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Summary 

Materials Science and Engineering, a young and vibrant discipline with its 

inception in the 1950s, has expanded into three directions: metals, polymers, and 

ceramics (and their mixtures, composites). Beyond the traditional scope, biological 

materials have drawn much attention since 1990s due to their optimal structures, which 

rise from hundreds of million years of evolution. Generally, biological materials are 

complex composites and possess varieties of hierarchical structures, multifunctionality, 

self-organization and self-assembly. From the point of view of mechanics, mechanical 

properties of natural (or biological) materials are outstanding, although their 

constituent materials are weak. This is because the necessary mechanical support is in 

great need due to their surrounding environment. Therefore, their efficiency provides 

us with useful indications as to how to synthesize new materials inspired by natural 

ones, and thus drives scientists and engineers to reveal the mechanisms behind the 

observed phenomena of interest. In this regard, the tendency in the design of novel 

materials apparently holds a promising future in new Material Science. To date, it is 

widely accepted that the research on biological materials is a multidisciplinary field 

including chemistry, physics, and biology etc. Although some progress has been 

already made, there is still a long way to go to mass fabricate bio-inspired materials. 

In this thesis, employing a ―bottom-up‖ approach, we have devised three 

hierarchical models (2-D hierarchical woven, 2-D hierarchical honeycomb and 3-D 

hierarchical foam) inspired by structures found in natural materials and investigated 

their mechanical properties. The common characteristic of these structures is their 

being quasi-self-similar. Regarding the derivation of their mechanical properties, we 

consider the (n-1)
th

 level structure to be a continuous medium and from it we calculate 

the mechanical properties of the n
th

 level structure.  

In the first chapter, we introduce the motivation for this work. By reviewing the 

literature on both well-studied and less familiar natural materials, we summarize their 

structural characteristics and biomechanical mechanisms. 

Chapter 2 deals with our first model—1-D or 2-D hierarchical woven tissue, and 

the elastic anisotropy of the structure is derived, based on the well-known stiffness 

averaging method by volumes. In order to verify the theory, an experiment on leaves, 
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which are modeled as one-dimensional hierarchical woven structures, is performed. 

Also, a comparison between theoretical predictions and experimental data on tendons 

from the literature is made. The considered structure could be used as a scaffold, which 

can provide the mechanical support and optimize tissue regeneration at each 

hierarchical level. 

Chapters 3-5 discuss our second model—2-D hierarchical honeycomb. 

Incorporating the surface effect, the in-plane linear-elastic properties, elastic buckling 

properties, fracture strength and toughness are derived. Chapter 3 examines the linear 

elastic properties and the stiffness efficiency thanks to the minimum-weight analysis, 

and the parametric analysis shows that the structure can be optimized. Chapter 4 

discusses elastic buckling by employing the Euler buckling formula; besides local 

buckling, progressive buckling is also investigated. The progressive failure behavior is 

found to be similar to that of balsa wood. Strength efficiency is also illustrated. 

Employing ―Quantized Fracture Mechanics‖ (Pugno, 2002; Pugno and Ruoff, 2004), 

Chapter 5 modifies the classical strength formulas of the conventional honeycomb and 

investigates the defective hierarchical honeycomb; the fracture toughness of the perfect 

and defective hierarchical honeycomb are both derived. In general, hierarchical 

honeycombs can be used as energy-absorbing materials and bioscaffolds for directional 

tissue regeneration. 

Chapter 6 models our third hierarchical structure—3-D hierarchical foam. The 

Young‘s modulus and plastic strength are derived based on structural analysis. When 

the characteristic size of the lowest level is very small (less than 10nm), surface effects 

play an important role in determining the mechanical properties of the structure. The 

hierarchical foam could be used as nano-porous gold. 

Chapter 7 provides conclusions and an outlook for future work. 

 



 

Chapter 1 

1 Introduction 

Natural selection and evolution develop a huge amount of biological 

materials in different environment (e.g. lotus in water and opuntia in 

desert). These biological materials possess many inspiring properties, 

which hint scientists and engineers to find some useful clue to create 

new materials and thus enrich the existing materials system. In this part, 

we highlight some well-studied (e.g. nacre shell) and newly-studied (e.g. 

turtle shell) natural materials, and summarize their hierarchical 

structures and mechanisms behind their mechanical properties, from 

animals to plants. These fascinating mechanisms suggest researchers to 

investigate natural materials deeply and broadly and to design and 

fabricate new bioinspired materials to serve our life. 

1.1 Introduction 

Nature, acting as a stealth hand, cultivates and shapes all lives in the planet 

(Thompson, 1945). It provides a huge amount of biological materials with different 

functions, such as, abalone nacre (Curry, 1977), crab exoskeleton (Chen et al., 2008), 

turtle shell (Rhee et al., 2009), armadillo shell (Chen et al., 2011), and gecko feet 

(Autumn et al., 2000). Several decades ago, most of these biological materials were 

explored only by biologists. However, since Material Science and Engineering (MSE), 

a vibrant discipline, emerged in 1950s, biological materials are being added to its 

interest from 1990s and have drawn much attention from material scientists and 

engineers due to their fascinating multifunctions (self-organization, self-assembling, 

self-healing, self-cleaning, etc) (Meyers et al., 2008). From a mechanical point of view, 

the natural materials usually exhibit many inspiring properties, e.g. light-weight, 
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high-toughness (Ritchie et al., 2009), mechanical-efficiency, e.g. higher 

stiffness-to-density (Wegst and Ashby, 2004), flexible-switch attaching and detaching 

(Tian et al., 2006), and self-cleaning properties (Cheng et al., 2006), etc. In particular, 

nacre shell, with brittle biomineralized tablets but small percent of organic matrix, has 

excellent mechanical properties (Jackson et al., 1988; Schäffer et al., 1997; Kamat et al., 

2000; Lin et al., 2006; Espinosa et al., 2011), and its toughness is approximately 3000 

times greater than that of a single crystal (Song et al., 2003); Bejan (1996) proposed a 

law for the occurrence of shape and structure configuration; after that, employing the 

law in minimizing the body heat loss and blood pumping power, and he predicted the 

proportionality between metabolic rate and body mass to the power 3/4 (West et al., 

1997; Bejan, 2001, 2005 ; Guiot et al., 2006; Guiot et al., 2007; Pugno et al., 2008; 

Delsanto et al., 2008; Delsanto et al., 2009). 

Even though natural materials, e.g. bone, show various abilities to adapt to the 

ambient environment (Srinivasan et al., 1991), they possess only two major 

constituents, i.e., biopolymer and biomineral, which are made of several fundamental 

elements, primarily C, N, Ca, H, O, Si (Chen et al., 2008; Meyers et al., 2008); the two 

constituents are often quite weak compared with their final smart ―products‖ (Fratzl 

and Weinkamer, 2007). Then, questions rise: Why nature can build so strong/tough 

materials and structures with so weak constituents? Why natural materials have a 

variety of structures and functions, e.g. difference between bones and tendons, though 

they have same constituent? What is the structure-function relationship behind these 

properties? Although Wegst and Ashby (2004) have established the elevation indices, 

presenting them as materials property charts/Ashby map for natural materials, how 

nature develops the mechanical efficiency of natural materials is still unknown. With 

these doubts, material scientists and engineers are devoting themselves to dig the 

principles and mechanisms out (Smith et al., 1999; Autumn and Peattie, 2002; Qin et al, 

2009; Nova et al., 2010) and try to pave a way to fabricate bio-mimetic materials. In 

this point, Fratzl (2007) provided a guideline to realize the process, which is 

categorized into three steps: 1) Elucidating structure-function relationships of 

biological materials; 2) Extracting the physical/chemical principles of the relationships; 

3) developing manufacturing technologies to synthesize bioinspired materials. 

To date, an abundant of experimental observations and developed theories on 

different natural materials are obtained, such as recent development on gecko (Autumn, 

et al. 2006; Pugno and Lepore, 2008a, 2008b;Varenberg et al., 2010), nacre (Espinosa 
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et al., 2011), Armadillo armor (Chen et al., 2011). These studies show that the 

hierarchical structures at many length scales, from nanoscale to macroscale, determine 

the functions of natural materials, and the structure at each hierarchical level optimized 

by Nature; this point is widely accepted now. Lakes (1993) reviewed some materials 

with structural hierarchy, which included man-made structures, e.g. the Eiffel tower, 

natural materials, e.g. tendon and hierarchical cellular solids, e.g. honeycomb. Recently, 

Fratzl and Weinkamer (2007) summarized some works on several natural cellular 

materials (bone, wood, and glass sponge skeletons) and an elastomer (tendon) about 

the basic principles, which dominate their mechanical properties; Buehler et al. (2008) 

focused on protein materials (e.g. spider silk) and employed multiapproaches 

(especially, large-scale atomistic simulations) to study and understand dynamic and 

fracture mechanisms that happen at nano- or meso-scale; furthermore, starting with the 

basic building blocks, i.e. biominerals, proteins and polysaccharide, Meyers et al. 

(2008) illustrated systematically the growth mechanism and hierarchical structures of 

the four types of natural materials, which are divided according to Wegst and Ashby 

(Wegst and Ashby, 2004); Currey (2010) reviewed some less familiar bony tissues, e.g. 

deer‘s  antler; Bhushan and Jung (2011), addressing the properties of natural and 

biomimetic surfaces, reviewed the latest achievement and development. 

In this chapter, we focus ourselves on the selected natural materials and concisely, 

summarize the biomimetic mechanisms. Nacre shell and gecko foot are well-known 

natural materials and have been studied for a very long time; here, we choose some 

classical and recent literature to discuss respectively the toughness and contact 

mechanisms. As for the exoskeleton of lobster or crab, armadillo shell, turtle carapace 

and plant stem, new developments on these studied objects are reviewed; the 

light-weight but mechanical–efficiency cellular structures are unveiled, and, the 

biomechanical mechanisms for them are illustrated. This chapter does not have the aim 

to present a complete review but rather to discuss some new results. 

1.2 Nacre/Seashell 

Nacre shells (Fig. 1.1) are comprised of aragonite platelets and organic matrices, 

and exhibit two-level crossed lamellar micro-architectures (Pugno, 2006); aragonite 

platelets (about 5~8 μm in diameter and about 0.5 μm in thickness) act as ―brick‖ with 
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weight fraction 95~97% and organic matrices (about 20~30 nm thick) as ―mortar‖ with 

weight fraction 3~5% (Curry, 1977; Stempflé et al., 2010). The function of the platelet 

is increasing the structural stiffness and hardness; the function of proteins between 

layers is controlling the nucleation and growth of the inorganic phases in a 

bio-mineralization process of these structures (Kaplan, 1998; Rousseau et al., 2005; 

Rousseau et al., 2009). It is well-known that the key toughening mechanism is 

produced by the sliding of inter-platelets (Rim et al., 2011) and this is due to a precise 

interfacial design; addressing the problem, several important toughening mechanisms 

have been put forth by experimental observation. 

 

Fig. 1.1 Hierarchical and brick-mortar structure of Abalone nacre (Espinosa et al., 2011). 

Interlocking of nano-asperities 

The existence of nano-asperities and sliding between them can form multiple dilation 

bands at the interlamellar boundaries (Fig. 1.2a); on these boundaries, the stress is 

redistributed and thus, the deformation shows an inelastic behavior (Wang et al., 2001; 

Li, 2007). Besides, the interfacial sliding produces elastic friction and makes 

nano-grains (or waviness) on the surfaces of tablets interlock (Barthelat et al., 2007), 

(Fig. 1.2b), which can induce the anisotropy under loading conditions (Misra and 

Huang, 2011) and the interlocking effect provides a resistance to the sliding and 

establishes the level of the stress needed to attain the inelastic strain (i.e. strain 

hardening), which is considered as a dominated toughening mechanism (Espinosa et al., 

2011); the interlocking can realize the overall structural integrity by topologizing the 

fragmental aragonite platelets (Estrin et al., 2010).  
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Fig. 1.2 (a) SEM image of nanoasperities on the surface of tablets, (b) Schematic of the interlocking 

between nanoasperities. (Wang et al., 2001) 

Interlamellar mineral bridges 

 

Fig. 1.3 (a) SEM image of interlamellar organic matrix layers with holes (Schäffer et al., 1997); (b) 

TEM image of mineral bridge between adjacent tablets (Song et al., 2003). 

It is observed that there are pores in the sheet of organic matrix layers with 

20~30nm thickness (Fig. 1.3a); these pores allow tablets to grow mineral bridges with 

5~50nm in diameter (Fig. 1.3b) through them, connecting adjacent aragonite tablets. 

(Schäffer et al., 1997; Song et al., 2003; Meyers et al., 2008). When external force is 

imposed, the mineral bridges and organic matrices share the load at the beginning, and 

the mechanical behavior is approximate linear-elastic; as the force increases, the 

mineral bridges break; the friction between aragonite platelets emerges to resist the 

sliding movement; in this phase, the mechanism is similar to the aforementioned one 

and there is the strain hardening energy. 

Weak organic interface 

In this mechanism, the organic matrix is considered as an adhesive to glue the 
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tablelets together (Fig.1.4a). When shells are tensioned, the deformation is mostly 

caused by the interfacial shear and the high toughness is owed to the unfolded 

loops/domains of organic proteins (Smith et al., 1999; Fig.1.4b). The weak interfacial 

design permits stress redistribution around the strain-concentration sites and leads to 

crack path deflection due to the stress shielding (Clegg et al., 1990; Launey and Ritchie, 

2008; Fig. 1.4c). Ritchie (1988) analyzed several toughening mechanisms, and for this 

phenomenon, the material toughness was expressed as I tip sK K K  , where, IK  

is the applied stress intensity factor, tipK  is the local near-tip stress intensity factor, 

and sK  is the stress intensity factor due to shielding. We can see that increasing sK  

reduce tipK  at constant IK   and thus the material toughness is enhanced. 

 

Fig. 1.4 (a) SEM image of adhesive ligaments between platelets (Smith et al., 1999); (b) Schematic 

sliding between platelets and crack deflection; (c) SEM image of crack deflection (Li, 2007). 

Plastic deformation of individual tile 

Li et al. (2004) carried out an experiment on a red abalone shell, and the result 

showed that aragonite platelets were not brittle in nature, but somewhat ductile; the 

shell deformed plastically accompanied by the sliding movement between aragonite 

platelets. Besides, the model basing on stiff aragonite platelets was not able to explain 

the particular mechanical behavior, which occurred under dynamic solicitations 
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(Stempflé and Pantalé, 2007); there authors found that the plasticity of individual 

platelet was due to the intracrystalline matrix (Fig. 1.5b), the elastic properties of 

which was two times lower than those of the intercrystalline one; they concluded that 

the intracrystalline matrix govern the plastic deformation of the single platelet and 

therefore the overall deformation of the nacre (Stempflé et al., 2010). Also, the fracture 

of individual platelet was investigated by Lin and Meyers (2009). 

 

Fig. 1.5 (a) Cross-section of nacre; (b) Intercrystallinne matrix and intracrystalline matrix (Li et al., 

2004). 

