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Abstract:

In recent years, experimental tests exploring the gigacycle fatigue properties of materials suggest
the introduction of modifications in well known statistical fatigue life models. Usual fatigue life
models, characterized by a single failure mechanism and by the presence of the fatigue limit, have
been integrated by models that can take into account the occurrence of two failure mechanisms
and do not consider the presence of the fatigue limit. The general case, in which more than two
failure mechanisms coexist with the fatigue limit, has not been proposed yet.

The paper presents a unified statistical model which can take into account any number of failure
mechanisms and the possible presence of the fatigue limit. The case of S-N curves with different
fatigue life distributions coexisting for the entire stress range covered by fatigue tests is also
considered. The adaptability of the statistical model to the S-N curves proposed in the open
literature is demonstrated by qualitative numerical examples.
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Nomenclature

¢; = number of failure causes generating the i-th failure mode

Ci, ..., Cj, ..., C,, =random variables representing failure causes

Fx,, Fx,, FXtO’ FXtm’ Fy, Fy|int Fy|surf = cumulative distribution functions

int = internal-initiated failure

m = number of failure modes

M = random variable representing failure mode

Nyqr = total number of parameters

P[] = probability of an event

pji = probability of having the j-th failure cause within the i-th failure mode
Qi rana = I-th random probability value

surf = surface-initiated failure

x = stress amplitude value

X; = random variable representing fatigue limit

X1 max = upper limit value of X;

Xy Xegr Xeyo Xeyr oo Xepo 0 Xt
Xt min = lower limit value of X,

., = random variable representing transition stresses
y = fatigue life value

Yirana = i-th random fatigue life value

Y = random variable representing fatigue life

Y|(i,j) = conditional random variable representing fatigue life giventhat M = iand C; = j
Y|int = conditional random variable representing fatigue life given that M = int

Y|surf = conditional random variable representing fatigue life given that M = surf

®[:] = standardized Normal cumulative distribution function

My Bxer txe,_ s By|(i,j)r By lines By|surs = loCation parameters

Ay|(i,j) Dy, j) = parameters involved in py(; j)

QAy|int» by|int = Parameters involved in Uy ¢

Ay|surfr Dy|sury = Parameters involved in py|g,,f

Oxp Oxp Oxe,_» O|(ij) O lints O¥|surf = scale parameters

-| = conditional event



1. Introduction

In recent years, experimental tests exploring the gigacycle fatigue properties of materials suggest
the introduction of modifications in well known statistical fatigue life models™.

In some cases>®, it has been found that specimens may fail even if the applied stress value is
smaller than the usual (conventional) fatigue limit. In most cases, while interior-initiated failures
occur if the applied stress amplitude is smaller than the usual fatigue limit, failures due to crack
nucleation at surface defects occur when the applied stress amplitude is larger than the usual
fatigue limit. Therefore two distinct failure mechanisms are visible in fatigue data plots and, at a
stress value near the usual fatigue limit, plots show a plateau separating the two failure
mechanisms. For this reason, the usual fatigue limit can be considered as a transition stress that
differentiates between two failure mechanisms. More generally, plateaux separating different
failure mechanisms represent transition stresses, while plateaux separating finite lives from
infinite lives can be considered as a real fatigue limit, if it exists™’.

Moreover, recent studies>®*? have found that different fatigue life distributions may coexist. The
presence of different fatigue life distributions in data plots can be explained by assuming that
distinct mechanisms of failure may coexist for a wide range of the applied stress amplitude.
Indeed, fractographs>° have shown that inclusions with different properties®® may lead to
interior-initiated failures at different average fatigue lives and, as a consequence, can be
considered as different mechanisms of failure. Jha et al.® mentioned that different sizes of o
colonies in a y-TiAl based alloy may be the cause of different fatigue lives. Finally, in®¥12 the
presence of different life distributions in the same stress range is explained by considering the
environmental effect: for some materials, a quasi-vacuum environment may significantly delay

crack nucleation.

In the following, according to what suggested by Harlow™, if failure mechanisms are separated by
plateaux, then they are called failure modes; while, if failure mechanisms coexist for the same
range of the applied stress amplitude and, consequently, are not distinguished by plateaux, then
they are called failure causes.

