying (QPSK). At the receiver, a maximum of 10 decoding iterations are

performed for both turbo codes. In our of computer based simulations, BPSK/QPSK mod-

ulation is implemented with antipodal baseband signaling representation, i.e. no carrier

frequency is assumed.

The performance of the newly proposed algorithm given in (7) is compared with the least

complex Max-Log-MAP algorithm and also with the best performing Log-MAP algorithm.

As shown in Figs. 1 and 2, Log-MAP Delta achieves near-optimal BER performance, which

is far better than the equivalent performance achieved by Max-Log-MAP algorithm. For

instance, in Fig. 1 and the 16-state turbo code, the BER performance degradation of Log-

MAP Delta against Log-MAP algorithm is only 0.05 dB at BER of 10−5. Similarly, in

Fig. 2 and the 8-state duo-binary turbo code, Log-MAP Delta has negligible performance

degradation against Log-MAP algorithm at BER of 10−6.

Furthermore, performance evaluation results have been obtained assuming the two effi-

cient decoding algorithms proposed recently in [4], i.e. r = 3 and r = 4 approximations, and

also the Constant Log-MAP algorithm, which currently provides the best trade-off between

BER performance and complexity. Following [9], to further improve the BER performance

scaling was applied in the extrinsic information and the best performing values were found

by trial and error for all investigated algorithms. The corresponding performance evalua-

tion results for both binary and duo-binary turbo codes are summarized in Table 1, without

5

scaling, and Table 2, using scaling, respectively. From Table 1, it is noticed that Log-MAP

Delta performs similarly with r = 3 approximation, whereas both r = 4 approximation

and Constant Log-MAP algorithm achieve near optimal BER performance. Furthermore,

from Table 2, it is noticed that scaling improves performance and Log-MAP Delta performs

similarly with r = 4 approximation and Constant Log-MAP algorithm. Hence, Log-MAP

Delta achieves esentially optimal BER performance.

4 Hardware Architecture Description

Several architectures have been proposed for the implementation of (1) and (2) based on

the two-input max∗ structure [4, 10]. In principle, two main implementation approaches

are feasible for n > 2, that is: serial and parallel architecture. On the one hand, the

serial architecture employs only one two-input max∗ structure and a bank of registers but

it requires n − 1 clock cycles to complete the computation. On the other hand, to reduce

the latency of a generic n-input max∗ structure, parallel architectures employing n−1 two-

input max* structures and operating concurrently in a tree-based architecture are usually

preferred. Notice that experimental results comparing serial and parallel architectures will

be discussed in Section 5. Furthermore, the computation of (7) requires knowledge of the

first two maximum values among n elements, therefore another solution is necessary. From

the implementation point of view, (7) can be split into two sub-problems: i) Finding the

maximum x1 and x2; and ii) Computing the correction term log {[1 + exp(−δ)]}. These

two sub-problems are presented next.

4.1 Maximum Finding

The most straightforward approach in finding x1 and x2 among xi with i = 1, 2, ..., n is to

sort xi. As suggested in [11, Chapter 28.5, pp. 1-2], to obtain a parallel sorter a merge

sort architecture can be deployed. However, this approach will result in an increased area

overhead, due to the large number of comparators required for finding x1 and x2 being

equal to n/4 · {[log2(n) + 1] · log2(n)}. An alternative solution is obtained by adapting the

6

first-two-minimum-finder architecture (denoted as M2), which was proposed in [12] for low-

density parity-check (LDPC) decoding. This architecture is based on a tree structure using

Maximum-Value Generators (MVG). The structure for n inputs is derived recursively from

two MVG architectures for n/2 values and a connection unit, based on Maximum-Value

Units (MVU) as shown in Figs. 3 (a) and (b) where

s =

0 if A ≥ B

1 if A < B
(8)

With the M2 architecture the number of comparators required for finding x1 and x2 is

2n− 3.

4.2 Correction Term Computation

A simple implementation of the correction term in (7) is obtained by exploiting the proce-

dure adopted in [10] for the two-input max∗ approximation. Namely, the correction term

is stored into a LUT accessed by δ. The size of the LUT, denoted as m, is the minimum

positive integer value that satisfies

log {[1 + exp(−m/2p)]} ≤ 2−(p+1) (9)

and p is the number of fractional bits to represent δ as a fixed point value. Then, the LUT

content is obtained by computing log {[1 + exp(−i/2p)]}, ∀i ∈ [0,m−1] and converting the

result as a fixed point value on p fractional bits.