Multiple cracking and large-scale crack bridging 

As we know, high toughness usually is achieved during crack propagation 

(R-curve behavior), and materials can absorb more fracture energy (Lanuey and Ritchie, 

2008). Strombus gigas conch shell has a spiral configuration and a lower strength 

compared with that of abalone nacre, due to their different microstructures (Lin et al., 

2006); two energy-dissipating mechanisms are invoked, i.e. multiple microcracking in 

the outer layer at low loading levels and crack bridging in the middle layer at high 

loading levels (Kamat et al., 2000; Fig. 1.6). Under low loads, the external work is 

absorbed by the propagation of the microcracks at the outer layer, while the middle 

layer prevents the crack propagation (intrinsic toughening mechanism); as the loads 

increases, the energy absorption saturates in the outer layer and the cracks reach the 

middle layer and grow while the crack bridging developed in the outer layer restrains 

the crack growth in the middle layer (extrinsic toughening mechanism). The interacting 

process leads to the high toughness. Of course, the organic phase also plays an 

important role in the process (Kamat et al., 2004). 

Structural models 
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Fig. 1.6 (a) Ligament bridging a delamination between the middle and outer layers of the shell 

(Kamat et al., 2004); (b) Model for crack bridging by misaligned fibers (Cox and Marshsall, 1994). 

Basing on the aforementioned mechanisms, some models and principles were 

extracted to build the structure-function relationship for future bio-inspired material 

design. A simple physical model of nacre (platelet-reinforced composites) was built by 

Jackson et al. (1989); the Young‘s modulus was predicted by the rule of mixture, 

incorporating shear-lag models, and the tensile strength determined by the interfacial 

shear was predicted by pull-out failure mode; the two predictions agreed with the 

experimental data very well, however, the model failed to mimic the fracture toughness. 

Lin et al. (2006) employed the classical Weibull statistic strength theory to compare the 

mechanical strengths of Strombus Giga, Tridacna Gigas, and Haliotis Rufescens 

seashells, and found Tridacna strombus Haliotis    . Tang et al. (2007) proposed an 

elasto-viscoplastic interface model with a constitutive relationship to understand the 

strengthening mechanism, and the numerical simulations showed a hardening 

deformation, which was consistent with the previous experimental results. Ji (2008) 

incorporated the tension-shear chain (Jäger and Fratzl, 2000; Ji and Gao, 2004, Fig. 

1.7a) into the Dugdale model (Dugdale, 1960) to investigate the hybrid interfacial 

strength and estimate the fracture energy. Basing on the same arrangement, i.e. 

tension-shear chain, (Fig. 1.7b) and homogenization theory, Bertoldi et al. (2008) 

proposed a micromechanical model to study the macro-mechanical behavior of nacre, 

and the analytical results showed that Nacre was orthotropic and had different Young‘s 

modulus when compressed and tensioned, consistent with existing experimental and 

numerical data. Recently, Rim et al. (2011) have developed a composite-computational 
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model to investigate the influences of geometrical parameters and intrinsic material 

properties of constituents, incorporating the key morphological features; the results 

showed that the optimal geometry could increase the toughness by 70 times. 

 

Fig. 1.7 Tension-shear chain model (Ji and Gao, 2004; Ji, 2008; Bertoldi et al., 2008) 

1.3 Gecko feet 

Gecko feet attract people‘s attention for a long time, because of the capacity 

running on a vertical wall freely. It is observed that a gecko foot is a typical 

hierarchical structure (Fig. 1.8) and it contains about 0.5 million setae (Autumn et al., 

2000); the seta distribution density is 5000 setae/mm
2
. One gecko foot can produce 

10N adhesive force, which is much larger than gecko‘s body-weight, and thus, each 

seta carries 20 μN. This is why the gecko can stay on the vertical wall without slipping 

and explains the great adhesive ability. However, because geckos need to move fast on 

the wall when preying or escaping, also, they must detach easily from the attaching 

state. Therefore, in order to design gecko-pad-inspired materials, the attaching and 

detaching phenomena have driven many scientists to reveal the mechanism. 
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Fig. 1.8 Hierarchical structure of a gecko foot. (a) Gecko; (b) Seta row; (c) Single seta; (d) Spatulae 

(Autumn et al. 2000). 

Attaching mechanisms 

  
Fig. 1.9 Analysis of the pull-off force of a single seta as a function of the pulling orientation (Yao and 

Gao, 2006) 

In the dry environment, employed a two-dimensional micro-electro-mechanical 

systems force sensor, a single setal force was measured directly by Autumn et al. (2000, 

2002); the results denied the suction and friction mechanisms but supported the 

evidence that the intermolecular force—van der Waals force—played vital role in the 

single seta attachment. Meanwhile, a large difference between the adhesive force of the 
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single seta and that of measured in the whole gecko under a small normal preload was 

discovered; addressing this, later, Autumn and Peattie (2002) proposed an approach 

that integrates levels from molecules to gecko. Not strongly influenced by the surface 

chemistry, the intermolecular force was emphasized to be only influenced by the shape 

and size of the setal tip. Autumn and Peattie (2002) pointed out that the orientation of 

the setae was important in the detaching process and the detachment happened when 

the angle made by the setal axes and substrate exceeded 30
o
, which was also 

numerically observed by Yao and Gao (2006; Fig.1.9).  

In the wet environment, Huber et al. (2005) found an evidence of capillarity 

contributions by a nano-mechanical measurement on a single spatula, which is at the 

lowest level of the gecko-foot hierarchical structure. The different finding, from that 

provided by Autumn, is the influence on adhesion of humidity present between the 

spatula and substrate; recently, Prowse et al. (2011) reported that increasing humidity 

improved the adhesion and friction force and produced a significant influence on the 

mechanical properties (elasticity, strength, fracture and dynamics) of setae and setal 

lamina (Fig. 1.10).  

 

Fig. 1.10 Spatular pull-off forces on glass and N-phob vs. humidity at ambient temperature (Prowse et 

al., 2011). 

Detaching mechanisms 
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Fig. 1.11 Schematic of mechanisms of attachment and detachment. (a) A single seta, (b) Rolling down 

for attachment, (c) Rolling up for detachment (Tian et al. 2006). 

Regarding the detaching mechanisms, they are well-known also at the micro-scale: 

the seta detaches when the shaft reaches a critical angle with the substrate; at the 

macro-scale, geckos hyperextend their toes. Peeling is the governing mechanism at all 

the different hierarchical level (Pugno, 2008; Varenberg et al., 2010; Pantano, et al., 

2011). However, because the contact angle raises a question when gecko is inverted on 

the ceiling, Autumn et al. (2006) considered another adhesive mechanism—frictional 

based—and demonstrated that adhesion depends directly on shear force. Addressing 

the adhesion and friction contributions, Tian et al. (2006) theoretically analyzed the 

interaction between the spatula and substrate basing on a tape model; rolling down and 

gripping toes inward produced a small contact angle and made gecko able to obtain a 

strong attachment; by contrast, rolling toes up and back produced a low 

adhesion-to-friction ratio helping the perpendicular peeling off of the spatula off from 

the substrate (Fig. 1.11).  

Optimization problems 

Gao and colleagues (Gao et al., 2004) applied the principle of flaw tolerance (Gao 

et al., 2003) to the nanostructures of biological systems; they showed that spatula 
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geometry, the finest structure in the structure of gecko foot, has an influence in 

determining the adhesion strength (Fig. 1.12). Gao and Yao (2004) investigated the 

shape influence of the tip in fibrillar structures on the adhesive optimization; the result 

displayed that when the size of the diameter reduced to 100nm the variation in shape 

produces weaker influences. The flaw tolerant hypothesis was fully verified by an 

atomistic and continuum study at small scales (Buehler et al., 2006). These authors 

studied the adhesive properties with a hierarchical approach (Chen et al., 2008; Yao 

and Gao, 2006) and showed that the size of each hierarchical level is optimized as well. 

Persson (2003) and Persson and Gorb (2003) studied the mechanism of the 

adhesion in biological system (e.g. gecko and fly) and developed a set of theory. They 

discovered that the small effective elastic modulus of the setae array was a basic 

influence on the adhesion on a hard but rough surface, and reported that the setae array 

had a large contact angle and exhibited a self-cleaning function; the self-cleaning was 

first analyzed, with water contact angle, by Autumn and Peattie (2002) and later 

verified by Hansen and Autumn (2005). Other authors (Pugno and Lepore, 2008a, 

2008b; Lepore et al., 2008) investigated the adhesive time of male and female geckos 

on different rough surfaces and found that the time to failure obeys a Weibull statistical 

distribution. Autumn et al. (2006) studied the dynamics of geckos running on a vertical 

wall and found that different leg had different functions, to make gecko move faster. 

 

Fig. 1.12 Flaw tolerant adhesion: (a) Schematic of the spatula; (b) Atomistic simulation results (Gao 

et al., 2004). 
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1.4 Spider silk 

Spider silks have different functions, such as protective housing and traps (Foelix, 

1996). However, the most interesting webs are adapted to capture high velocity insect 

in their middle-flight (Vollrath, 2000) and have a high damping capacity which is 

considered as a result of evolution and can dissipate kinetic energy caused by larger, 

energetically valuable preys (Kelly et al., 2011). In particular, the orb-weaving web are 

widely studied, and it is constructed by web frame and dragline, excreted by the major 

ampullate (MA) gland, and viscid silk, produced by the flagelliform (FL) gland, which 

have different properties (Fig.13; Gosline et al., 1999). Fig.13 shows that the dragline 

silk or web frame is stiffer, but viscid silk is tougher. This is probably because the 

grade of mechanical properties is more suitable for absorbing the impact energy caused 

by preys. 

 

Fig. 1.13 Stress-strain relationships of two types of silks in orb-weaving spider web (Gosline et al., 

1999) 

Structure property 

It is widely recognized that spider silk is a hierarchical structure, starting from 

nanostructures to macrostructure, and consists of the amorphous network chains and 

β-sheet crystals constructed by poly-(Gly-Ala) and poly-Ala domains (Ackbarow et al., 

2007; Keten et al., 2010). Some of previous works (Ichimura and James, 1994; Colgin 
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and Lewis, 1998; Hayashi and Lewis, 1998) dedicated to reveal the genetic information 

on the amino acid sequence motifs present in spider fibroin. Basing on these works, 

Gosline et al. (1999) reported the molecular structure of spider silk, and analyzed the 

mechanical properties. And basing on scanning electron microscope and atomic force 

microscope images, Du et al., (2006) reported a new hierarchical model of spider silk 

(Fig.14). Recently, as the development of molecular dynamics simulations, Buehler 

and his colleague (Ackbarow et al., 2007; Buehler and Ackarow, 2008; Keten et al., 

2010; Nova et al., 2010; Bosia et al., 2010; Giesa et al., 2011) made a huge amount of 

theoretical and numerical studies to reveal the influence of hierarchical structures on 

protein mechanical properties. They believed that the hierarchical architecture and 

seamless integration of material and structure, from nano to macro, plays an important 

role in the structure–property relationship of spider silk. 

 

Fig. 1.14 Hierarchical structure of spider silk. (a) SEM image of spider dragline silk; (b) AFM image 

of silk fibril structure; (c) schematic of silk fibril structure; (d) schematic of crystallite; (e) Unit cell of 

silk crystallite (Du et al., 2006). 
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In general, due to their high strength, toughness, extensionality and torsional 

qualities that stop the spider twisting and swinging (Emile et al., 2006), it gains much 

attention from scientists and engineers, and understanding the mechanism or 

structure-property relationships can inspire scientists and engineers to fabricate new 

materials for different applications, e.g., in the fields of tissue engineering. 

Toughening mechanisms 

 

Fig. 1.15 (a) Unfolding force of α-helical domains (IHBs) vs. varying pulling speed; (b) unfolding 

force of β-sheet domains (SHBs)vs. varying pulling speed (Ackbarow et al., 2007). 

The excellent mechanical properties of spider silk are owing to the interaction 

between different hierarchical levels. In terms of chemical composition and 

morphological structure, Porter et al. (2005) assumed stiffness and strength, on the one 

hand, are due to the high cohesive energy density of hydrogen bonding, and toughness, 

on the other hand, is due to the high energy absorption during post-yield deformation 

and employed mean field theory to study structure-property relations of spider silk. At 

nanoscale (hydrogen-bond level), Ackbarow et al. (2007) proposed two fracture 

mechanisms of biological protein materials by through atomistic simulations (Fig.15), 

i.e., the unfolding mechanism at fast pulling rates is sequential rupture of individual 

hydrogen bonds (IHBs) (Fig.15a) and unfolding at slow pulling rates proceeds by 

simultaneous rupture of several HBs (SHBs) (Fig.15b), which is a typical structure of 

the lowest level (Fig.14e). As for the influence of proline, the thermo-elastic 

measurements (Savage and Gosline, 2008) were employed to study it in the elastic 

mechanism of hydrated, spider silks and different structural organization in 

glycine-rich network chains and the mechanism of elasticity in proline-rich, and 

proline-deficient fibroins resulted in different mechanical properties. Finally, 

addressing the strain-hardening behavior of spider silk different from the silkworm silk, 
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the reason was attributed to the unfolding of the intra-molecular β-sheets in spider silk 

fibrils (Fig.16; Du et al., 2011), which is similar as the unfolded loops/domains of 

organic proteins between platelets in nacre (Smith et al., 1999). The mechanism is that 

protein backbones and nodes of the molecular network are stretched to support the load 

as the progressive unfolding and alignment of protein during fiber extension. The 

process was described by Euler (2008) as entropy springs, which play an important role 

in soft matter and underlie the intriguing mechanical properties of spider silk. 

 

Fig. 1.16 A schematic model demonstrating stretching difference between silkworm and spider 

dragline fibers (Du et al., 2011). 

As for the influence of crystal regions (Huemmerich et al., 2004), Du et al. (2006) 

reported that high strength of the spider dragline silk could be obtained by decreasing 

the size of the crystalline nodes in the polypeptide chain network while increasing the 

degree of orientation of the crystalline nodes. Keten et al. (2010) revealed that the 

strength of spider silk arises from β-sheet nanocrystals, this is counterintuitive due to 

the weak hydrogen bond, but they owed this result to nanoconfinement, and flaw 

tolerance (Qin and Buehler, 2011), which improved the strength, toughness and 

stiffness. Also, Cetinkaya et al. (2011) used a bottom-up approach and combined 

molecular dynamics and finite element analysis to analyze the effect of crystalline 

subunit size on the silk mechanics, and they reported that the silk Young‘s modulus 
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and toughness increased with the crystal length but decreased with the crystal 

cross-section area. In particular, they included both the crystalline and amorphous 

subunits, and concluded that the friction between entangled chains causing higher 

stiffness and energy absorbance, which homogenized the stress distribution. 

Theoretically, Zhou and Zhang (2005) developed a hierarchical chain model 

(Fig.17a) with different motifs at different levels to investigate spider silk strength and 

elasticity according to (Fig.17b; Becker et al., 2003), and in this model, two element 

were considered the red part denoted crystallite and the lines bonds or amorphous 

bioploymers; the model obtained supports from the amino-acid sequence of the major 

flagelliform protein of spider capture silk. Ackbarow et al. (2007) employed the 

hierarchical Bell model to express a rigorous structure–property relationship from the 

point of statistical mechanics. Bosia et al. (2010) adopted a fiber bundle model 

approach with a hierarchical multiscale self-similar procedure to consider the 

hierarchical topology of natural materials; to some extent, they explained the energy 

dissipation mechanisms. 