To the authors’ best knowledge, a unified statistical model able to describe any S-N curve
regardless of the number of failure modes and failure causes has not been identified yet. Usually,

specific statistical fatigue models are used in order to fit specific experimental data. In many

15,16

international standards statistical fatigue models, able to describe experimental data with one

failure mode due to one failure cause, are obtained by taking into account a linear function for the
mean fatigue life and by considering a constant standard deviation for the fatigue life. By
considering different probabilistic approaches (e.g., the random fatigue-limit model*’*8, the
weakest-link principlelg, the equivalent fatigue strength conceptzo), the capability of taking into
account the presence of the fatigue limit has been added in some statistical fatigue models.

21-23

Recently®??, a series system approach for competing failure modes***> has been adopted for

experimental data with two different failure causes. While, for the same type of experimental

,8,26 24,27

data, some other researchers®®*® proposed an approach based on a mixture of distributions



A unified statistical model able to describe any S-N curve regardless of the number of failure
modes and failure causes is obtained in the following. The adaptability of the proposed model is
demonstrated by qualitative numerical examples.

2. Duplex S-N curve

Figure 1 shows a typical gigacycle fatigue data plot with two plateaux: the upper plateau
represents a transition stress, while the lower plateau represents a fatigue limit. This kind of plot is
defined as duplex S-N curve®.
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Figure 1: Typical duplex S-N curve.

The statistical fatigue life model for duplex S-N curves and its defining parameters are described in
the following sections.

2.1 Duplex S-N curve: statistical fatigue life model

Some initial hypotheses are required in order to identify a statistical fatigue life model for duplex
S-N curves:

1) the fatigue limit, X;, is a random variable (rv) with cumulative distribution function (cdf) Fy,:
fatigue limit values vary randomly from specimen to specimen, even if specimens are made of
the same nominal material;

2) the transition stress, Xy, is a rv with cdf Fy, : transition stress values vary randomly from
specimen to specimen, even if specimens are made of the same nominal material;

3) X;and X; are independent rv's;

4) the failure mode, M, is a Bernoulli rv with realizations: internal-initiated failure, int, and
surface-initiated failure, surf;

5) the fatigue life given that M = int is a conditional rv, Y|int, with cdf Fy|;,,;

6) the fatigue life given that M = surf is a conditional rv, Y[surf, with cdf Fy sy, f;



By considering hypotheses 1)-4), the probability of having a surface-initiated failure is as follows:
P[M = surf] = Fx Fy,, (1)

while the probability of having an interior-initiated failure is given by:
P[M = int] = Fy,(1 - Fy,). (2)

In particular, Equation (1) can be derived by considering that the probability of having a surface-
initiated failure is equal to the probability that both X; and X; are smaller than a given stress
amplitude value, x. While Equation (2) can be obtained by considering that the probability of
having an interior-initiated failure is equal to the probability that x is between X; and X;.

It must be pointed out that, if X; and X; are continuous rv’s defined on the whole stress amplitude
axis, there is a nonzero probability of having a specimen with the fatigue limit larger than the
transition stress. This is not acceptable from a physical point of view, since it would mean that
interior-initiated failures could occur even if the applied stress amplitude is smaller than the
fatigue limit of the specimen. Thus, a seventh hypothesis must be added:

7) the event X; < X, is almost sure (i.e., P[X; < X;] = 1).

It is worth noting that hypothesis 7) adds a constraint to the relationship between the
distributions of X; and X; but it is not in contrast with hypothesis 3). Indeed, in order to fulfill
hypothesis 7) it is sufficient to assume for X; a continuous distribution with a fixed upper limit
value, say X; 4y, and for X, a continuous distribution with a fixed lower limit value, say X¢ 1 in,
larger than x; ;4. Once defined the range of validity of the two distributions, random values for
X; and X; can be independently drawn, thus fulfilling hypothesis 3).

As shown in Figure 2, hypothesis 7) can be graphically visualized with a stress amplitude axis
representation concerning a single specimen.

X, X, _

Infinite life M-=int =surf
A A A ~
%’ X
X, > x {Xz =X X, <x
\ X, >x -
~
Finite life
Xl <x

Figure 2: Stress amplitude axis representation of hypothesis 7); duplex S-N curve.

According to hypotheses 3) and 7) and with reference to Figure 2, Equation (1) can be further
simplified as follows:

P[M = surf] = P[X; < x] = Fy,. (3)

It is worth noting that, as explained by Cox**, two failure modes can be considered as mutually
exclusive if a “single risk” model applies: i.e., if specimens belong to two different populations and
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a specimen of the first (second) population may fail only for the first (second) failure mode.
Indeed, a “single risk” model can be adopted in this case, since it can be statistically shown®?® that
surface-initiated failures (first failure mode) occur only when specimens have at least one surface
defect (first population), while interior-initiated failures (second failure mode) occur only when
specimens present no surface defect at all (second population).