5 Hardware Synthesis Results

Post synthesis results obtained by implementing the max∗ operator and its approximations

on 90 nm standard cell technology are shown in Table 3. The synthesis was performed

with Synopsys Design Compiler [13] for a target clock frequency of 200 MHz representing

the data on nb = 8, 12, 16 bits. The design space been explored includes the parameters

7

n = 4, 8, 16 and p = 1, 2, 3 being the number of inputs for the max∗ operation and

the fractional bits, respectively. Furthermore, the n input max∗ operator is approximated

as: (i) Simple recursive application of the 2-input max operation (denoted as MX and

corresponding to Max-Log-MAP algorithm); (ii) Recursive application of the Jacobian

logarithm with correction function implemented by means of a LUT [5, 10] (denoted as

JL and corresponding to Log-MAP algorithm); (iii) Adoption of M2 architecture for the

maximun finding, according to (7), which corresponds to Log-MAP Delta; (iv) Constant

Log-MAP architecture as proposed in [3]; and (v) r = 3, r = 4 architectures as proposed in

[4]. As it can be observed, the proposed solution with M2 architecture leads to significantly

lower complexity than JL. In particular, the area of M2 is from 50% to 70% of the area

required to implement JL. Furthermore, the proposed M2 solution is simpler than the

approximations recently proposed in [4] for both r = 3 and r = 4, whereas it has nearly

the same complexity with Constant Log-MAP.

Since, as it can be seen from Table 3 the proposed M2 and the Constant Log-MAP

architectures have comparable complexity, it is interesting to further investigate these two

solutions. On the one hand, the proposed Log-MAP Delta approximation is intrinsically

parallel for an n-input max∗ operator. On the other hand, the Constant Log-MAP ap-

proximation can be employed to obtain either a serial or a parallel implementation. Serial

implementation of the Constant Log-MAP approximation for an n-input max∗ operator

has been carried out for the cases shown in Table 3, namely n = 4, 8, 16 and nb = 8, 12, 16.

The minimum delay of this serial architecture ranges from 0.8 ns to 0.9 ns and the area

from 1246 µm2 to 5597 µm2. Unfortunately, the low delay of such serial architecture can

not be fully exploited in the design of a complete MAP decoder mainly, due to the lim-

ited maximum clock frequency achieved by memories. For this type of technology, such

maximum clock frequency is about 500 MHz. As a consequence, the low area figures of-

fered by serial architectures come at the expense of a dramatic throughput reduction as

compared with parallel implementations. For instance, if we consider the Universal Mobile

Telecommunication System-Long Term Evolution (UMTS-LTE) turbo code and a serial im-

plementation, each half iteration in the decoding process requires a number of clock cycles,

8

which is about twenty times the number of clock cycles required by a parallel implemen-

tation. Therefore, in the following we will concentrate on area synthesis results achieved

with parallel implementation. To better compare the proposed parallel architecture and

the Constant Log-MAP based one, we have investigated the minimum delay achieved by

both of them. In Table 4 both area (denoted as A) and minimum delay (denoted as D)

are shown for proposed parallel architecture when p = 1 and the Constant Log-MAP, re-

spectively. As it can be observed, in several cases the proposed architecture achieves lower

delay and complexity as compared to the Constant Log-MAP for maximum achievable

clock frequency been equal to 1/D.

In order to evaluate the impact of the proposed solution on the complexity of a complete

Soft-In-Soft-Out (SISO) module [10] both a UMTS-LTE [14] and a Consultative Commit-

tee for Space Data Systems (CCSDS) [15] SISO module were implemented, in which binary

turbo codes are deployed. The UMTS/LTE SISO module requires two 8-input max∗ op-

erators to compute the a posteriori information (APO) [16]. Similarly, the CCSDS SISO

module requires two 16-input max∗ operators to compute the APO [17]. In both cases, the

n-input max∗ operators were implemented as M2, MX, JL, Constant Log-MAP, and r = 3,

r = 4 architectures. Moreover, the intrinsic and extrinsic information were represented

with six and eight bits, respectively with p = 3, whereas state metrics were represented

with ten bits.