 

Fig. 1.17 (a) Hierarchical chain model, the broken line denotes sacrificial bonds and solids surviving 

bonds (Zhou and Zhang, 2005); (b) schematic of a network of identical springs in spider silk (Becker 

et al., 2003). 

Other mechanisms 

Besides, there are some other conditions influencing the mechanical properties of 

spider silk, such as spinning conditions, humidity and temperature etc. As for the 
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spinning conditions, Pérez-Rigueiro et al. (2005) developed a force silking procedure, 

which can measure the low force involved in the silking process and found that fibres 

spun at high silking force were stiff and fibres spun at low and very low silking forces 

were more compliant (Vollrath et al., 2001), of which tensile behavior corresponded to 

that of fibres naturally spun by the spider. And Liu et al. (2005) got the same result 

(Fig.18a); in the meanwhile, Vollrath et al. (2001) also reported that the high 

temperature could result in stiffer silk product than low temperature (Fig.18b). 

Agnarsson et al. (2009) performed two types of tests to examine the influence of water 

on the mechanical properties of spider silk, which is so-called ―supercontraction‖ 

(Work, 1977), and they found that the cyclic humidity caused the cyclic stress response 

(Fig.18c), which induced the contract and relax on drying and wetting environment, 

respectively. From the point of the evolution, Boutry and Blackledge (2010) explained 

the mechanism of supercontraction in spider silk, which was induced by a 

rearrangement of GPGXX motifs, and found the structure–function relationship to 

tailor the silk properties. Finally, Venner and Casas (2005) explored the relationship 

between the size of prey and the spider web and reported that spiders cannot survive or 

produce eggs without catching these large but rare preys and increasing web size 

increases the daily number of prey caught and thus long-term survival and fecundity. 

 
Fig.18 (a) Silk spun at 2 mm/s vs. that at 200 mm/s (Liu et al., 2005); (b) the influence of temperature 

on web-building speed (Vollrath et al., 2001); (c) dragline silk repeatedly contracts and relax with 

humidity (Agnarsson et al., 2009). 
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1.5 Exoskeletons of Lobsters/crabs 

Structural property 

 

Fig. 1.19 Hierarchical structure of the lobster cuticle (Nikolov et al., 2010). 

Lobster or crab cuticle (Fig. 19) is another widely-studied natural material with 

high mineralization, which is divided into three layers, i.e., epicuticle, exocuticle and 

endocuticle (Fig. 1.19Ⅶ). These layers, from exterior to interior, have decreasing 

densities (Raabe et al., 2005). Fabritius et al. (2009) reviewed the progress in the study 

of lobster and systematically elaborated the structural and mechanical properties of the 

biological composites, and made an outlook for future study.  

Firstly, the twisted plywood or Bouligand structure (Fig. 1.19Ⅵ), which is 

frequently encountered in Nature, especially in the skeletal and protective mineral 

tissue (e.g. compact bone), is the prominent building principle to develop the 

mechanical behaviors of the biocomposite (Fabritius et al., 2009). Secondly, the 

honeycomb structure (Fig. 1.19Ⅴ), which was formed by the interconnected fibers 

bend around the pore canals and discovered by Raabe et al. (2005), is another 
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important and effective building principle. Besides, Raabe et al. (2006, 2007) studied 

perferred crystallographic texture of the α-chitin–protein network in the exoskeleton of 

the lobster and elucidated crystallographic building principles in crystalline organic 

tissue; at the end, they made a conclusion that complex hierarchical structure could be 

simply described by crystallographic textures. 

Mechanical property 

 
Fig. 1.20 Global stress-strain relationship of the endocuticle from the pincher and crusher claws both 

in dry and wet state under tensile loading (Sachs et al., 2006). 

As mentioned before, Raabe et al. (2005) studied the mechanical and structural 

gradients of the exoskeleton by experiments on stiffness and hardness, and they found 

that, from out layer to inner layer, the stiffness decreased from 9GPa to 4GPa or so and 

hardness from 130MPa-270MPa to 50MPa; they also pointed out that there is an 

important influence of the interfaces between layers on the overall mechanical behavior. 

Employing nanoindentation Sachs et al. (2006) and Romano et al. (2007) also revealed 

gradient and anisotropy in the hardness of such dehydrated materials; in order to fully 

understand the mechanical properties of the natural material, Sachs et al. (2006) 

continued to perform a tensile experiment on both dry and wet samples to examine 

elastic-plastic deformation behavior of the lobster cuticle, combining with a detailed 

global and local strain analysis (Fig. 1.20); they found that the heterogeneity by local 

strain analysis and the existence of water both enhances the plastic deformation ability. 



22               Qiang Chen / Nanomechanics of Hierarchical Cellular Solids 

In addition, Sachs et al. (2008) illustrated the influence of microstructures on 

deformation anisotropy of the exoskeleton under different loading directions, e.g. in the 

normal direction (out-of-plane) to the cuticle and in the transverse direction (in-plane) 

(Fig. 1.21); Fig. 1.21 shows that the mechanical behaviors in the two directions are 

similar to the out-plane and in-plane behaviors of conventional honeycombs (Papka 

and Kyriakides, 1994, 1998a, 1998b).  

 

Fig. 1.21 Global stress-strain relationship of the endocuticle and schematic figure of the compression 

tests (Fabritius et al., 2009). 

In particular, incorporating quantum mechanics and density functional theory, 

Nikolov et al. (2010) recently proposed a method to investigate structure–property 

relations of the lobster at all length scale and developed a hierarchical model: it 

included ab initio calculations at the nanometer scale and mean-field homogenization 

for higher hierarchy levels, proper linked. By a bottom up approach, Tang et al. (2009) 

and Chen and Pugno (2011a, 2011b) derived the mechanical properties at a given 

hierarchical level starting from those of the previous level; thus the properties at all 

length scales are obtained. 

1.6 Armadillo Shell 

Armadillo (Fig. 1.22), as a natural carrier of the leprosy bacillus, has been studied 

extensively and deeply for the immunology, chemotherapy, and epidemiology of the 
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disease (Truman et al., 1991; Truman, 2008). The armadillo‘s shell as also an ideal 

armor structure, recently attracts attention from material researchers. 

 

Fig. 1.22 Hierarchical structure of the nine-banded armadillo's dermal shells. (a) Armodillo; (b) 

Triangle scales of band shell; (c) Hexagonal scales of rear shell; (d) Cross-sectional view of rear shell 

(Chen et al., 2011). 

Composition 

From the appearance, the armor shell (or osteoderm) is divided into three types, 

i.e., forward shell (pectoral shield), band shell (banded shield), and rear shell (pelvic 

shield), Fig. 1.22, which are formed by a number of overlapped scales with different 

shapes (triangle in the band and hexagonal in forward and rear shells). Rhee et al. 

(2011) analyzed their chemical components using X-ray spectroscopy technique, 

finding significant amount of calcium (Ca), phosphorous (P), sodium (Na), and 

magnesium (Mg) in the mineral constituent and the elements of carbon (C), oxygen (O), 

sulfur (S) in β-keratin and collagen. For the hexagonal scales, basing on drying and 

ashing experiments, Chen et al. (2011) found they contain 13.6±0.4 (wt%) water and 

64.8±1.3 (wt%) mineral, and the remaining part is mainly composed by collagen and 

keratin. 
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Fig. 1.23 SEM images of the hierarchical structure of the forward shell: (a-d) top view; (e-h) front 

view; (i-l) side view; (m-p) bottom view (Rhee et al., 2011). 

 
Fig. 1.24 SEM images of the hierarchical structure of the band shell: (a-d) top view; (e-h) front view; 

(i-l) side view; (m-p) back view; (q-f) bottom view (Rhee et al., 2011). 



Chapter 1 Introduction                                                 25 

Structural property 

Addressing the microstructures of the three mentioned parts, Rhee et al. (2011) 

employed Scanning Electronic Microscope (SEM) to fully characterize them. The 

forward and rear shells (Fig. 1.23) share a common structural property, and both are 

sandwich composite structures; they contain a hard and dense exterior layer and a 

porous interior layer, which is similar to the structure of bone (Vickaryous and Hall, 

2006) and turtle shell (Rhee et al., 2009). As for the band shell, it is more complicated 

and sophisticated (Fig. 1.24); each band is overlapped at the rear part of the anterior 

one and is thicker than that of the rear part (Fig. 1.24(i-l)); the structure of the thick 

forward part of each band is similar to those of the forward and rear shells but with a 

larger pores (Fig. 1.24(e-h)), while the structure of the thin rear part of each band 

shows a regular single-layer wood-cell-like structure (Fig. 1.24 (e-h)). Besides, the 

collagen (Sharpey‘s fibers) connects scales together, and enhances the armor flexibility 

by collageneous retraction to make the body bend (Fig. 1.25). This is different from 

that of nacre, in which the organic layer is mainly between calcium carbonate platelets, 

and the nacre has a weaker flexibility but with stronger in-plane strength and toughness. 

The difference depends on their functions of the tissues. 

 
Fig. 1.25 Schematic of connection between tiles and collagen fiber (Chen et al., 2011). 

Rhee et al. (2011) employed Vickers hardness tester to test related tissue hardness, 

and Instron electromechanical test apparatus to test their strength. They found that the 

bottom and top surface were harder (~53 Hv) than the front and side surfaces (~45 Hv), 

which meant denser surfaces; they also found that the strength of the forward shell 

(~1.5 GPa) was three times than that of the band shell (0.5 GPa), and the former 

mechanical behavior was akin to that of the foam materials (Gibson and Ashby, 1997); 

this is probably due to the inelastic deformation mechanism of microbuckling while the 

intrinsic material behavior was approximately linear elastic. Chen et al. (2011) 

performed experiments on both dry and wet shell samples without considering which 

part the samples were from; they found that Young‘s moduli of the dry samples (~425 
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MPa) were almost three times than those of the wet samples (~150 MPa), tensile 

strength of the dry samples (~23 MPa) two times than those of the wet samples (~13 

MPa), and toughness of the dry samples (~1.1 MJ/m
3
) two times than those of the wet 

samples (~0.53 MJ/m
3
). 

1.7 Turtle shell 

 
Fig. 1.26 Hierarchical structure of carapace shell: (a) the turtle carapace shell; (b) a costal scale; (c) 

form-like cross-sectional view; (d) a SEM image of cells; (e) a magnified SEM image of cells; (f) 

fibrous structure inside a cell (Rhee et al., 2009). 

Turtle is one of the eldest vertebrates and is believed to have existed for 200 

million years. Its shell, composed of a dorsal shell (carapace, usually a strong and rigid 

structure; Fig. 1.26) and a ventral shell (plastron), represents an evolutionary novelty 

(Gilbert et al., 2001; Krauss et al., 2009); it plays a significant role in physical 

protection and reserving water, fat, or wastes. Therefore, many works investigated the 

evolutionary and morphogenesis of its box-shell structure, from carapacial 

ridge-specific gene to embryonic development of the shell and biologists try to uncover 

how turtle forms its shell (Kuraku et al., 2005; Rieppel, 2009). However, as for the 

armadillo shell, about the microstructure-mechanical relationship has not been studied 

extensively, and so we here review pioneering works, only recently developed, on the 

shell microstructure and its mechanical properties. 

Composition 
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Rhee et al. (2009), using an energy dispersive X-ray (EDX) technique, analyzed 

the outermost keratin layer of the carapace shell and found the basic elements of 

carbon (C), oxygen (O), nitrogen (N), sulfur (S), which are main constituents of 

proteineous materials; while, in the layer right underneath the outmost keratin layer and 

the inside surface of the carapace shell, they found abundant mineral elements, such as 

calcium (Ca, 15–20 wt.%), phosphorous (P, 7–10 wt.%), sodium (Na), chlorine (Cl), 

and magnesium (Mg). 

Structural property 

 
Fig. 1.27 (a) Sandwich structure of the turtle carapace shell; (b) Schematic of the interlocking joint; (c) 

Micromovement of the joint (Krauss et al., 2009).  
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It is recognized that the structure of the carapace shell is a sandwich structure, like 

that in the armadillo shell (discussed above). The sandwich structure consists of two 

thin but dense layers, which are known as endocortical and exocortical bone layers, and 

the porous trabecular bone, which can be often found in bones of other species (Fig. 

1.25c or Fig. 1.26a; Krauss et al., 2009). The carapace shell is formed by series of 

individual plates, which are connected by zigzag joints (interlocking mechanism) and 

covered by a layer of keratinized scutes, which is the β-keratins (also found in 

armadillo, and crocodilian; Rhee et al., 2009; Valle et al., 2009), acts as a ‗glue‘ to 

connect individual scutes together. In particular, Krauss et al. (2009) investigated the 

joint area (Fig. 1.27) in detail (50-80μm wide, 150-180μm long, and rotated by 35
o
-45

o
 

with respect to the normal axis of the shell surface), which enables turtles to move 

flexibly and bears high-magnitude impact loading when attacked by predators; they 

also presented a fundamental concept of structure-mechanics relationship to explain 

how the shell functions when imposed by loads with different magnitudes. Balani et al., 

(2011) explicited the multifunctions of turtle‘s carapace: (i) the waxy layer on surface 

is for slipping away from predators and reducing drag force while swimming, (ii) the 

third dense layer provides further shielding, (iii) multilayer and porous structures 

absorb shock caused by fall, and (iv) porous structure storing nutrient and fluids. 

Mechanical property 

A three bending experimental was performed by Krauss et al. (2009) to reveal the 

function of the suture (joint area) in the deformation process and the results showed 

that the stiffness of the samples with suture was low in the initial phase (slight 

movement due to walk) and gradually transited to a high stiffness as loads increased 

(external attack), while the stiffness of the samples without suture started with a high 

value (Fig. 1.28a). The behavior provided a good explanation about the mechanical 

properties during the locomotion and protection. Rhee et al. (2009) performed hardness, 

compression and flexure tests, respectively. They reported that the hardness of the 

exterior and interior layer of the sandwich structure were comparable (≈1 GPa) and 

also for their elastic modulus (≈20 GPa). The deformation mechanism was attributed to 

the middle porous layer which had a similar behavior as that of honeycombs, i.e. 

linear-elastic phase (due to trabecular beam bending), platform phase (trabecular beam 

buckling), and densification phase (trabecular beam crushing; Papka and Kyriakides, 

1994; Gibson and Ashby, 1997), because of the single exterior and interior layers have 
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no platform phases (Fig. 1.28b). 

 

Fig. 1.28 (a) Mechanical function of the suture (Krauss et al., 2009); (b) The constitutive curves of the 

sandwich structure, single interior layer, and single exterior layer (Rhee et al., 2009). 

1.8 Plant stem 

 

Fig. 1.29 Schematic of hierarchical structure of wood (Moon, 2008) 
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Fig. 1.30 (a) Cross-section of the grass stem; (b) Magnification of the part in (a) (Gibson, 2005). 