By taking into account hypotheses 4)-6), the probability of having a surface-initiated failure with
fatigue life, Y, smaller than a specific fatigue life value, y, is given by:

PlY <y,M = surf] = P[Y < y|[M = surf]- P[M = surf] = Fy|surfFx,, (4)
while the probability of having an interior-initiated failure with Y smaller than y is given by:
P[Y <y,M = int] = P[Y < y|M = int] - P[M = int] = Fyjin.Fx,(1 — Fx,)- (5

As shown in Figure 2, the events M = surf and M = int form a partition of the set of finite lives;
therefore, as an easy application of the Total Probability Theorem, it follows that the cdf of Y is
finally given by:

Fy = Fy|surfFx, + FYlintFXl(l - Fxt). (6)
which represents the statistical fatigue life model for duplex S-N curves.
2.2. Duplex S-N curve: parameters

The cdf Fy given in (6) depends on the cdf’s of the continuous rv’s X;, X;, Y|int and Y|surf.
According to what proposed in the literature”*#%%% for the fatigue strength, both X; and X; can
be considered location-scale (e.g., Normal) or log-location-scale (e.g., Weibull of Log-Normal) rv’s.
Without loss of generality, in the following both X; and X; are supposed to be Normal distributed.
In particular, let X; have location parameter py, and scale parameter oy, and X; have location

parameter iy, and scale parameter oy, then:

I Y

O'Xl

and

where @ is the standardized Normal cdf.

It is worth noting that if X; and X; are supposed to be Normal distributed, then hypothesis 7) is
violated. According to what suggested in Section 2.1, in order to fulfill hypothesis 7), the Normal
distributions must be properly truncated and the limits of the truncated distributions can be
considered as new parameters to be estimated. However, as it will be shown in Sections 4.4 and
4.6, the truncation can be avoided by sufficiently spacing far apart py, and piy, : if the two location



parameters are quite distant from each other, then the probability of having X; > X; becomes
negligible.

In the literature'”*®* different types of continuous distribution have been proposed for the
number of cycles to failure. Usually, either a 2-parameter Weibull distribution or a Log-Normal
distribution are used for the cycles to failure rv. In both cases the conditional fatigue life, which
can be assumed to be the logarithm of the cycles to failure, follows a location-scale distribution.
Without loss of generality, in the following the conditional fatigue life rv’s are supposed to be
Normal distributed. Therefore, suppose that Y|int has location parameter py;,; and scale
parameter gy;, , and that Y |surf has location parameter py|s,rr and scale parameter oy sy,
then:

Fy|mt — (D [y HY|lTlt:| (9)

Oylint
and

y_li}’lsurf:I. (10)

OY|surf

FYIsurf = [

It is well-known that the parameters of the cdf’s given in Equations (9) and (10) depend on the
applied stress amplitude. In particular, any monotonic decreasing function of x can be adopted for
the location parameters, while, in the case of the scale parameters, any positive function can be
used. In the simplest case, the scale parameters are constant and the location parameters are
linear™>**3° function of the applied stress amplitude:

Uylint = Qylint + X * bYlintr
and
Uy|surf = Qy|surf T X * bYlsurfr
where ay|int, by|int, Qy|surf @nd by|s,,s are four constant coefficients.

In this particular case, by taking into account Equations (7-10), Fy finally becomes:

FY — o y—(ay|5urf+x-by|5urf) ® [X—th] + @ [y_(aYlint"'x'bYIint)] [x ”Xl] ( [x HXt]), (11)

Oy|surf 0X¢ Oylint

and the total number of parameters of the model is equal to 10.
3. General S-N curve

As a general rule, S-N curves can show a fatigue limit and more than two failure modes (i.e., more
than one transition stress). Moreover, each failure mode can be due to more than one cause of
failure (i.e., different fatigue life distributions coexist in the range between two different transition
stresses): this is the case of general S-N curves. Figure 3 shows a case of S-N curve with the fatigue
limit and three failure modes, each of them due to two distinct causes: as an example, internal
nucleation (failure mode 1) can be due to porosity (failure cause 1;) or inclusions (failure cause 2,),

9



subsurface nucleation (failure mode 2) can be due to two different inclusion sizes (failure causes
1, and 2,), and surface nucleation (failure mode 3) can be due to scratches (failure cause 13) or
voids (failure cause 23).

a

Cause 2,
Failure mode 3

Cause 13

S| Failure mode 3

S

= - Transition stress 2

o \ s

= Cause 1, R i Cause 2,

@© Failure mode 2 Failure mode 2

a3 * C < - Transition stress 1 ...