Post synthesis results for the UMTS-LTE/CCSDS turbo codes, as shown in Table 5,

depict that the area required to compute APO with the proposed M2 architecture is about

74% of the area occupied by JL-based solution. If we consider the area occupied by the

logic of a whole SISO module, then the proposed M2 architecture features an area saving

that ranges from about 12% to 15% with respect to a JL-based SISO. We have similarly

investigated the DVB-RCS/Wi-MAX duo-binary turbo code and the post synthesis results

are shown in Table 6. In this case, M2 architecture offers 21% area savings with respect

to JL-based SISO. Furthermore, the area required to compute APO/SISO modules with

the proposed M2 architecture is less than that required by both the r = 3 and r = 4

approximations [4]. Lastly, Constant Log-MAP requires the smallest area to compute

9

APO/SISO modules. It is thus, the most efficient algorithm, in terms of computational

complexity.

6 Conclusion

It has been shown how the max∗ operator with n input values can be approximated ef-

fectively without recursive computation, in order to reduce implementation complexity of

practical Log-MAP turbo decoders. For the case of a 16-state binary turbo code, 0.05 dB of

performance degradation was observed at BER of 10−5 but with 15% complexity savings.

In another case, for an 8-state duo-binary turbo code neglibible performance degradation

was observed at BER of 10−6, while maintaining 21% complexity savings. If scaling is

additionally used, then negligible performance degradation is observed against Log-MAP

algorithm for both binary and duo-binary turbo codes. In terms of complexity comparison

with other state-of-the-art reduced complexity algorithms, the proposed solution is simpler

than the approximations recently published in [4] for both r = 3 and r = 4, and it is

slightly more complex than Constant Log-MAP algorithm.

References

[1] Viterbi, A. J.: ‘An intuitive justification and a simplified implementation of the MAP

decoder for convolutional codes’, IEEE J. Sel. Areas Commun., 1998, 16, (2), pp.

260–264.

[2] Berrou, C., Glavieux A., and Thitimajhima, P.: ‘Near Shannon limit error correcting

coding and decoding: Turbo codes’, Proc. IEEE Int. Conf. Commun. (ICC), Geneva,

Switzerland, 1993, pp. 1064–1070.

[3] Gross, W. J., and Gulak, P. G.: ‘Simplified MAP algorithm suitable for implementa-

tion of turbo decoders’, IEE Electron. Lett., 1998, 34, (16), pp. 1577-1578.

10

[4] Papaharalabos, S., Mathiopoulos, P. T., Masera, G., and Martina, M.: ‘On optimal

and near-optimal turbo decoding using generalized max∗ operator’, IEEE Commun.

Lett., 2009, 13, (7), pp. 522–524.

[5] Robertson, P., Villebrun, E., and Hoeher, P.: ‘A comparison of optimal and sub-

optimal MAP decoding algorithms operating in the log domain’, Proc. IEEE Int.

Conf. Commun. (ICC), Seattle, USA, 1995, pp. 1009–1013.

[6] Spiegel, M. R.: ‘Mathematical handbook of formulas and tables’, McGraw-Hill, 1968.

[7] ‘Digital Video Broadcasting (DVB): Interaction channel for satellite distribution sys-

tems’, ETSI EN 301 790, v 1.3.1, Mar. 2003.

[8] ‘Air interface for fixed and mobile broadband wireless access sytems: Physical and

medium access control layers for combined fixed and mobile operation in licensed

bands’, IEEE P802.16e-2005 Amendment 2, Feb. 2006.

[9] Vogt, J., and Finger, A.: ‘Improving the Max-Log-MAP turbo decoder’, IEE Electron.

Lett., 2000, 36, (23), pp. 1937-1939.

[10] Montorsi, G., and Benedetto, S.: ‘Design of fixed-point iterative decoders for con-

catenated codes with interleavers’, IEEE J. Sel. Areas Commun., 2001, 19, (5), pp.

871-882.

[11] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: ‘Introduction to algo-

rithms’, The MIT Press, 2nd ed., 2001.