Plant stem plays an important role in the growth process, and one of the most 

important functions is providing the mechanical support in order to adapt to 

surrounding environment. We can understand this easily by imagining that the plant 

stem carries torque/bending moment and vibrates when wind comes. Most of plant 

stems are circular and porous structure (Bejan, 2000), e.g. tree stem (Fig. 1.29) and 

grass stem (Fig. 1.30). This is because the circular shape possesses a largest area 

compared with other polygons under the condition of the same perimeter and the 

porous architecture has the low-weight and stronger energy-absorbing properties. 

Structural models 

 
Fig. 1.31 Schematic of the cross-section of the hierarchical model (Qing and Mishnaevsky, 2009). 
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Regarding hierarchical structure of the plant stem (Fig. 1.29), Hofstetter and 

Gamstedt (2008) reviewed the developments in the field of hierarchical modeling of 

the hygro-elastic behavior of wood. They focus on the on composite micromechanical 

models for the wood cell wall and on multiscale models for wood resting upon 

hierarchical finite element models; meanwhile, they pointed out that to understand 

fundamental aspects of wood required taking into account the heterogeneity, anisotropy 

and hierarchies. Qing and Mishnaevsky (2009) built a 3D hierarchical model (Fig. 1.31) 

with heterogeneous multiple-layer cell walls, which are similar to that of the natural 

honeycomb (Zhang et al., 2010); moreover, they studied the influences of the 

microfibril angles, thickness of the cell walls, layers, shape of the cell cross-section and 

wood density on the elastic constants. 

Mechanical investigation 

The structure of plant stems was treated as a cylindrical shell with foam by Karam 

and Gibson (1994)—the outer shell was full dense materials and porous structure was 

the core (Fig. 1.29); at the same time, the elastic buckling behavior of the thin-walled 

structure was analyzed by theoretical investigation (Karam and Gibson, 1995a) and 

verified by experiments (Karam and Gibson, 1995b). Basing on the thin-walled 

tubes/shell, Niklas (1997a, 1998) examined material properties (Young‘s modulus and 

critical stress) of stem tissues by examining the mechanical behavior of hollow 

internodes with transverse nodal septa subjected to bending and twisting and the failure 

modes of hollow, septate stems; also, he studied the vibrating responses of the tube 

stem with node (e.g. bamboo) and found that the nodes acted mechanically like a series 

of spring, which could be used to store strain energy except stiffening the hollow 

cylindrical structure (Niklas, 1997b). In order to determine sclerenchyma cells are the 

main components that resist stem bending and the mechanical properties of stems, 

Evans et al. (2007) studied 42 species of grass plants and discovered that 59% of all 

sclerenchyma cells in stems occur in the outer one-fifth radius of stems (Fig. 1.30), 

which is the main support for stem integrity. 

About the formation of the hollow structure, here we give an obvious explanation: 

The hollow natural structure is explained in the view of torsion, the critical shear stress 

τ=Tr/J, where r is the external radius of the tube, T is the moment of torque, and J is 

the polar moment of inertia. From the expression of the critical shear stress, we can see 

that the larger r, the larger τ; in other words, the shear capacity increases as r increases, 



32               Qiang Chen / Nanomechanics of Hierarchical Cellular Solids 

therefore, the mass distribution is better when the shell is far from the core. 

 

Fig. 1.32 Simple model of passive automatic adjustment (Schulgasser and Witztum, 1997). 

As for the structural efficiency, Wegst and Ashby (2007) optimized the 

mechanical properties of orthotropic tube, stalk and stem, which included the shape 

and anisotropy, by considering stiffness, strength and Failure by ovalisation, instability 

and local kinking. Incorporating heterogeneity and highly anisotropy, Schulgasser and 

Witztum (1997) investigated the strength of vascular plant stems and they reported that 

the plant stem sacrifices the strength and vertical stability in order to reduce the 

external bending moment (Fig. 1.32), which is the so-called ―passive automatic 

adjustment‖ mechanism, and that as the height increases, the plant tends to develop a 

high anisotropic tissue arrangements in order to gain high bending stiffness to maintain 

its stability. For the mechanics of natural cellular materials, which is one type of the 

four kinds of natural materials, Gibson (2005) reviewed their mechanics and discussed 

their roles in natural sandwich structure (e.g. skull, trabecular bone) basing on their 

developed theory (Gibson and Ashby, 1997).  

Chen and Pugno (2011) here discuss out-plane mechanical efficiency for a 

circular and hexagonal honeycomb (Fig. 1.33), and according to the elevation indices, 

the critical condition is computed in Fig. 1.34. We can see that under the line, circular 

honeycomb is more efficient; above the line, the hexagonal honeycomb is more 

efficient. 
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Fig. 1.33 Circular and hexagonal honeycomb structure. 

 

Fig. 1.34 Efficiency between the two kinds of honeycomb. 

 



 



 

Chapter 2 

2 Hierarchical Woven Tissues: Elasticity 

In this Chapter, the elastic properties of 2-D woven hierarchical tissues 

are modeled, considering matrix transformation and stiffness averaging, 

assuming for the warp and fill yarns (level 0) an orthotropic material. 

The tissues at level 1 are considered as the fabric composed of warp or 

fill yarn at level 0. Warp and fill yarns at level 1 are defined as “pieces” 

of such 1-level tissue and have a different mismatch between the 

inclination of their longitudinal axes and those of the composing 

sub-fibers. Similarly, based on warp and fill yarns at level 1, we 

generate warp and fill yarns at level 2 and thus tissues with 2 

hierarchical levels, and so on. We compare our theory with experiments 

on tendons from the literature and on leaves performed by ourselves. 

The result shows the possibility of designing a new class of hierarchical 

2-D scaffolds by tailoring the elastic anisotropy, better matching the 

anisotropy of the biological tissues and thus maximizing the 

regeneration at each hierarchical level. 

2.1 Introduction 

Tissue engineering seeks to repair or regenerate tissues through combinations of 

implanted cells, biomaterial scaffolds and biologically active molecules. The rapid 

restoration of tissue biomechanical function needs to replicate structural and 

mechanical properties using novel scaffold design (Moutos et al., 2003). The structure 

of a tissue may be described at several levels, with dimensions ranging from nano-scale 
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to macro-scale, e.g. in describing a tendon, there are several distinctive levels from 

collagen molecule to the tendon itself (Cowin and Doty, 2007; Baer et al., 1992). Many 

soft biological or artificial tissues exhibit the anisotropic, inhomogeneous and 

nonlinear mechanical behaviors (Pugno, 2006, 2010; Pugno and Carpinteri, 2008; 

Pugno et al., 2008), because of the random orientation and mechanical properties of 

collagen molecule, e.g. the heart valve tissue (Cox et al., 2008). 

Accordingly, many contributions are today devoted to create bio-scaffolds with 

varieties of structures in order to match the structural and mechanical properties of 

natural tissues, a key requirement to maximize the tissue regeneration; moreover, a 

broad range of fabrication technologies are employed from earlier textile technologies 

to computational topology design (CTD) and solid free-form fabrication (SFF) (Ma, 

2004; Liu et al., 2007; Hollister, 2005). Even so, the structural hierarchy is still difficult 

to be produced, or if some hierarchical structures can be developed, they are not 

controllable. In this regard, it seems that a little success has been achieved. Moutos et 

al. (2003) developed a three-dimensional woven composite scaffold with the proper 

anisotropy for cartilage tissue engineering; experimental results showed that the 

mechanical properties are comparable to those of the native articular cartilage. 

 

Fig.2.1 Schematic of the structural hierarchy in tendons 

    Moreover, recent literature focuses on multiscale modeling of biological 
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materials in physiological and disease states (Buheler and Yung, 2009), and 

specifically on applications to collagenous tissues such as bone and others (Ritchie et 

al., 2009). Especially, Buehler and his group studied the collagen molecule and fibril 

by molecular simulation, respectively (Buehler and Wong, 2007; Buehler, 2006). 

Besides, from the evolutionary angle, they explained how nature can built a strong 

hierarchical structure by weak materials (Buheler, 2010a, 2010b).  

Differently from other multiscale models, based on self-similar or 

quasi-self-similar statistics (Pugno, 2006; Zhang et al., 2010), we here consider a fully 

deterministic approach. The intrinsic material properties appearing at the zero level in 

our woven fabric hierarchical model could be ab-initio derived from fully atomistic 

simulations, as successfully done by Tang et al. (2009) for nonwoven hierarchical 

composites. 

Tendons are typical hierarchical biological structures. They have five hierarchical 

levels, ranging from the collagen molecule, collagen fibril, collagen fiber, fascicle and 

the tendon itself, see Fig. 2.1 (Silver et al., 2003). The mechanical properties of the first 

three levels were investigated by Yang (2008) basing on atomic force microscopy 

(AFM). Sasaki & Odajima (1996a, 1996b) and Bozec & Horton (2005) investigated the 

mechanical properties of the single collagen molecule by X-ray diffraction technology 

and AFM: the former determined stress-strain relationship and estimated the 

longitudinal Young‘s modulus of the collagen molecule; the later focused on the 

mechanical response of type I collagen monomer. Van der Rijt et al. (2006) found the 

Young‘s modulus of the single fibril in ambient conditions and in aqueous media by 

AFM, respectively, (Yang et al., 2008) using scanning mode bending tests performed 

with an AFM, gave the bending moduli of single electrospun type I collagen fibers, 

both at ambient conditions and in phosphate buffered saline (PBS). As for the collagen 

fascicles, Yin & Elliott (2004) built a transversely isotropic biphasic mixture model and 

studied the viscoelastic properties of collagen fascicles from mouse tail tendons; also 

Young‘s moduli and Poisson‘s ratios were reported. 

Leaf is another example of hierarchical biological material. Due to its interesting 

mechanical properties (for instance, tensile strength and elastic modulus), plant fibers 

used in some composite materials have drawn attention. Some papers (Arib et al., 2006; 

Devi et al., 1998; George et al., 1995; Mishra et al., 2004) about mechanical property 

of pineapple leaf fiber and sisal fiber and their related bio-composites have contributed 

to this topic.  
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Fig.2.2 The structural hierarchy of the Aechmea aquilegia leaf sample under SEM. (a, leaf, (b) fiber 

bundle, (c) single fiber. 

In this chapter, the 2-dimensional hierarchical woven tissues, treated with the 

methods of continuum mechanics and the stiffness averaging, are investigated in order 

to design scaffolds with desired anisotropic elasticity. In particular, the anisotropy of 

the scaffolds is controllable by changing the angle between fill and warp yarns and/or 

the volumetric fractions of fibers at different hierarchical levels. Experimental results 

of tendons from the literature and performed by ourselves on leaves are compared with 

the theoretical predictions. We investigate here the hierarchical properties of the 

Aechmea aquilegia leaf. Aechmea aquilegia leaf is modeled with three hierarchical 

levels, according to observations of the cross sections that we made with a scanning 

electron microscopy (SEM) (Fig. 2.2). 

This chapter is organized into seven sections: after this Introduction, Section 2.2 

presents the theory which is used in the design of tissues. The derivation formulas of 

elastic properties for general hierarchical tissues are derived in Section 2.3. In Section 

2.4, two kinds of self-similar structures are introduced and investigated in detail, and 

parametric analyses are performed for the orientation angles and the relative volumetric 

ratios of warp to fill yarns. In Section 2.5, the comparison of tendons between 

theoretical prediction and experimental results from the literature proceeds. In Section 
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2.6, experiments on the Aechmea aquilegia leaf that we carried out are described and 

compared with our hierarchical theory. Finally, concluding remarks are made in 

Section 2.7. 

2.2 Matrix Transformation and Stiffness Averaging 

In this section, two fundamental steps that we use to model hierarchical tissues, i.e. 

matrix transformation and stiffness averaging, are illustrated. 

It is well known in the mechanics of composite (Christensen, 1979) that the 

stiffness matrix of composite structures can be obtained by linear volumetric averaging 

for particular conditions, including the case of plane reinforcement composites. Since 

our theory treats only the in-plane elastic behavior of the tissue, we adopt here, as done 

in previous papers (Fu et al., 2007), the stiffening average method. The complexity of 

our model is in fact not due to out-of-plane configurations but rather to the considered 

hierarchical geometry. Other more sophisticated methods, such as the principle of 

equivalent homogeneity and polydisperse or three-phase model could also be invoked. 

 

Fig. 2.3 Schematic of the woven structure. 

Two local coordinate systems (1W-2W for warp yarns and 1F-2F for fill yarns) and a 

global coordinate system (x-y) are introduced (Fig. 2.3). Warp and fill yarns are 

assumed to be orthotropic. According to the coordinate system transformation matrix 

[T], in the global coordinate system, the stress-strain relationship of single yarn (fill 

and warp) can be expressed by the stress   and strain tensor    as (Gibson, 
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1994): 

       1 1 1[ ] [ ] [ ] [ ]   , =1,2T T Q T Q T                                 (2.1) 

where Q    is the elastic matrix in the local coordinate system. 

then, the new elastic matrix  Q  in the global coordinate system can be expressed as a 

function of the fiber elastic properties and fiber orientation: 

     
1

Q T Q T
                                                     (2.2) 

thus, for fill (warp) yarns, the relationship between the elastic matrices 
i

Q    and 

 
i

Q  is: 

     
1

( ) ( )      ( , )i ii i
Q T Q T i F W 

                                    (2.3) 

 ( )iT   is the transformation matrix for an orientation angle i  made by the local 

coordinate axis 1i and the global coordinate axis x (Fig. 2.3); the angle i  is defined as 

a positive when it is counterclockwise. 

For the 2-dimensional case, the elastic matrix of fill (warp) yarns in local 

coordinate system is: 

11, 12,

21, 22,

66,

0

0

0 0 2

i i

i ii

i

Q Q

Q Q Q

Q

 

  



 
 

     
 
 

                                        (2.4) 

where 
,iQ

  are components of the elastic matrix (2.4), which are defined as: 

1, 21, 1, 2,

11, 12, 22, 66, 12,

12, 21, 12, 21, 12, 21,

,  ,  ,  
1 1 1

i i i i

i i i i i

i i i i i i

E E E
Q Q Q Q G



     

      
  

 

with 
,iE  Young's moduli, 

,i  Poisson‘s ratios and
,iG  shear moduli, of fill yarns 

along the specified directions. 

thus, the elastic matrix of fill (warp) yarns in the global coordinate system is: 

 
11, 12, 16,

21, 22, 26,

61, 62, 66,

2

2

2

i i i

i i ii

i i i

Q Q Q

Q Q Q Q

Q Q Q

 
 

  
 
 

                                          (2.5) 
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the transformation matrix  ( )iT   is: 

 

2 2

2 2

2 2

cos sin 2cos sin

( ) sin cos 2cos sin

cos sin cos sin cos sin

i i i i

i i i i i

i i i i i i

T

   

    

     

 
 

  
   

                     (2.6) 

note that the relationship: [ ( )][ ( )] [ ( )] [ ( )][ ( )]F W F W W FT T T T T         holds; 

moreover, when F W k    , (k=0, ±1, ±2…),  ( )FT   and  ( )WT   are 

reciprocal. 