[<5]

S . .

s

h _ Causel 3. N Cause 2
Failure mode 1 \ \ Failure mode 1

\ \ Fatigue Limit
Infinite life

v

Number of cycles to failure

Figure 3: S-N curve with fatigue limit and three failure modes due to two distinct causes; causes | and |l are
specific to each failure mode.

The statistical fatigue life model for general S-N curves and its defining parameters are described
in the following sections.

3.1 General S-N curve: statistical fatigue life model

The results shown in Section 2.1 can be generalized. It is possible to obtain the statistical model
for general S-N curves characterized by m different failure modes and a fatigue limit. In case of
general S-N curves, the hypotheses given in Section 2.1 become:

1) the fatigue limit, X}, is a continuous rv;

2) the transition stresses, th,th, ""Xtm—l' are continuous rv’s;

3) X, X:, X, ., X, , are mutually independent rv’s;

4) the failure mode, M, is a discrete rv with realizations 1, ..., i, ..., m;

5) the failure causes, Cj, ..., Cj, ..., Cpy,, are discrete rv’s;

6) possible realizations of the i-th failure cause (i.e., the rv, C;, representing all failure causes
generating the i-th failure mode) are 1, ..., J, ..., ¢; with probability equal to
P1jis -+ Pjlis -+ Peylir FESPECtiVEly;

7) the fatigue life given that M = i and C; = j is a conditional rv, Y|(i, ), with cdf Fy ¢ jy;

8) theeventX; <X, <X, <--<X, _ isalmostsure.

As shown in Figure 4, hypothesis 8) can be graphically visualized with a stress amplitude axis
representation concerning a single specimen.

10
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— A A
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——
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Figure 4: Stress amplitude axis representation of hypothesis 8); general S-N curve.

According to hypotheses 3) and 8) and with reference to Figure 4, it is possible to determine the
probability of having a specimen that fails with failure mode 1:

PIM =1] = P[X, S x,X,, >x] = Fy, (1 - Fy,, ). (12)

With similar considerations, the probability that a specimen fails with the i-th failure mode is
given by:

PIM=i]=P[X,_, <xX, >x]=F, (1-F,) 3
and the probability of having a specimen that fails with the m-th failure mode is given by:
PIM=m]=P[X,  <x|= Fy, .- (14)

By letting FXt0 = Fy, and FXtm = 0, Equations (12) and (14) become particular cases of Equation
(23).

By focusing on the i-th failure mode, the probability that a specimen fails with failure mode i for
the j-th failure cause is given by:

PIM =i,C;=j]=PIC;=jIM =i]-P[M = i] = pyiFx,_ (1-Fy,)

The probability that a specimen fails with the i-th failure mode for the j-th failure cause and with a
fatigue life smaller than y is therefore given by:

PlY<yM=iC=j1=PlY <ylM=iC=))] -PIM=iC=j]=

= FiapPjlifx,,_, (1 —F Xti)'

Similarly to what stated for the failure modes in Section 2.1, the c; failure causes form a partition
of the i-th failure mode. As an easy application of the Total Probability, it follows that the
probability of having a failure with failure mode i and with fatigue life smaller than y is therefore
given by:

PlY <y,M =il =Fy, (1 - FXti)Z;izl Friwppiii-

What demonstrated for two failure modes in Section 2.1 can be easily extended to the case of
more than two failure modes. Indeed, it can be shown that, according to the hypotheses 3) and 8),

11



the m failure modes form a partition of the set of finite lives. Therefore, by taking into account the
Total Probability Theorem, the cdf of Y is finally given by:

Ci
Fy =X Fx,,_, (1 - Fxti) 2o Friappji(15)
which represents the statistical fatigue life model for general S-N curves.

3.2. General S-N curve: parameters

In case of general S-N curves, m generalized transition stresses (i.e., rv’s that are either transition
stresses or fatigue limit) are present in the model. According to what stated in Section 2.2 and
without loss of generality, the generic X;,_, rvis supposed to be Normal distributed:

F =& X, (16)
Xti—l O-Xti—l ’

with Bx,, = Hx, and Ox,, = Ox,-

Similarly, the generic conditional cdf, Fy|(; j), is given by:

Y—Hy|(i,j
FYl(i,j) =d [ Y|( 1)]. (17)

IYI(L.))