[12] Wey, C. L., Shieh M. D., and Lin, S. Y.: ‘Algorithms of finding the first two minimum

values and their hardware implementation’, IEEE Trans. Circuits Syst. I, 2008, 55,

(11), pp. 3430-3437.

[13] http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DCUltra/Pages/default.aspx,

accessed 2011.

[14] ‘3GPP TS 36.212 v8.0.0: Multiplexing and channel coding’, 2007-2009.

[15] ‘Consulative Committee for Space Data Systems (CCSDS): Telemetry channel coding’,

ser. Blue Book, May 1999.

11

[16] Martina, M., Nicola, M., and Masera, G.: ‘A flexible UMTS-WiMax turbo decoder

architecture’, IEEE Trans. Circuits Syst. II, 2008, 55, 4, pp. 369-373.

[17] Miyauchi, T., Yamamoto, K., Yokokawa, T., Kan, M., Mizutani, Y., and Hattori, M.

M.: ‘High-performance programmable SISO decoder VLSI implementation for decod-

ing turbo codes’, Proc. IEEE Global Telecommunications Conference, San Antonio,

USA, 2001, pp. 305-309.

12

Table 1: Required Eb/No (in dB) at BER = 10−5 for binary turbo code and at BER = 10−6 for
duo-binary turbo code.

Decoding Binary Duo-binary Duo-binary Duo-binary
Algorithm Turbo Code Turbo Code Turbo Code Turbo Code

R = 1/2 R = 1/3 R = 2/3 R = 4/5

Max-Log-MAP 2.1 1.45 2.65 3.85
r = 3 Approx. [4] 1.75 1.35 2.55 3.75
r = 4 Approx. [4] 1.7 1.35 2.55 3.75
Log-MAP Delta 1.75 1.35 2.55 3.75

Constant Log-MAP 1.7 1.35 2.55 3.75
Log-MAP 1.7 1.3 2.55 3.75

13

Table 2: As in Table 1 but with the extrinsic information scaled by a factor of sc.
Decoding Binary Duo-binary Duo-binary Duo-binary
Algorithm Turbo Code Turbo Code Turbo Code Turbo Code

R = 1/2 R = 1/3 R = 2/3 R = 4/5

Max-Log-MAP 1.7 1.3 2.55 3.75
(sc = 0.65) (sc = 0.75) (sc = 0.75) (sc = 0.75)

r = 3 Approx. [4] 1.65 1.25 2.45 3.65
(sc = 0.75) (sc = 0.85) (sc = 0.85) (sc = 0.85)

r = 4 Approx. [4] 1.6 1.25 2.45 3.65
(sc = 0.75) (sc = 0.9) (sc = 0.9) (sc = 0.9)

Log-MAP Delta 1.6 1.25 2.45 3.65
(sc = 0.75) (sc = 0.85) (sc = 0.85) (sc = 0.85)

Constant Log-MAP 1.6 1.25 2.45 3.65
(sc = 0.85) (sc = 0.9) (sc = 0.9) (sc = 0.9)

Log-MAP 1.6 1.25 2.45 3.65
(sc = 0.9) (sc = 0.9) (sc = 0.9) (sc = 0.9)

14

Table 3: Post synthesis area results [µm2] obtained by implementing the max∗ operator used in
Log-MAP and its approximations for a target clock frequency of 200 MHz.

n nb p
Max-Log-MAP Log-MAP Delta Log-MAP Constant
(MX) (M2) (JL) r = 3 [4] r = 4 [4] Log-MAP
µm2 µm2 µm2 µm2 µm2 µm2