If warp and fill yarns are treated as two different materials, then, based on the 

stiffness averaging method, we find the elastic matrix for the woven structure 

(Bogdanovich and Pastore, 1996): 

          1 1i i

i ii M i M
i i ii i

i i

V V
Q Q Q v Q v Q
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   
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    

   

  
 

         (2.7) 

in which we assume the presence of a filling matrix (subscription M), otherwise: 

      i

ii i
i ii

i

V
Q Q v Q

V

 
 
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 
 

 


                                    (2.8) 

where, 
iV  is fill-yarn (warp-yarn) volumes in a representative volumetric cell (RVC) 

(Fig. 2.3); 
iv  is fill-yarn (warp-yarn) volumetric fractions;  

M
Q  is the stiffness 

matrix of the matrix. 

Following Lee et al. (2003) and extending their results of plain woven, the 

calculations of these volumetric fractions are given below. Firstly, two geometric 

arrangements are assumed (Mcbride and Chen, 1997):  

(1) The cross-sectional shape of yarns is assumed to be lenticular (Fig. 2.4); 

(2) Yarns are incompressible and yarn to yarn distance between two overlaps is 

constant. 

taking fill yarns for an example and basing on these two assumptions, the main 

geometric parameters are expressed as follows (Fig. 2.4)
 
(Lee et al., 2003): 

90

sin( )

F

F

F W

a
a

 



                                                (2.9) 
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2 21
( )

4
F F F
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r d a
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                                                 (2.10) 

 

   

Fig. 2.4 Schematic of the fill yarn‘s cross-section.       Fig. 2.5 Geometrical relationships  

1

2 2

2
2sin ( )F F

F

F F

a d

d a
 


                                              (2.11) 

2 ( sin )F F F FA r                                                 (2.12) 

where 90

Fa  denotes fill yarn width when fill and warp yarns are perpendicular to each 

other, Fa  and  Fd  are its width and thickness, respectively; Fr  , F  and FA  are 

radius, central angle and cross-sectional area of fill yarns, see Fig. 2.4 for details. 

A simple geometric analysis (Fig. 2.5) gives the length of the segments AD and 

AC: 

2 F W FAD r d d   ; 2 F WAC r d                              (2.13) 

with the above outcomes, the length of the segment AB can be obtained (
Fl DB ) as: 

 
22 2F F W FAB l r d d                                         (2.14) 

thus, the ―crimp angle‖ FC , see Fig. 2.5, is calculated as: 
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(2.15) 

where, FO  is defined in Fig. 2.5. 

then, formulas used to calculate the crimp, oblique and horizontal lengths of single 

warp yarn in a representative unit cell are respectively found as: 

 2WC FC F WL r d                                           (2.16) 

 2 22 2WO F F F W FL l d r d d                                     (2.17) 

0WHL                                                        (2.18) 

Likewise, we can get the lengths of three parts for fill yarns by substituting the 

subscript W with F into Eqs. (2.9)-(2.18). Thus, WV  and FV  can be determined. 

 

Fig. 2.6 Schematics of a generalized woven fabric. 

For the generalized textile (Fig. 2.6), we similarly find: 

( )( 1) ( 1)U F W F WV d d s t l p q l      ;

( 1) ( )
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   

 

(2.19) 

W W

W

W F P U

V V
v

V V V V
 

 
; F F

F

W F P U

V V
v

V V V V
 

 
                      (2.20) 

where WN  and FN  are the total numbers of warp and fill yarns in the representative 

unit cell; WL  and FL  are the lengths of warp and fill yarns, respectively, in the 

representative unit cell. Also, it is worth noting that WCL  and WOL  are identical to 

those calculated by Eqs. (2.16) and (2.17); however, WHL  and FHL  are no longer 
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equal to zero (for the previous case, in fact, 1s t p q    ): 

( 1) ;  ( 1)WH F FH WL s t l L p q l                                   (2.21) 

where, s and t (p and q) are the numbers of fill (warp) yarns above and below warp (fill) 

yarns in the representative unit cell, see Fig. 2.6; Fl  or Wl  is yarn-to-yarn distance 

in the fill or warp direction. 

2.3 General Hierarchical Theory 

At each hierarchical level, the structure is modeled as a continuum (Lakes, 1993). 

For the sake of simplicity, we begin by neglecting the matrix (Fig. 2.7). 

 

Fig. 2.7 Schematic of the hierarchical tissue. 

The level 1 structure has four independent geometric parameters, i.e. the two 

volumetric fractions and the two orientation angles, the level 2 structure has thus 

twelve independent geometric parameters, and a tissue composed by n hierarchical 

levels has 4×(2
n
1) independent geometric parameters, in addition to the eight elastic 

constants of the two materials at level 0. 

Level 1 structure: 

We define the level 0 structure as the single yarn (fill or warp) which is composed 

by parallel fibers. Eqs. (2.3)-(2.6) can be rewritten as: 

 
1 (0)(0) (1) * (1)( ) ( )i ii i

Q T Q T 


           
                                (2.22) 
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with 
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            (2.25) 

The elastic matrices of warp and fill yarns at the 0
th

 hierarchical level transformed 

from the local coordinate systems to the global coordinate system, can be expressed as: 

 
1 (0)(0) (1) * (1)

, ,,
( ) ( )    ( , , )i j i ji j j

Q T Q T i j F W 


                                      (2.26) 

by volumetric averaging, the final result for the 1
st
 level is found: 

 
1 (0)(1) (1) (1) * (1)
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
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employing Eqs. (2.19) and (2.20), the fiber volumes and volumetric fractions in warp 

and fill yarns can be determined: 

(1) (1) (0) (1)

, , , ,i j i j i j i jV N A L                                                   (2.28) 

(1) (1) (1)

, , ,/i j i j i Uv V V                                                     (2.29) 

(0)

,i jA  are calculated using Eq. (2.12); (1)

,i jL  are obtained thanks to Eqs. (2.16), (2.17) 

and (2.21). 

Level 2 structure: 

Similarly, for the second level we can write: 

 
1 (1)(1) (2) * (2)

, ,,
( ) ( )i j i ji j j

Q T Q T 

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 
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(2) (2) (1) (2)

, , , ,i j i j i j i jV N A L                                                  (2.32) 
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, , ,/i j i j i Uv V V                                                   (2.33) 

Level n structure: 

Thus, in general, we have: 

 
1 ( 1)( 1) ( ) * ( )

, ,,
( ) ( )

nn n n

i j i ji j j
Q T Q T 

 
                                             (2.34) 

 
1 ( 1)( ) ( ) ( ) * ( )

, , ,( ) ( )
nn n n n

i j i j i ji j
j

Q v T Q T 
 

                                          (2.35) 

( ) ( ) ( 1) ( )

, , , ,

n n n n

i j i j i j i jV N A L                                                (2.36) 

( ) ( ) ( )

, , ,/n n n

i j i j i Uv V V                                                   (2.37) 

where, 
( -1)

*
n

j
Q    are the stiffness matrices of fill (or warp) yarns of level (n-1) in the 

local systems at level n; ( )
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
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,

n

i jv  are transformation matrix, 

post-transformation stiffness matrix and volumetric fraction of fill (or warp) yarns at 

level (n-1), composing the fill (or warp) yarns at level n;  
( )n

i
Q  are stiffness matrices 

of fill (or warp) yarns at level n, in the global coordinate system; ( )

,

n

i jV , ( )

,

n

i jN , ( 1)

,

n

i jA   

and ( )

,

n

i jL  are volume, number, cross-sectional area and length of fill (warp) yarns at 

level n. 

This process can also be used in the presence of just one type of fiber, e.g. by 

removing the warp yarns. Then, simplifying Eqs. (2.34), (2.35) and adding the matrix 

term, we have: 

   
1

(0)( ) ( ) ( ) * ( ) ( )

1 11 1

( ) ( ) (1 )    ( , )
n nn n

n m m m m

i i i ii Mi
m mm m

Q v T Q T v Q i F W 



  

   
         

   
   (2.38) 

where, ( )m

iv  and ( )m

i  are the volumetric fraction and orientation angle of the fiber at 

the m
th

 level, respectively; 
(0)

*

i
Q   ,  

M
Q  are the stiffness matrices of the fiber at the 
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0
th

 level in the local coordinate system and the matrix, respectively. 

2.4 Self-similar hierarchical structures 

The general hierarchical theory is complicated and in order to explain the process 

in a simple way, two kinds of self-similar hierarchical structures (Fig. 2.8(a) and (b)) 

are introduced here. 

2.4.1 Self-similar case (1) 

  
(a)                                           (b) 

Fig. 2.8 Schematic of the self-similar hierarchical structures. 

In this case, the global coordinate systems of fill and warp yarns at the (n 1)
th

 

level are coincident with the local coordinate systems of fill and warp yarns at the n
th

 

level, respectively; the configuration satisfies a set of self-similar conditions: 

( ) ( )

, ,,   m m

i j i i j iv v                                                   (2.39) 

thus, fill and warp yarns have identical sub-structure, i.e. 
( ) ( )

* *
i i

F W
Q Q       . 

Level 1 structure: 

Basing on Fig. 2.8(a) and the self-similar condition (2.39), Eq. (2.27) becomes: 
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             (0) (0)(1) (1) 1 1* *( ) ( ) ( ) ( )F F F W W WF W F W
Q Q v T Q T v T Q T   

 
        

(2.40) 

Level 2 structure: 

Correspondingly, the elastic matrices at the second level are expressed as: 

             
    

(0) (0) (0)(2) (2) 1 12 * * *

(0)12 *

(2 ) (2 ) ( ) ( )

                        (2 ) (2 )

F F F F W W F W FF W F F W

W W WW

Q Q v T Q T v v T Q Q T

v T Q T

     

 

 



                  

   

(2.41) 

Level n structure: 

Likewise, using the recursive process and compacting the result, we find the 

elastic matrix of the n
th 

level as: 

        (0) (0)( ) ( ) 1 * *

, ,

0

( ( ) ) ( ( ) )
n

n n n m m

F W W F n m n m W FF W F W
m

Q Q v v T m n m a Q b Q T m n m   




               

(2.42) 

where the coefficients (an,m, bn,m) satisfy the following recursive relationship: 

, 1, 1 1,

, 1, 1 1,

, ,

n m n m n m

n m n m n m

m

n n m n m

a a a

b b b

C a b

  

  

  


 


 

                                           (2.43) 

with combination m

nC . 

Let us define 
f F Wv v v   as the fiber volumetric fraction and 

( )m F W Fn m      , /W FV V  . Considering the filling of a matrix, we have: 

 
 

    
 

    

 

(0) (0)( ) 1 1* *

, ,

0 0

( ) ( ) ( ) ( )
1 1

            1 [ ]

m mn n
n n n

n m f m m n m f m mn nF W
m m

n

f M

Q a v T Q T b v T Q T

v Q

 
   

 

 

 

       
 

 

 

 

(2.44) 

The coefficients (an,m, bn,m) are listed in Table 2.1 for n=1-8. 

Furthermore, if volumetric fractions of fill and warp yarns are equal, i.e. F Wv v , 

Eq. (2.44) becomes: 

             
(0) (0)( ) 1 1* *

, ,

0 0

( ) ( ) ( ) ( ) 1 [ ]
2

n
n n

n f n

n m m m n m m m f MF W
m m

v
Q a T Q T b T Q T v Q   

 

 

   
            

  
 

(2.45) 



Chapter 2 Hierarchical Woven Tissues: Elasticity                            49 

Finally, when 
(0) (0) (0)

F W f
Q Q Q               and F W  , from Eq. (2.45), we 

have: 

        
(0)( ) 1 *( ) ( ) 1 [ ]

n n n

f F F f Mf
Q v T n Q T n v Q 


                       (2.46) 

Eq. (2.46), which can also be obtained from Eq. (2.38) using the self-similar conditions 

(2.39), suggests that our theory is self-consistent. 

Table 2.1 Coefficients (an,i, bn,i) for n=1-8. 

n 
(an,0, 

bn,0) 

(an,1, 

bn,1) 

(an,2, 

bn,2) 

(an,3, 

bn,3) 

(an,4, 

bn,4) 

(an5, 

bn,5) 

(an,6, 

bn,6) 

(an,7, 

bn,7) 

(an,8, 

bn,8) 

1 (1,0) (0,1) - - - - - - - 

2 (1,0) (1,1) (0,1) - - - - - - 

3 (1,0) (2,1) (1,2) (0,1) - - - - - 

4 (1,0) (3,1) (3,3) (1,3) (0,1) - - - - 

5 (1,0) (4,1) (6,4) (4,6) (1,4) (0,1) - - - 

6 (1,0) (5,1) (10,5) (10,10) (5,10) (1,5) (0,1) - - 

7 (1,0) (6,1) (15,6) (20,15) (15,20) (6,15) (1,6) (0,1) - 

8 (1,0) (7,1) (21,7) (35,21) (35,35) (21,35) (7,21) (1,7) (0,1) 

2.4.2 Self-similar case (2) 

In this case, the global coordinate systems of the (n 1)
th

 level in fill and warp 

yarns are both coincident with the local coordinate system of fill yarns at the n
th

 level; 

and the configuration satisfies a set of self-similar conditions: 

( )

,    ( , , )m

i j iv v i j F W  ； ( )

,

m

F F F  ， ( )

,

m

F W W  , ( )

, 2m

W F F W    , ( )

,

m

W W F    (2.47) 

thus, warp and fill yarns are composed of parallel sub-fibers i.e.    
( ) ( )m m

F W
Q Q . 

Based on Fig. 2.8(b) and the self-similar conditions (2.47), like case (1), the 

results from the 1
st
 level to n

th
 level are expressed as: 

Level 1 structure: 

             (0) (0)(1) (1) 1 1* *( ) ( ) ( ) ( )F F F W W WF W F W
Q Q v T Q T v T Q T   

 
        

 (2.48) 
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Level 2 structure: 

                (0) (0)(2) (2) 1 1* *( ) ( ) ( ) ( )F W F F F W W WF W F W
Q Q v v v T Q T v T Q T   

 
         

(2.49) 

Level n structure: 

               (0) (0)( ) ( ) 1 1-1 * *( ) ( ) ( ( 1) ) ( ( 1) )
n n n

F W F F F W W F W FF W F W
Q Q v v v T n Q T n v T n Q T n     

                    

(2.50) 

Defining
f F Wv v v   and /W FV V   and considering the effect of the matrix, Eq. 

(2.50) becomes: 

           
 

(0) (0)( ) 1 11
= ( ) ( ) ( ) ( )

1 1

          1 [ ]

n n n

f F F f F W F F W FF W

n

f M

Q v T n Q T n v T n Q T n

v Q


       

 

             

 

(2.51) 

If volumetric fractions of fill and warp yarns are equal, i.e. F Wv v , Eq. (2.51) can 

be written as: 

              
(0) (0)( ) 1 1

( ) ( ) ( ) ( ) 1 [ ]
2

n
n f n

F F F W F F W F f MF W

v
Q T n Q T n T n Q T n v Q       

               

(2.52) 

If 
(0) (0) (0)

F W f
Q Q Q               and F W  , Eq. (2.52) is further simplified: 

       
(0)( ) 1 *( ) ( ) 1 [ ]

n n n

f F F f Mf
Q v T n Q T n v Q 


                         (2.53) 

we can see that Eqs. (2.53) and (2.46) are identical, suggesting the self-consistency of 

our approach again. 