In the most simple case, the location parameters linearly depend on the applied stress amplitude
and the scale parameters are constant. In this case, Equation (17) becomes:

y=(ayiq +byianx)
L)

Fyiij) = ‘D[ (18)

Finally, the conditional probabilities p;; must be considered. For each failure mode, the p;;; must

sum to unity (i.e., Z;izlpj” = 1). Therefore the number of p;|; that must be known is

2izi(ci — 1.

If models (16) and (18) hold, then Equation (15) becomes:

X—lx,. X—ix, . ] _ . .
Fy =37, ® I—X“—ll (1 —® [ Xt‘D I [y (i Prap),,

o o oy|(i i
Xti—l Xti YI[(.))

and the total number of parameters involved in model (15) is given by:
Npar = 2m + 32?;1 ¢ + Z?il(ci - 1). (19)

Ifm = 2andc; = c, =1, to say, there are 2 failure modes and 1 failure cause for each failure
mode, Equation (19) gives n,,, = 10, which confirms the result obtained in Section 2.2.

4. Numerical examples

Fatigue data plots available in the literature are very different. In the following, it will be shown
that they can be qualitatively described by the general model (15) with suitable hypotheses on the

12



parameters. The aim of the present paper is statistical modeling rather than statistical fitting and,
as a consequence, the values considered for the parameters are arbitrarily assumed for qualitative
purposes. Well-known statistical methods for parameter estimation (e.g., graphical methods and
the Maximum Likelihood principle) can be adopted for quantitatively fitting the general model (15)
to the experimental data. Indeed, if applied, fitting of experimental data would permit to estimate
at once different key material parameters and, consequently, to make assumptions about the
presence of a fatigue limit (with its mean value and scatter), and of a transition stress (with its
mean value and scatter), and to potentially distinguish between two distinct failure modes (e.g.,
surface-initiated or internal-initiated failure) or failure causes (e.g., two types of inclusion with
significantly different sizes) prior to any fractographic analysis. For instance, if two types of
inclusion with significantly different sizes originated the same internal failure mode, then the final
distribution for the fatigue life is expected to be bimodal with scatter significantly influenced by
the two original statistical populations of inclusion size. Therefore, fitting of experimental data
would give a bimodal fatigue life distribution model, which could give to the experimenter an
indication about the type of distributions which originated the fatigue life data.

4.1 One failure mode due to one cause without fatigue limit

This is the most simple case, withm =1, ¢; = 1 and FXtO = Fx, = 1. According to Sections 3.1
and 3.2, Fx, = 0 and Z;Ll Pj; = 1.Sincem = 1and ¢; = 1, it follows that P;); = 1 and

Fy. = 0, and the final model is given by:

t1
Fy = Fyj1,1)- (20)

If Equation (18) is considered, then Equation (20) is in agreement with the linear models proposed

116 3nd the final model depends on the 3

in the literature and in international standards
parameters, ay|(1,1), by|(1’1) and agy|(1,1) - As an example, let ay|(1,1) be equal to 20, by|(1,1) be

equal to —1 and gy |(1,1) be equal to 0.5. With these hypotheses, model (20) finally becomes:
_ g [-@0x)
Fr=o =22 )

Figure 5a shows the S-N curves obtained by using model (21) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 5b, the cdf’s at two different x values are only
shifted, since gy/(1,1) is supposed constant.

13
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Figure 5: (a) S-N curves calculated from model (21) for different failure probabilities. (b) Cdf’s of Y for
different values of applied stress amplitude.

Figure 6 shows the good qualitative agreement between random data (Figure 6a) generated from
model (21) and, e.g., experimental data (Figure 6b) obtained on 17-4PH martensitic stainless steel
specimens31.
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Figure 6: (a) Random generated data from model (21). (b) Experimental fatigue data plot*".

Random data are generated by considering 30 equispaced values of x varying from 5 to 10. For
each value of x, 2 random probability values are generated. If q; 4,4 denotes the i-th random
probability value, then the equation Fy[yl-,mnd] = (; rqna allows to compute the i-th random
fatigue life value, y; qnq- By repeating the procedure for each q; ;.44 value, the set of random
data used for Figure 6a can be finally obtained. In the following numerical examples, a similar
procedure is adopted to generate random data resembling experimental data taken from the
open literature. The number of generated random data is different for Subsections 4.1-4.7; the
random data plots (Figures 6, 8, 10, 12, 14, 16, 18 and 20) show that the proposed statistical
model is not affected by the variation in data numerosity. Furthermore, it is worth noting that no
attempt is made to quantitatively reproduce experimental data: graphs with random generated
data aim only to show the potentiality of the proposed statistical model in catching possible
qualitative trends of experimental data taken from the open literature. For this reason, figures
with random generated data have axes, intentionally indicated with generic symbols “x” and “y”,
which may be different from the axes of the corresponding figures with experimental data.
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4.2 One failure mode due to one cause with fatigue limit