4

8
1

347.86
859.42 1302.54

996.84 1353.68 834.722 891.88 1379.45
3 918.69 1508.57

12
1

518.62
1396.38 2088.58

1605.40 2118.19 1287.722 1418.26 2121.74
3 1452.12 2304.49

16
1

700.66
2209.23 3211.89

2318.16 3078.61 1984.852 2213.47 3354.42
3 2135.85 3558.34

8

8
1

805.09
1873.37 3045.37

2326.02 3158.43 1946.042 1879.72 3254.23
3 1951.69 3728.39

12
1

1244.68
3614.79 5126.18

3745.98 4942.21 3206.952 3505.42 5285.65
3 3697.34 5958.09

16
1

2026.48
4888.40 8245.64

5408.89 7183.42 5270.132 5091.61 8513.77
3 4906.04 8496.84

16

8
1

1728.01
4338.73 7046.12

4984.24 6768.54 4273.622 4242.77 7594.37
3 4487.62 8959.00

12
1

3009.38
8007.85 12200.53

8026.93 10590.86 7245.812 7914.72 12968.22
3 7935.18 13632.90

16
1

4235.01
10708.89 18678.64

11590.35 15393.64 12212.532 10490.16 20118.07
3 11106.85 19384.24

15

Table 4: Post synthesis area results [µm2] and minimum latency [ns] obtained by implementing
the max∗ operator for parallel Log-MAP Delta and Constant Log-MAP architectures. A notes
area and D denotes latency, respectively. The target clock frequency is 1/D.

n nb Log-MAP Delta Constant Log-MAP
A D A D

4
8 1642 1.30 1704 1.20
12 2292 1.50 2307 1.45
16 2850 1.55 3735 1.45

8
8 3320 1.70 4296 1.80
12 5008 1.85 6765 2.05
16 6354 1.95 9435 2.15

16
8 6611 2.05 9639 2.35
12 10294 2.25 14721 2.65
16 13191 2.35 21936 2.80

16

Table 5: Post synthesis area results [µm2] for turbo code used in UMTS-LTE and CCSDS
standards with a target clock frequency of 200 MHz.

UMTS-LTE CCSDS

APO SISO APO SISO
Log-MAP (JL) 17820.63 37861.08 42483.47 79942.36

Log-MAP Delta (M2)
13299.13 33339.58 31088.03 68546.92
(74.6%) (88.1%) (73.2%) (85.7%)

r = 3 Approx. [4]
13396.41 33436.86 31271.53 68730.42
(75.2%) (88.3%) (73.6%) (86.0%)

r = 4 Approx. [4]
15788.87 35829.32 36399.39 73858.28
(88.6%) (94.6%) (85.7%) (92.4%)

Constant Log-MAP
12318.35 32358.80 29709.29 67168.18
(69.1%) (85.5%) (69.9%) (84.0%)

Max-Log-MAP (MX) 8393.81 28434.26 21236.43 58695.32

17

Table 6: As in Table 5 but for turbo code used in DVB-RCS and Wi-MAX standards. In this
table, α and β denote the forward and backward metrics, respectively.

DVB-RCS/Wi-MAX

α/β APO SISO
Log-MAP (JL) 22338.12 40289.06 98270.09

Log-MAP Delta (M2)
16547.72 31246.06 77646.29
(74.1%) (77.6%) (79%)

r = 3 Approx. [4]
17083.93 31440.62 78913.27
(76.5%) (78.0%) (80.3%)

r = 4 Approx. [4]
20821.55 36225.54 91173.44
(93.2%) (89.9%) (92.8%)

Constant Log-MAP
16066.20 29284.50 74721.69
(71.9%) (72.7%) (76.0%)

Max-Log-MAP (MX) 10593.88 21435.42 55927.97

18

0.5 0.75 1 1.25 1.5 1.75 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R
Max−Log−MAP
Log−MAP Delta
Log−MAP

Figure 1: BER performance of binary turbo code with Max-Log-MAP, Log-MAP and the pro-
posed decoding algorithm (denoted as Log-MAP Delta).

19

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R
Max−Log−MAP
Log−MAP Delta
Log−MAP

R=1/3 R=2/3 R=4/5

Figure 2: As in Fig. 1 but with duo-binary turbo code used in DVB-RCS and Wi-MAX stan-
dards.

20

connection unit

unsorted sorted

comp.

0

1

comp.

0

1

0

1

max_1st

max_2nd

max_1st

max_1st

max_2nd

max_2nd

1

0

MVU

MVU

MVU
max

(a)

A

B

s

n-MVG

(b)

s

2-MVG

A

B

x1

xn

n/2-MVG

n/2-MVG
x1

x2

s

Figure 3: Block diagram of (a) 2-MVG; and (b) M2 architecture.

21