2.4.3 Orthogonal yarns for both self-similar hierarchical structures 

Case (1): if 0W   and / 2F  , Eq. (2.44) becomes: 

 

 

1 1
(0) (0)( ) * *

, ,

0 0

(( ) ) (( ) ) (( ) ) (( ) )
2 2 2 2

            1 [ ]

n n
n n m m n m m

n m F W n m F WF W
m m

n

f M

Q a v v T n m Q T n m b v v T n m Q T n m

v Q

   
 

 

 

          
                                   

 

 
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(2.54) 

It can be seen that the transformation matrix is dependent on (n m); thus, the final 

expression is: 

 

 

(0) (0)(0) (0)( ) * * * *

, ,

0 0

1 ( 1) 1 ( 1) 1 ( 1) 1 ( 1)

2 2 2 2

            1 [ ]

n m n m n m n mn n
n n m m n m m

n i F W n m F WF WF Wm m

n

f M

Q a v v Q Q b v v Q Q

v Q

   
 

 

                               

 

    

(2.55) 

Herein, matrices
(0)

*

F

Q 
 

and 
(0)

*

W

Q 
 

can be obtained by transforming 
(0)

*

F
Q   and 

(0)
*

W
Q    with the transformation matrix

o(90 )T   . 

Case (2): when 0W   and / 2F  , Eq. (2.51) becomes: 

   
1 1

(0) (0)( ) 1 * 1 *( ) ( ) (( 1) ) (( 1) ) 1 [ ]
2 2 2 2

n n n n

f F f W f MF W
Q v v T n Q T n v v T n Q T n v Q

   
 

 
          

                                  

(2.56) 

The transformation matrix is dependent on n, and the final expression is: 

   
(0) (0)(0) (0)

1 * * 1 * *1 ( 1) 1 ( 1) 1 ( 1) 1 ( 1)
1 [ ]

2 2 2 2

n n n n
n n n n

f F f W f MF WF W

Q v v Q Q v v Q Q v Q                                  

(2.57) 

where matrices 
(0)

*

F

Q 
 

and 
(0)

*

W

Q 
 

are the same as those introduced in Eq. (2.55). 

2.4.4 Parametric Analysis 

Eqs. (2.44) and (2.51) hint that the elastic matrices at the n
th

 level are dependent 

on the fiber orientation angles W  and F  and the relative volumetric ratio λ of warp 

to fill yarns when the total fiber volumetric fraction n

fv  is fixed. Here, assuming the 
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both self-similar models, we investigate the influence of its specific components 

employing elastic parameters of a collagen molecule (Table 2.2). The changes of the 

six elastic parameters ( ( )n

xE , ( )n

yE , ( )n

xy , ( )n

xyG , ( )

16

nQ  and ( )

26

nQ , i.e. Young‘s moduli, 

Poisson‘s ratio, shear modulus and shear-coupling parameters in global coordinate 

system of the hierarchical level n) are reported below. 

Table 2.2 Material constants of each level in tendon (MPa). (Note: 1=Lavagnino et al., 2008; 2=Yang, 

2008; 3=Yang, et al., 2008; 4=Van der Rijt et al., 2006; 5=Kato et al., 1989; 6=Magnusson et al., 2007; 

7=Yin and Elliott, 2004; 8=Lemos et al., 2008; 9=Quapp and Weiss, 1998; 10=Lynch et al., 2003) 

(0
o
) 

Matrix Molecule Fibril Fiber Fascicle Tendon 

Input T R T R T R T R Input 

E1 1
1 

3536 350-12000
2 

2397 2000-7000
3 

1534 150-1000
4 

1066 480-1390
6 

750
8 

E2 1
1 

53.2 - 36.4 - 25.1 - 17.3 - 12
9
 

μ12 0.25 3.16 - 3.13 - 3.10 - 3.05 2.73
7 

2.98
10

 

G12 0.4
 

22.3 - 15.7 31-81
2 

10.7 27-50
5 

7.3 - 5
8 

Note that, ―T‖ stands for theoretical prediction; ―R‖ stands for reference values; ―Input‖ stands for 

input parameters. The same meaning is available in other tables 

Influence of orientation angles 

In order to investigate the influence of the orientation angles, we fix W =30
o
, 

λ=1.0, n

fv =0.20 and we vary F . Three values of F are selected: π/2, π/3 and π/4. 

The comparisons of the six parameters defined above, for case (1) and case (2), are 

reported in Figs. 2.9 and 2.10, respectively. 

From Fig. 2.9 we can see that the amplitude (here simply called A) of each 

parameter becomes greater as the orientation angle made by warp and fill yarns 

decreases; moreover, the rapidity of convergence also becomes slower. The cause for 

this is that the characteristic period is extended as the orientation angle decreases, 

reducing the rapidity of the homogenization. For Young‘s moduli ( )n

xE and ( )n

yE , we 

note that they approach the same value, and are complementary at the same level (Fig. 

2.9(a)-(b)). Poisson‘s ratio ( )n

xy  tends to be 0.5 (Fig. 2.9(c)); however, when n and the 

orientation angle are small, it is beyond the isotropic upper limit of 0.5 and even 

negative but within the isotropic lower limit of  1. This is due to the large difference 

between transverse and longitudinal Young‘s moduli of the collagen molecule. Shear 
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modulus ( )n

xyG  has a different behavior with respect to the other parameters. For 

different orientation angles, when n tends to infinity, an order relationship 

( ) ( ) ( )(π 2) (π 3) (π 4)n n n

xy xy xyG G G   holds. Finally, ( )

16

nQ  and ( )

26

nQ show that the 

shear-coupling effect for higher hierarchical level disappears, see Fig. 2.9(e) and (f). 

 
Fig. 2.9 Independent material constants and shear-coupling parameters with different orientation 

angles, for case (1). 

Fig. 2.10 shows that all these six elastic parameters share a characteristic for case 

(2), namely, the periodicity. Like in case (1), Young‘s moduli ( )n

xE and ( )n

yE  (Fig. 

2.10(a) and (b)) are complementary, but they do not approach a fixed value as n tends 
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to infinity, and neither the amplitude (A) for each parameter shrinks (or extends) as the 

orientation angle made by warp and fill yarns decreases (e.g. for ( )n

xE ,we find the 

relationship (π/2) (π/4)> (π/3)A A A ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.10 Independent material constants and shear-coupling parameters with different orientation 

angles for case (2). 

Influence of the relative volumetric ratio of warp to fill yarns 

In order to investigate the influence of the relative volumetric ratio (λ) of warp to 
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fill yarns, we fix W =30
o
, F =60

o
, n

fv =0.20 and vary λ. Three values of λ are 

selected: 10.0, 1.0 and 0.1. The comparisons of the previous six parameters, for case (1) 

and case (2), are depicted in Fig. 2.11 and Fig. 2.12, respectively. 

 
Fig. 2.11 Independent material constants and shear-coupling parameters with different relative 

volumetric ratios of warp yarns to fill yarns, for case (1). 

In this situation, as n increases, the six parameters tend to a constant more slowly 

for λ=10.0 and λ=0.1 than for λ=1.0, and the amplitude (A) for λ=1.0 shrinks regularly, 

while irregularly for λ=10.0 and λ=0.1 (see Fig. 2.11(b) and (d)). Young‘s moduli ( )n

xE

and ( )n

yE  and Poisson‘s ratio ( )n

xy  converge to the same values of those for case (1) 
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with varying orientation angle, due to the same constituents. Regarding the shear 

modulus, we find ( ) ( ) ( )(1.0) (10.0) (0.1)n n n

xy xy xyG G G  . This can be easily understood since 

λ=10.0 and λ=0.1 are equivalent to exchanging warp with fill yarns. Finally, the 

shear-coupling effect disappears as n tends to infinity. 

 
Fig. 2.12 Independent material constants and shear-coupling parameters with different 

relative volumetric ratios of warp yarns to fill yarns, for case (2). 

For case (2), Fig. 2.12 shows that Young‘s moduli ( )n

xE  and ( )n

yE  and 

shear-coupling parameters ( )

16

nQ  and ( )

26

nQ  are complementary at the same level (Fig. 

2.12(a),(b),(e),(f)) and the amplitudes (A) for these two pairs shrink or extend as the 
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volumetric ratio of warp to fill yarns decreases, i.e. we find (0.1) (1.0) (10.0)A A A   

for ( )n

xE  and (10.0) (1.0) (0.1)A A A  ) for ( )

16

nQ . This also happens for the Poisson‘s 

ratio ( )n

xy . As for the shear modulus, when n=3k+1 (k=0, 1, 2...), 
(3 1) (10.0)k

xyG 
=

(3 1) (1.0)k

xyG 
=

(3 1) (0.1)k

xyG 
; when n=3k+2 and n=3k+3 (k=0, 1, 2...), (3 2) (0.1)k

xyG  =

(3 3) (10.0)k

xyG  (3 2) (1.0)k

xyG   and (3 2) (3 3) (3 3)(10.0) (0.1) (1.0)k k k

xy xy xyG G G    . 

2.4.5 Comparison between self-similar cases (1) and (2)  

In order to select an appropriate structure to simulate a tissue, we compare the six 

elastic parameters of case (1) with those of case (2) by fixing the orientation angles 

o30W  , o60F  , the volumetric ratio 1   of warp to fill yarns and the total 

volumetric fraction of fiber n

fv =0.20. The results are reported in Fig. 2.13. 

 

Fig. 2.13 Elements in the elastic matrices for both the two self-similar cases. 

Comparing Figs. 2.9-2.12 with Fig. 2.13 suggests the existence of a general 

regularity. In case (1), each elastic independent constant tends asymptotically to a fixed 

value. When the level number n is odd, ( )n

xE and ( )n

yE  are equal; instead, when n is 

even, the gap between the two becomes smaller. In case (2), each constant has the same 

period π/ F  (in this case, the period is 3). When n=3k+1 (k=0, 1, 2...), (3 1) (3 1)k k

x yE E  , 

while, when n=3k+2 and n=3k+3 (k=0, 1, 2...), (3 2) (3 3)k k

x yE E  and (3 3) (3 2)k k

x yE E  . 

Similarly, ( )n

xy and ( )n

xyG  oscillate periodically. 

In fact, in case (1), as n approaches infinity, the whole structure becomes closer to 

a homogenous material. In case (2), this is due to the same arrangement of warp and 
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fill yarns at each level; thus, the structure at different levels has an orientation 

periodicity. 

2.5 Influence of constituents on overall elasticity of 

tendons 

2.5.1 Volumetric fractions of collagen and matrix 

Tendons are constituted mainly of fibers of fibrous type I collagen and are dense, 

often parallel-fibered, tissues. Generally, tendon consists of about 20% cellular material 

and about 80% extracellular material; the extracellular material is further subdivided 

into about 30% solids and 70% water. These extracellular solids are collagen, 

proteoglycan and a small amount of elastin (Cowin and Doty, 2007). 

Here, tendon is treated as a woven hierarchical material only composed by fill 

yarns, and it considered as a composite materials made by two phases, i.e. collagen and 

matrix. Proteoglycan and water are treated as the matrix. Mow et al. (1990) give the 

weight percentage of the constituents in tendons, i.e. 23% for collagen, 7% for 

proteoglycan and 70% for water. Thus, the volume fractions can be derived from the 

densities: 1.2 g/cm
3
 for collagen (Pidaparti et al., 1996), 1.4 g/cm

3
 for proteoglycan 

(Paulsson et al., 1987) and 1.0 g/cm
3
 for water. Accordingly, the volumetric fractions 

79% and 21% are calculated for matrix and collagen, respectively. 

 

Fig. 2.14 Schematic of the hierarchical model of a tendon. 

2.5.2 Influence of different variables 

The considered architecture is show in Fig.2.14. 

As discussed before, tendons are defined as a parallel-fibered tissue, i.e., the 
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included angles made by (m 1)
th

 and m
th

 levels is equal to zero. Under the conditions 

of ( ) 0.667m

fv  , easily deduced from 21%fv   and ( ) 0m

F  , the elastic constants of 

the collagen molecules are derived from the experimental data of the tendon and matrix. 

Moreover, the material constants of collagen fibril, collagen fiber and fascicle are also 

derived by employing Eq. (2.38). These results are reported in Table 2.2. 

Table 2.3, Material constants of each level with varying elastic constants of tendon (MPa). (Note: 

1=Lavagnino et al., 2008; 2=Yang, 2008; 3=Yang, et al., 2008; 4=Van der Rijt et al., 2006; 5=Kato et 

al., 1989; 6=Magnusson et al., 2007; 7=Yin and Elliott, 2004; 8=Ito et al., 1998; 9=Lichtwark and 

Wilson, 2005; 10=Quapp and Weiss, 1998; 11=Lynch et al., 2003; 12=Lemos et al., 2008; 13=Sasaki 

and Odajima, 1996; 14=Scott and Loeb, 1995) 

(0
o
) 

Matrix Molecule Fibril Fiber Fascicle Tendon 

Input T R T R T R T R Input 

Varying the longitudinal Young‘s modulus of tendon
 

E1 1
1 

680-5060 350-12000
2 

463-3429 2000-7000
3
 317-2324 150-1000

4 
217-1577 480-1390

6 
150

8
-1070

9 

E2 1
1
 53.2-53.4 - 36.4-36.5 - 24.9-25.0 - 17.2-17.3 - 12

10
 

μ12 0.25 3.04-3.16 - 3.03-3.14 - 3.02-3.10 - 3.00-3.05 2.73
7 

2.98
11

 

G12 0.4
 

22.3 - 15.2 31-81
2
 10.4 27-50

5 
7.2 - 5

12 

Varying the longitudinal Poisson‘s ratio of tendon 

E1 1
1 

3450-3568 350-12000
2 

2346-2416 2000-7000
3
 1599-1636 150-1000

4 
1093-1108 480-1390

6 
750

12 

E2 1
1 

53.1-53.3 - 36.3-36.4 - 24.9-25.0 - 17.2-17.2 - 12
10 

μ12 0.25 0.43-5.77 - 0.43-5.74 - 0.43-5.70 - 0.43-5.65 2.73
7 

0.42-5.57
11 

G12 0.4
 

22.3 - 15.2 31-81
2
 10.4 27-50

5 
7.2 - 5

12 

Varying the longitudinal shear modulus of tendon 

E1 1
1 

3536 350-12000
2 

2397 2000-7000
3 

1626 150-1000
4 

1104 480-1390
6 

750
12 

E2 1
1 

53.2 - 36.4 - 25.0 - 17.2 - 12
10 

μ12 0.25 3.16 - 3.13 - 3.10 - 3.05 2.73
7 

2.98
11 

G12 0.4
 

93.7-950.9 - 63.6-643.9 31-81
2 

43.2-436.0 27-50
5 

29.4-295.3 - 20-200
13,14 

By investigating the upper and lower bound of the elastic constants of each level 

of tendons, the influences of different variables are reported in Table 2.3. These results 

show that these influences are mainly controlled by the reciprocal theorem, namely 

1 21 2 12E E  . However, the shear modulus produces no influence on the other 

constants; the reason is that the orthotropic material has no shear-coupling effect when 

the inclination angle approach zero. 
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2.5.3 Influence of collagen orientation 

The previous description about the structure of tendons is parallel. However, the 

anisotropy of the angular distribution of collagen fibrils in a sheep tendon was 

investigated using 1H double-quantum (DQ) filtered nuclear magnetic resonance 

(NMR) signals: the angular distribution of collagen fibrils around the symmetric axis 

of the tendon was measured by the anisotropy of the residual dipolar couplings and 

described by a Gaussian function with a standard deviation of 12
o
±1

o
and with the 

center of the distribution at 4
o
±1

o
 (Fechete et al., 2003).  