As in the previous case, m = 1 and ¢; = 1. However, differently from what stated in Section 4.1,
Fx, is smaller than 1. According to these hypotheses model (15) becomes:

Fy = Fx, Fy|1,0)- (22)

If Equations (16) and (18) are considered, then the cdf (22) depends on 5 parameters and
corresponds to models already proposed in the literature'”*%. As an example, let Ux, be equal to 6,
o, be equal to 0.6, the other 3 parameters be equal to the values given in Section 4.1, then model

(22) becomes:

Fy =@ =2 o 222 LD (23)

Figure 7a shows the S-N curves obtained by using model (23) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 7b, the cdf’s at two different x values are
different due to the presence of Fy,. In particular, if the cdf at x = 6 is considered, the number of

cycles to failure is infinite for values of Fy larger than @ ( 6) = 0.5 while, if the cdf at x =9 is

considered, the number of cycles to failure is infinite for values of Fy larger than ® ( 0% ) = 1.
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Figure 7: (a) S-N curves calculated from model (23) for different failure probabilities. (b) Cdf’s of Y for
different values of x.

Figure 8 shows the good qualitative agreement between random data (Figure 8a) generated by
using model (23) and experimental data (Figure 8b) obtained, e.g., on JIS-SUS403B stainless steel
specimens® with stress concentration factor equal to 2 and tested at 300 °C.
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Figure 8: (a) Random generated data from model (23). (b) Experimental fatigue data plot®.

Random data are generated by considering 30 equispaced values of x varying from 4 to 10. For
each value of x, 5 random values are generated with the procedure explained in Section 4.1. In
this case, if q;rqnq is larger than the corresponding value of Fy,, then y; 4,4 is set equal to infinite

(i.e., the value of x is below the fatigue limit and the fatigue life becomes infinite).
4.3 Two failure modes due to one cause without plateau and fatigue limit

In this case, m = 2 and ¢; = ¢, = 1. Since the fatigue limit is absent, FXtO = Fx, = 1. According to
what stated in Sections 3.1 and 3.2, FXtm = 0and 2?:1 Pj; =1.Sincem = 2andc¢; = ¢, =1,it

follows that P;|; = P;); = 1 and Fth = 0, and the final model is given by:
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Fr=(1-Fy ) Frap + Fo, Frieo.  (29)

If Equations (16) and (18) are considered, then the cdf (24) depends on 8 parameters. As an
example, let Hx,, be equal to 8, 0x,, be equal to 0.8, ay (1) be equal to 16, by|,,1) equal to —0.5
and gy (2,1) equal to 0.3, the last 3 parameters be equal to the values given in Section 4.1, then
model (24) becomes:

fo= (1o ) o P oo i)

0.5 0.3

Figure 9a shows the S-N curves obtained by using model (25) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 9b, the cdf’s at three different x values are
shifted and have different standard deviations. In particular, if the cdf at x = 4 is considered, the
standard deviation is close to gy|1,1) = 0.5 while, if the cdf at x = 13 is considered, the standard
deviation reduces and is close to gy 1) = 0.3.
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Figure 9: (a) S-N curves calculated from model (25) for different failure probabilities. (b) Cdf’'s of Y for
different values of x.
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Figure 10 shows the good qualitative agreement between random data (Figure 10a) generated by
using model (25) and experimental data (Figure 10b) obtained, e.g., on shot-peened helical
compression springs>.
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Figure 10: (a) Random generated data from model (25). (b) Experimental fatigue data plot*>.

Random data are generated by considering 100 equispaced values of x varying from 2 to 20. For
each value of x, 1 random fatigue life value is generated with the procedure explained in Section
4.1.