 

Fig.2.15 Comparison between hierarchical theory and literature. 

Accordingly, here, we change ( )m

F with 7.5
o
 incremental from 0

o
 to 22.5

o
. 

Meanwhile, the included angle made by collagen molecule and tendon is ( )4 m

F , i.e. in 

the range 0
o
-90

o
. The predictions are listed in Table 2.4.  

The hierarchical prediction of the Young‘s modulus is plotted in Fig.2.15 and 

compared with a different approach from the literature (Bogdanovich and Pastore, 

1996). Fig.2.15 shows that the result determined by a different theory is slightly lower 

than that determined by our hierarchical theory. 

Table 2.4 Material constants of each level with different orientation angles (MPa).  

Note: 1=Lavagnino et al., 2008; the orientation angle is between collagen molecule and tendon. 
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 Matrix Molecule Fibril Fiber Fascicle Tendon 

 Input Input T T T T 

Orientation angle 30o 

E1 11 3536 682 155 54 24 

E2 11 53.2 36.2 24.6 17.0 12.0 

μ12 0.25 3.16 1.29 0.79 0.65 0.57 

G12 0.4 22.3 15.8 12.1 9.8 8.4 

Orientation angle 60o 

E1 11 3536 226 50 21 12 

E2 11 53.2 35.9 25.1 20.8 23.8 

μ12 0.25 3.16 0.79 0.57 0.44 0.29 

G12 0.4 22.3 17.6 17.4 15.5 8.4 

Orientation angle 90o 

E1 11 3536 114 30 17 12 

E2 11 53.2 35.8 30.2 53.8 750 

μ12 0.25 3.16 0.65 0.44 0.20 0.05 

G12 0.4 22.3 20.8 22.5 9.8 5 

 

 

Fig.2.16 Comparison of different volume fractions. 
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2.5.4 Influence of the total volume of collagen 

The volumetric fraction of the collagen molecule is another important parameter 

influencing the material constants. Here, the elastic constants of the collagen molecule, 

reported in Table 2.2, are employed to investigate its influence when varying in the 

range 10-30%, with incremental 4% at each hierarchical level, see Fig. 2.16. The result 

demonstrates that the elastic properties increase as the total volume of collagen 

increases. 

2.6 Experiments on the Aechmea aquilegia leaf 

2.6.1 Experimental procedure 

  

Fig. 2.17 Experimental process: (a) loading before failure; (b) failure with yield of emerging fibers. 

In order to investigate the relationship between material constants and fiber 

orientation, we carried out ad hoc tensile tests employing a MTS micro-tensile machine. 

A leaf of the Aechmea aquilegia was cut into 30 specimens with dimension 

30mm×3mm×0.4mm on 1
st
 Dec 2009; fiber inclination angles vary from 0

o
 to 90

o
 with 

10
o
 incremental. The whole process is displacement controlled with a loading speed 

1mm/min (Fig. 2.17 (a) and (b)). All specimens were tested in indoor environment on 

2
nd

 Dec 2009. 12 days later (i.e. 14
th

 Dec 2009), specimens were examined using SEM 

(Fig. 2.2). 
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2.6.2 Experimental results and discussion 

Table 2.5 Experimental results on the leaves. (Note: the values in parenthesis represent the standard 

derivation.) 

Angle (o) 0 10 20 30 40 50 60 70 80 90 

Peak stress 

(MPa) 

11.3 

(0.1) 

8.9 

(0.1) 

6.8 

(1.5) 

4.8 

(0.7) 

3.2 

(0.9) 

3.7 

(0.3) 

2.0 

(0.5) 

2.6 

(0.4) 

2.8 

(03) 

2.1 

(0.6) 

Peak Strain 

(mm/mm) 

0.17 

(0.00) 

0.21 

(0.00) 

0.19 

(0.03) 

0.18 

(0.02) 

0.16 

(0.05) 

0.17 

(0.05) 

0.12 

(0.04) 

0.15 

(0.06) 

0.20 

(0.01) 

0.12 

(0.03) 

Young‘s 

modulus 

(MPa) 

127.0 

(3.5) 

87.2 

(7.2) 

62.1 

(4.4) 

47.8 

(4.4) 

29.3 

(2.2) 

31.2 

(3.7) 

18.5 

(1.9) 

21.3 

(3.0) 

16.4 

(1.9) 

18.7 

(0.3) 

The results of peak stress (or strength), peak strain and Young‘s modulus are listed 

in Table 2.5. 

The stress-strain curves are plotted in Fig. 2.18. It suggests that, generally, peak 

stress (or peak load) and slope of each curve (or elastic modulus) decrease as the 

orientation (inclination angle) increases, while, strain (elongation) increases as the 

orientation (inclination angle) increases. Note that for the orientation angle (2) o70F  , 

the crack path is not perpendicular to the loading direction but instead parallel to the 

fibers. 

2.6.3 Prediction of the hierarchical theory 
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Fig. 2.18 Stress-strain curves and fracture mouths for the different tests. 

The analysis is based on the orthotropic material assumption for the leaf 

specimens. First, the five fitting parameters listed below are obtained by the 

experimental data of Young‘s modulus in Table 2.5: 1 2121.8MPa;  19.3MPa;E E 

12 21 120.26;   0.04;   10.9MPaG    . 

Due to the direct SEM experimental observations (Fig. 2.2) and the schematic of 

the crack mouths (Fig. 2.17(b)), a hierarchical model, in which A-D parts correspond to 

those respectively appearing in Fig. 2.2(a)-(d), is built (Fig. 2.19). The matrix is 

assumed to be isotropic with E=19.3 MPa and μ=0.25, thus, the shear modulus is 

7.72MPa. The volumetric fraction 
(2)

fv  is calculated from SEM observations, as 

26.5%. In addition, (1)

F is assumed to be 0
o
 and (2)

F depends on the specimens‘ 

inclination angle. 

 

Fig. 2.19 Hierarchical model of the leaf: (a) cross-section; (b) hierarchical fibers. 

Inserting values of 
( )m

fv  and 
( )m into Eq. (2.38), we have: 
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         

     

(1) 1 (0)(1) (1)

1(2) (0)(1) (2) (2) (1)

= (0) (0) (1 )

=0.265 ( ) ( ) (1 0.265 )

f f M

f f f f M

Q v T Q T v Q

Q v T Q T v Q 





   


         

 

where,  
(0)

Q ,  
(1)

Q ,  
(2)

Q and  
M

Q are elastic matrices for fiber, fiber bundle, leaf 

and matrix, respectively. 

Table 2.6 Material constants of each hierarchical level (MPa). 

(0o) 

Matrix Fiber Fiber bundle Leaf 

Input T T Input 

E1 19.3 449-986 406 121.8 

E2 19.3 10.4-16.0 16.5 19.3 

μ12 0.25 0.3-0.43 0.29 0.26 

G12 7.72 21.1-37.7 19.7 10.9 

Herein, (1)

fv  is selected in the range 0.4-0.9, and thus, the volumetric fraction 

( (1) (2)

f fv v ) is deduced in the interval 0.11-0.24. Finally, under the condition of (2) o0  , 

the material constants of the leaf and matrix are given in Table 2.6. Considering the 

material constants of a single fiber with (1) 0.9fv  , the Young‘s moduli of leaf for 

different inclination angles are compared with our theory in Fig. 2.20, again showing a 

relevant agreement. 

 

Fig. 2.20 Comparison between theoretical prediction and experimental data. 



 

Chapter 3 

3 Hierarchical Honeycombs: Elasticity 

In this chapter, we analytically calculate the in-plane elastic properties 

(linear-elasticity and elastic buckling) of a new class of bio-inspired 

nano-honeycomb materials possessing a hierarchical architecture, 

which is often observed in natural materials. Incorporating the surface 

effect, peculiar of the nano-scale, modifications of the classical results 

for macroscopic and nonhierarchical honeycombs are proposed. A 

parametrical analysis reveals the influences of two key geometrical 

parameters on the overall elastic properties. We discover optimal 

values for the studied mechanical properties, e.g. stiffness efficiency 

(stiffness-to-density ratio) and strength efficiency (strength-to-density 

ratio), which are indices reflecting the mechanical efficiency of 

materials. The developed theory allows us to design a new class of 

materials with tailored elastic properties at each hierarchical level and 

could be useful for many applications. 

3.1 Introduction 

Honeycomb-like structure can be often found in Nature, for instance, the 

armadillo shell (Rhee et al., 2011), the beak of Tucan birds (Seki, et al., 2005), and the 

widely studied claws of lobsters (Raabe et al., 2005): the structure is low-weight but 

strong and tough, that is to say, it is more efficient (Karam and Gibson, 1994). In the 

view of biologists, it is well accepted that the structure of the natural materials is an 

optimized result by ambient environment in the evolutionary process (e.g. the 
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armadillo shell can protect internal organs from being attacked by predators). In this 

respect, nature seems to grant us a best solution to design more efficient materials. 

Therefore, inspired by nature, honeycomb materials have been extensively investigated 

for structural, mechanical and material design. In particular, in the field of material 

science, they are used as a core material in sandwich structures (Foo et al., 2007) for 

energy absorption (Wang, 2009; Wang et al., 2009); also, honeycomb scaffolds with 

mechanical stability, biocompatibility and biodegradability are used for tissue 

regeneration (George et al, 2008).  

With such extensive applications, one of the important issues in material science is 

to characterize and model the in-plane and out-plane mechanical behaviors (Gibson 

and Ashby, 1982; Warren and Kraynik, 1987; Zhang and Ashby, 1992; Papka and 

Kyriakides, 1994, 1998a, 1998b) of honeycomb structures. For the in-plane and 

out-plane deformations, the stress-strain curves (Papka and Kyriakides, 1994, 1998a, 

1998b; Gibson and Ashby, 1997) are described by three regimes (the linear elastic, 

pseudo plastic plateau and pseudo hyper-elastic densification regions). Gibson and 

Ashby (1997) summarized most of works about the structural and mechanical 

properties of 2D and 3D cellular solids, and systematically investigated the 

structure-mechanic relationship. In recent years, a variety of topological honeycombs is 

being studied for multifunctional applications (Wadley, 2006), e.g. the thermal 

conductivity properties of a rectangular-hexagonal honeycomb structure (Bezazi et al., 

2008). 

 

Fig. 3.1 SEM image of pure aspen wood (Cai, 2007). (Permission pending) 
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On the other hand, as nanoscience and nanotechnology develop, the material 

design also expands in nano-way. Thus, if structures are nano-sized, the surface effect 

should be taken into account, due to their high surface-to-volume ratio. As for the 

surface effect, extensive works (Wang and Feng, 2009; Shankar and King, 2007; Wong 

et al., 1997) studied its influence on the linear elastic behaviors of nano-wires, since 

nano-wires hold a promise for nano-device applications, e.g. sensors and actuators. 

These works show that the surface effect plays a vital role in determining the 

mechanical behaviors of nano-systems. 

 

Fig. 3.2 Two-hierarchical-level nano-honeycombs. 

In this Chapter, inspired by biological materials (Fig. 3.1) (Cai, 2007), we 

construct a hierarchical nano-honeycomb structure, using a classical iterative approach 

(Lakes, 1993; Pugno, 2006; Pugno, 2007; Pugno et al, 2008),  and study its in-plane 

elastic properties (Fig. 3.2), for hierarchical structures at many length scales provide 

outstanding mechanical behaviors (Currey, 1977; Fratzl and Weinkamer, 2007; Yao and 

Gao, 2007; Tang et al., 2009). Starting from an orthotropic constituent material and 

considering the influence of the surface effect, we derived the effective longitudinal 

Young‘s modulus and buckling strength at the first level (Wang and Xia, 2010); then, 

the results of the n-level structure ( 2n  ) are obtained thanks to the iterative method. 

We also find the expressions for the stiffness- or strength-to-density ratios, which 

reflect materials‘ efficiency. Finally, we perform a parametric analysis to investigate the 

influences of the geometrical parameters on the overall elastic behaviors. 
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3.2 Surface effect 

Due to the existence of surfaces in a solid, there is always a competition between 

bulk and surface. In particular, when the size of the solid comes down into dimensions 

smaller than 10nm, surface/interface effect (surface stress) becomes an important 

characteristic in nanostructures, and it determines their mechanical behaviors. A 

classical expression for the surface stress is derived based on the surface/interface 

energy (Cammarata, 1994), and it is composed by two parts, i.e. surface free energy 

and surface free energy gradient with respect to the surface strain: 

ij ij

ij

f






 


                                                     (3.1) 

where, ijf  and ij  are the surface stress and strain tensors, respectively,   is the 

surface free energy, ij  is the Kronecker delta. 

For the elastic theory, according to Gurtin and Murdoch (1975), the surface stress 

  is usually expressed as the summation of the surface residual stress and surface 

elasticity (i.e. the two parts corresponding to the two terms on the right-handed side of 

Eq. (3.1), respectively), 

0 i iS                                                          (3.2) 

where, 0  is the surface residual stress, iS  is the surface stiffness tensor, i  is the 

surface elastic strain. 

Here, we only consider the influence of the surface elasticity (one-dimension), i.e. 

the second term on the right-handed side of Eq. (3.2). 

 

Fig. 3.3 An inclined orthotropic beam with one end guided and the other fixed.  
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3.3 Elastic constants of hierarchical nano-honeycombs 

The linear-elastic deformation mechanism of honeycombs is mainly due to the 

bending of cell walls, and the standard beam theory is employed here to investigate 

their elastic constants. 

3.3.1 Deflection of an orthotropic beam with surface effect 

Assuming the conservation of plane sections, for the elastic line of an orthotropic 

beam with principal direction 1 coincident with the beam axis (Fig. 3.3); the classical 

expression for the deflection of the Euler beam is found (Tolf, 1985; Roark and Young, 

1975; Gibson and Ashby 1997): 

3
2

max

1

cos
12

Fl

E I
                                                    (3.3) 

where, max  is the vertical displacement of the guided end of the orthotropic beam, 

F  is the concentrated force acting on the guided end, l  is the beam length, 1E I  is 

the flexural rigidity,   is the inclined angle between beam and horizontal line. 

If the beam is nano-sized, the modification induced by the surface effect should be 

taken into account, and we find the maximum displacement at one end of the beam as 

(Wang and Feng, 2009; Wang and Xia, 2010): 

 

3
2 0

max

1

cos       if  =0
12

eq

Fl

E I
                                          (3.4) 

with 

  3 2 3
1 1

1 1 1

12 2 6

eq

s sE I E bt E bt E t                                          (3.5) 

where,  1

eq
E I  is the equivalent flexural rigidity considering the surface effect; b, t are 

width and thickness of the beam, respectively; sE , depending on the crystal 

orientation (Shenoy, 2005), is the surface Young‘s modulus, which has the physical 

dimensions of a surface tension. 