4.4 Two failure modes due to one cause without plateau and with fatigue limit

As in the previous case, m = 2 and ¢; = ¢, = 1. However, differently from what stated in Section
4.3, Fy, is smaller than 1. According to these hypotheses model (15) becomes equal to model (11):

Fy = Fy, (1= Fx,, ) Frian + Fx, Fri.y- (26)

If Equations (16) and (18) are considered, then cdf (26) depends on 10 parameters. As an example,
let ux, be equal to 2, gy, be equal to 0.3, the other 8 parameters be equal to the values given in
Section 4.3, then model (26) becomes:
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It must be pointed out that, if a Normal distribution is assumed for both X; and X, , then
hypothesis 7) of Section 3.1 is violated. Nevertheless the violation is negligible since the
probability of having X; < X, is given by:

0-(2-8)

PIX - X, <0] = o[ =2

]ECD[7]51,

being X; and X;, independent and Normal distributed. It is worth noting that if the violation is not
negligible, then it is possible to limit the two distributions as suggested in Section 2.1.
Nevertheless, in real cases™® the distance between the location parameters of the two
distributions is large and violations are in most cases negligible.

Figure 11a shows the S-N curves obtained by using model (27) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 11b, the cdf’s at four different x values are
different. In particular, if the cdf at x = 2 is considered, the number of cycles to failure is infinite

for values of Fy larger than ® [%] = 0.5 while, in the other cases, the number of cycles to failure

is infinite when Fy is close to 1.
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Figure 11: (a) S-N curves calculated from model (27) for different failure probabilities. (b) Cdf’s of Y for
different values of x.

Figure 12 shows the good qualitative agreement between random data (Figure 12a) generated by
using model (27) and experimental data (Figure 12b) obtained, e.g., on JIS-SUS403B stainless steel
specimens® with stress concentration factor equal to 3 and tested at 500 °C.
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Figure 12: (a) Random generated data from model (27). (b) Experimental fatigue data plot®>.

Random data are generated by considering 100 equispaced values of x varying from 0 to 20. For
each value of x, 1 random fatigue life value is generated with the procedure explained in Section
4.2.

4.5 Two failure modes due to one cause with plateau and without fatigue limit

Model (24) applies in this case. Except for parameter ay ;1) Which changes and is set equal to 13,
all the hypotheses considered in Section 4.4 are confirmed. Therefore, the final model becomes:

o= (1 0[50 [ o [solo 0] oy
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Figure 13a shows the S-N curves obtained by using model (28) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 13b, the cdf’s at three different x values have
different shapes. In particular, the cdf corresponding to x = 8 has the typical shape of a mixture of
distributions. Indeed, at x = 8 the coexistence of the two failure modes originates a mixture of

distributions and the cdf of each failure mode contributes with probability ® [%] = 0.5 to the cdf
of Y.
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Figure 13: (a) S-N curves calculated from model (28) for different failure probabilities. (b) Cdf’'s of Y for

different values of x.

Figure 14 shows the good qualitative agreement between random data (Figure 14a) generated by
using model (28) and experimental data (Figure 14b) obtained, e.g., on JIS-SUJ2 steel specimens®.
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Figure 14: (a) Random generated data from model (28). (b) Experimental fatigue data plot®.

Random data are generated by considering 100 equispaced values of x varying from 2 to 20. For
each value of x, 5 random fatigue life values are generated with the procedure explained in
Section 4.1.

4.6 Two failure modes due to one cause with plateau and with fatigue limit

Model (26) applies in this case. Except for parameters ay|(2,1), by|(2,1) and dy|(z,1) Which change
and are set equal to 24, —2 and 1, respectively, all the hypotheses considered in Section 4.4 are
confirmed. The final model becomes:
20—
F}=¢[ (1—¢[ ]) [ = ”]+¢[ ]@ —(24-2%)]. (29)

0.3

As shown in Section 4.4, hypothesis 7) of Section 3.1 is violated but the violation is negligible.

Figure 15a shows the S-N curves obtained by using model (29) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 15b, the cdf’s at four different x values have
different shapes. In particular, the cdf’s corresponding to x = 8 and to x = 10 have the typical
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shape of a mixture of distributions, while the cdf corresponding to x = 2 gives infinite number of

cycles to failure for values of Fy larger than ® [%] = 0.5.
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Figure 15: (a) S-N curves calculated from model (29) for different failure probabilities. (b) Cdf’s of Y for

different values of x.

Figure 16 shows the good qualitative agreement between random data (Figure 16a) generated by
using model (29) and experimental data (Figure 16a) obtained, e.g., on Ti-6Al-4V titanium alloy
specimens“.
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Figure 16: (a) Random generated data from model (29). (b) Experimental fatigue data plot®.

Random data are generated by considering 100 equispaced values of x varying from 0 to 11. For
each value of x, 5 random fatigue life values are generated with the procedure explained in
Section 4.2.

4.7 One failure mode due to two causes without fatigue limit

In this case, m = 1, ¢; = 2 and Fx, = 1. According to what stated in Sections 3.1 and 3.2, Fth =

0, p2;1 = 1 — py)1 and the final model is given by:

Fy = pipFyrian + (1 - P1|1)FY|(1,2)- (30)

If Equations (16) and (18) are considered, then cdf (30) depends on 7 parameters. As an example,
let probability p,|; be equal to 0.15, ay|(1,1) be equal to 20, by|1,1) be equal to —1 and ay|(y,1) be
equal to 0.3, ay(1,2) be equal to 35, by|(12) be equal to —1.5 and gy |(;2) be equal to 0.6, then
model (30) becomes:
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Fy = 0.15- & (Z22) 4 0.85 - o (L2 (39

Figure 17a shows the S-N curves obtained by using model (31) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 17b, the cdf’s at three different x have the
typical shape of a mixture of distributions but they differ in the plateau lengths. In particular,

plateau length increases if the applied stress amplitude decreases.
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Figure 17: (a) S-N curves calculated from model (31) for different failure probabilities. (b) Cdf’s of Y for
different values of x.

Figure 18 shows the good qualitative agreement between random data (Figure 18a) generated by
using model (31) and experimental data (Figure 18b) obtained, e.g., on René 95 nickel-base

superalloy specimens™®.
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Figure 18: (a) Random generated data from model (31). (b) Experimental fatigue data plot*.

Random data are generated by considering 100 equispaced values of x varying from 2 to 20. For
each value of x, 10 random fatigue life values are generated with the procedure explained in
Section 4.1.

4.8 One failure mode due to two causes with fatigue limit

In this case, m = 1, ¢; = 2 and Fx, = 1. According to what stated in Sections 3.1 and 3.2, FXrl =

0, p2j1 = 1 — py)1 and the final model is given by:

Fy = FXl(plllFYl(l,l) + (1 - P1|1)FY|(1,2))- (32)

If Equations (16) and (18) are considered, then cdf (32) depends on 9 parameters. As an example,
let probability p;|; be equal to 0.4, ay|1,1) be equal to 44, by|(1,1) be equal to —2, gy (1,1) be
equal to 0.3, ay|(12) be equal to 40, by|(12) be equal to —1, gy|(1,2) be equal to 0.6, iy, be equal
to 8, oy, be equal to 1, then model (32) becomes:
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F, = ®(x — 8) (0.4 . d (%) +0.6 O (%)) (33)
Figure 19a shows the S-N curves obtained by using model (33) with failure probabilities equal to
0.1, 0.5 and 0.9, respectively. As shown in Figure 19b, the cdf’s at three different x values have the
typical shape of a mixture of distributions. Nevertheless, if the applied stress amplitude
approaches the fatigue limit, the shape of the cdf’s change. In particular, the cdf corresponding to
x = 8 gives infinite number of cycles to failure for values of Fy larger than @ (8 — 8) = 0.5.
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Figure 19: (a) S-N curves calculated from model (33) for different failure probabilities. (b) Cdf’s of Y for
different values of x.

Figure 20 shows the acceptable qualitative agreement between random data (Figure 20a)
generated by using model (33) and experimental data (Figure 20b) obtained, e.g., on Ti-10V-2Fe-
3Al S-titanium alloy specimens®’. It is worth noting that, in this particular case, a quadratic
dependence between the location parameter and the stress amplitude would have given random
data better resembling the experimental data trends. Nevertheless, a linear dependence has been
still considered for sake of simplicity and for coherency with the previous numerical examples.
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Figure 20: (a) Random generated data from model (33). (b) Experimental fatigue data plot*’; different
curves correspond to different microstructures.

Random data are generated by considering 100 equispaced values of x varying from 2 to 20. For
each value of x, 5 random fatigue life values are generated with the procedure explained in
Section 4.2.

5. Conclusions

A unified statistical model able to describe any S-N curve regardless of the number of failure
modes and failure causes has been identified. Assuming that the random variables involved in the
model follow location-scale distributions, that the location parameters linearly depend on the
applied stress amplitude and the scale parameters are constant, a general equation for the total
number of parameters to be estimated is obtained.

The proposed model allows to fit experimental data with any number of failure modes and failure
causes. A full probabilistic approach is adopted to obtain the distribution of the fatigue life.
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Different causes for each failure mode and different failure modes are taken into account by
considering an approach based on a mixture of distributions. The adaptability of the model is
demonstrated by qualitative numerical examples.
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