We consider a one-level nano-honeycomb made by an orthotropic material (level 

0) and introduce a local coordinate system (0) (0)1 2  related to the global coordinate 

system (1) (1)1 2 . As shown in Fig. 3.4, the structure has two perpendicular mirror planes, 



72               Qiang Chen / Nanomechanics of Hierarchical Cellular Solids 

i.e., the one-level structure remains orthotropic. 

The deformation is caused by the bending of beams ①, ② and the compression 

of beam ③ (Fig. 3.4(b)), that is the beam along which the force is applied, but the 

compressive deformation is neglected with respect to the bending deflection. Thus, 

basing on Eqs. (1)-(3) and employing the classical approach (Gibson and Ashby, 1997), 

we find the elastic constants of the one-level nano-honeycomb. 

  

(a)                                     (b) 

Fig. 3.4 Schematic of the first-level nano-honeycomb. (a) Unit cell; (b) Three pairs of cell walls. 

3.3.2 “Bottom up” method to calculate material constants 

One-level structure 

For the Young‘s moduli, we find: 
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whereas the shear modulus is: 
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                (3.7) 

and the Poisson‘s ratios are: 
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where (0)

1E  and (0)

sE  are the bulk and surface Young‘s moduli in the principal 

direction (0)1  (zeroth level), respectively; b  and (1)t  are width and thickness of 

cross-sections of cell walls, respectively; (1)l  and (1)h  are lengths of beams ① and 

③, respectively; (1)  is the included angle made by beam ① and horizontal line (Fig. 

3.4). 

From Eqs. (3.6)-(3.8), we note that the two Poisson‘s ratios are the same as those 

derived by Gibson and Ashby, whereas, the Young‘s moduli and shear modulus are 

modified by a factor s : 
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if (1)

1 /t b  much less than unity (i.e. plate), Eq. (3.9) can be expressed as: 

(0)
(1)

(0) (1)

1

1 6 s
s

E

E t
                                                     (3.10) 

Expression (3.10) coincides with the result from Miller and Shenoy (2000), and it 

obeys the scaling law (1) (1)

in1 /s l t    (Wang et al, 2006) with 

(0)(0)
in 1/  and 6.0sl E E   . Note that inl  represents an intrinsic material length, under 

which surface effect plays an important role;   is a dimensionless constant, which 

depends on the geometry of the structural element and its deformation. Besides, we can 

see that the surface effect at level zero makes the structure stiffer if (0) 0sE  ; otherwise, 

it makes the structure softer. 

Moreover, the geometry of Fig. 3.4 gives the relative density: 
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where, (1)  or (0)  is the one-level structure‘s density or constituent material‘s 

density, respectively. 

Now, we define the following four functions with respect to (1) (1)/h l  and (1) : 
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                                    (3.12) 

with these definitions, Eqs. (3.6)-(3.8) are concisely expressed as: 
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Two-level structure 

Compared with the one-level structure, the cell-wall dimensions at the second 

level of the two-level structure are very large, so that the surface effect could be 

neglected, i.e. (1) 0sE  . However, in order to extend the theory to the general case, we 

still consider the surface effect at the second level and find: 
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where, (2)

1f , (2)

2f , (2)

3f  and (2)

4f  can be obtained by replacing the superscript (1) with 
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(2) in Eq. (3.12). 

 

Fig. 3.5 Front view of the n-level nano-honeycomb. 

n-level structure 

Fig. 3.5 describes an n-level nano-honeycomb. The structure at level n is 

constructed based on the structure at level n-1 and the dimensionless ratio of the 

Young‘s moduli at level n and level n-1 is obtained by implementing the procedure of 

the two-level structure and the same for the levels from 3 to n-1. Then, considering the 

surface effect at all levels, we easily find: 
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where, ( )

1

nf , ( )

2

nf , ( )

3

nf  and ( )

4

nf  can be obtained by replacing the superscript (1) 

with (n) in Eq. (3.12). 
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Note that, the reciprocal theorem holds: 
( ) ( ) ( ) ( )

1 21 2 12

n n n nE E                                                   (3.22) 

Eqs. (3.19)-(3.21), show that the transverse Young‘s modulus and shear modulus 

can be derived from the longitudinal Young‘s modulus, and the two Poisson‘s ratios are 

only related to the geometry of the n-level structure. Therefore, in essential, there are 

only two independent elastic constants, i.e. the longitudinal Young‘s modulus and one 

of the Poisson‘s ratios. 

3.3.3  Stiffness efficiency  

Structural efficiency bases on the minimum-weight analysis, and it is used to 

optimize the structural design and thus, reduce cost. By considering the maximum 

stress and maximum strain, Budiansky (1999) investigated several types of 

compressive structures which are hollow tubes with foam and without foam filled. 

Wegst and Ashby (2004) studied the mechanical efficiency of natural ceramics, natural 

polymers, natural elastomers, natural cellular materials under tensile and flexural loads 

and plotted so-called ―Ashby map‖ according to different material indices. Here, 

considering the mechanical efficiency of honeycomb materials, we study the 

stiffness-to-density ratio for a light but stiff structure. Ashby (2010) provides us a 

material index to evaluate the stiffness efficiency for a uniaxial loaded structure, the 

stiff tie is Ps1=E/ρ. For the hierarchical honeycomb structures,  ( )

1 /
nnE   can be 

derived Eqs. (3.19) and (3.20), i.e: 
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3.4 Elastic buckling of hierarchical honeycomb 

materials 

Different from the linear elastic behavior of honeycombs, progressive buckling 

deformation of cell walls is the main energy-absorbing mechanism. Therefore, it is 

significant to study the buckling behavior and impact effect of the hierarchical 

honeycomb in the design of energy-absorbing materials. 

3.4.1 Buckling load of the orthotropic beam with surface effect 

Euler buckling equation is a simple and efficient way to describe the buckling 

behavior for an isotropic beam or column. For an orthotropic nano-column, due to the 

standard beam theory (i.e. Euler beam therory) and the surface effect, the buckling load 

crF  is obtained (Tolf, 1985; Timoshenko and Gere, 1961): 

 2 2

1

2

eq

cr

n E I
F

l


                                                (3.25) 

where, n  is a numerical factor depending on the boundary conditions. Eq. (3.25) is 

the classical Euler buckling formula with surface effect, in which the Young‘s modulus 

of the isotropic material is substituted by the longitudinal one of the orthotropic beam. 

3.4.2 “Bottom up” method to calculate buckling loads with surface 

effect 

One-level structure 

For the one-level structure (Fig. 3.4), when the external stress s  applies on the 

structure (Fig. 3.1), the equivalent concentrated force acting on beam ③ is: 

(1) (1) (1) (1)2 cosF sb l                                               (3.26) 

If the beam buckles, the force F  should reach the critical load crF . Substituting 

Eq. (3.26) into Eq. (3.25), we find: 
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Here, we define a new function with respect to (1) (1)/h l  and (1) : 
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where, (1)n  is related to (1) (1)/h l . 
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So, Eq. (3.27) is concisely written as: 
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Two-level structure 

For the two-level structure, we have two objects in the analysis, the vertical beams 

at the first and the second level. On one hand, the equivalent concentrated force acting 

on the beam at the second level is: 

(2) (2) (2) (2)2 cosF sb l                                              (3.30) 

Like in the linear-elastic analysis (one could neglect the surface effect because of the 

larger size), we find the buckling load for the beam: 
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(1)

1E  is calculated by Eq. (3.13), then we find the final result: 
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On the other hand, based on load transfer and the equivalent concentrated force 

acting on the beam at the second level, the equivalent concentrated force acting on the 

beam at the first level should be calculated, which is expressed as: 
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then, substituting the force into the buckling Eq. (3.25), the buckling stress can be 

obtained easily, i.e. 
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Finally, the buckling load is obtained as: 
(2) (2) (1)min( , )crs s s                                                  (3.36) 

n-level structure 

Like the analysis of the two-level structure, finding the concentrated force acting 

on the beam at level i and substituting the force into buckling equation, The 
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dimensionless buckling load at every level is obtained as: 
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so, the buckling load of the n-level structure is obtained: 
( ) ( )min( )n i

crs s                                                     (3.38) 

3.4.3  Strength efficiency  

Like stiffness efficiency, the strength efficiency of the hierarchical structure is 

deduced here. And a strong tie for uniaxial loading structure is expressed as Ps2=s/ρ. 

From Eq. (3.37), the evaluating criterion, i.e. buckling load to density, is obtained as:  
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thus, the buckling strength to density is obtained as: 

( ) ( )

( ) ( )

min( )n i

cr

n n

s s

 
                                                    (3.40) 

3.5 Parametric analysis and discussion 

Here, we consider silver (Ag) as the constituent material, for treating a five-level 

hierarchical nano-honeycomb structure and only consider the surface effect on the 

first level, because of the much smaller scale compared to that of level 2. The Young‘s 

modulus and density of Ag are 78GPa and 10.94g/cm
3
, respectively; the surface 

elastic modulus on the surface A of (001) orientation is 1.22N/msE   (Wang and Feng, 

2009); the thickness of the cell walls at the first level is assumed to be (1) 5nmt  . 

3.5.1 Linear-elastic analysis 

As we discussed in Section 3.3, all the elastic constants depend on the longitudinal 

Young‘s modulus, thus, ( )

1

nE  is here analyzed. We consider quasi-self-similar cases, 

i.e., the relative density ( 1) ( )/ 0.3i i   and when we investigate the influence of 

( ) ( )/ /i ih l h l  (or ( )i  ), we assume ( ) 70 10i i    (or ( ) ( )/ 3.5 0.5i ih l i  ) at each 
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level. The analytic results of the longitudinal Young‘s modulus and the 

stiffness-to-density ratio are reported in Fig. 3.6. It shows that the longitudinal Young‘s 

modulus increases as ( ) ( )/i ih l  or ( )i  increase, but decreases as level i increases (Figs. 

3.6(a) and (b)); in contrast, the stiffness-to-density ratio has a maximum value at level 

3 when varying ( ) ( )/i ih l ; it means the structural stiffness is most efficient at level 3 and 

almost constant as level i increases (Fig, 3.6(c)). Fig. 3.6(d) implies that, if we increase 

the value of ( )i , we can also have a maximum and find an optimal structure. 

 

Fig. 3.6 (a) Influence of 
( ) ( )/i ih l  on longitudinal Young‘s modulus; (b) Influence of 

( )i  on 

longitudinal Young‘s modulus; (c) Influence of 
( ) ( )/i ih l  on stiffness-to-density ratio; (d) Influence of 

( )i  on stiffness-to-density ratio. 

3.5.2 Buckling analysis 

In this case, the method is the same as that described above. The analytic results of 

the buckling strength and strength-to-density ratio are reported in Fig. 3.7. It shows that 

the variations with respect to ( )i  or ( ) ( )/i ih l  make the strength and strength-to-density 
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ratio maximal. For both cases, they are optimized when o30   and / 1.25 1.5h l  ; 

while the control to /h l  produce a stronger structure and is more efficient compared 

to the control to  . 

 

Fig. 3.7 (a) Parametric analysis on buckling strength; (b) Parametric analysis on strength-to-density 

ratio 

3.5.3 Discussion 

Fig. 3.6 and Fig. 3.7 indicate that the mechanical behavior can be tuned by 

changing the geometrical configuration. Increasing ( )i  or 
( ) ( )/i ih l , the Young‘s 

modulus increases. If ( )i  (or ( ) ( )/i ih l ) increases, while ( ) ( )/i ih l  (or ( )i ) decreases, 

then, the two variations of ( )i  or 
( ) ( )/i ih l  result in an inverse tendency (i.e.: the 

former makes the structure stiffer; whereas the latter makes it softer) about the elastic 

parameters, so, there exist optimal values (Fig. 3.6 (c) and Fig. 3.7). This is interesting 

for designing optimized and stiffness/strength efficient hierarchical nano-honeycombs. 

It is worth to say that the honeycomb skeleton is only treated here compared to natural 

materials, which are usually composites; then, if a matrix is considered, then, an 

optimal hierarchy with maximum toughness could be obtained (Zhang et al., 2011) 

. 



 

 

 

 



 

Chapter 4 

4 Hierarchical Honeycomb: Elastic Buckling  

In this chapter, we study the elastic buckling of a new class of 

honeycomb materials with hierarchical architecture, which is often 

observed in nature. Employed the top-down approach, the virtual 

buckling stresses and corresponding strains for each cell wall at level 

n-1 are calculated based on those at level n, then, comparing these 

virtual buckling stresses of all cell walls, the real local buckling stress is 

deduced; also, the progressive failure of the hierarchical structure is 

studied. Finally, parametric analyses reveal influences of some key 

parameters on the local buckling stress and strength efficiency (i.e. 

strength-to-density ratio); meanwhile the constitutive behaviors and 

energy-absorption properties with increasing hierarchy n are reported. 

The results show a possibility to tailor the functionality grade materials 

with different elastic buckling properties at each hierarchical level, and 

thus could have interesting applications, e.g. to design multiscale 

energy-absorption honeycomb materials. 

4.1 Introduction 

Honeycomb cellular materials are widely discovered in biological materials, such 

as, the turtle shell (Krauss et al., 2009), the lobster‘s exoskeleton (Fabritius et al., 2009), 

and they are very promising for structural, mechanical and material design (Gibson et 

al., 1982; Warren and Kraynik, 1987; Papka and Kyriakides, 1994, 1998a; Gibson and 

Ashby, 1997) due to their fascinating material properties (e.g. low weight, high 
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toughness).  For example, in the field of material science, it is used to be a core 

material in sandwich structures (Foo et al., 2007), which could be used in aerospace 

engineering (Zakeri and Mazraehshahi, 2010); also, it is used as energy-absorbing 

material to reduce loading impact and protect an object from crushing (Xue and 

Hutchinson, 2006). 

On one hand, many pioneering works focused on its in-plane and out-plane 

mechanical behaviors (e.g. elastic buckling) (Papka and Kyriakides, 1998b; Zhang and 

Ashby, 1992). In particular, Papka and Kyriakides (1994) explained the crushing 

process of uni-axial compression in detail, and generally, the collapse of the 

honeycomb is characterized by three regimes: At the initial loading stage, the material 

has a relatively high stiffness, the deformation is caused by the bending of cell walls 

and it is linear-elastic and stable; as load increases, honeycombs collapse locally in a 

progressive but metastable way when a critical stress is reached; finally, the whole 

structure collapses during densification, and its stiffness increases and deformation is 

uniform and very stable. The three stages are shown in Fig. 4.1, in which our 

observations on a natural honeycomb and Scanning Electron Microscopic (SEM) 

images of the cell-wall constituent materials are reported. 

 

Fig. 4.1 Natural honeycomb crushing process: (a) linear-elastic stable phase; (b) progressive 

metastable phase; (c) densification very stable phase; (d) schematic of a honeycomb stress-strain 

curve; (e) silk (inclusion); (f) wax grain (matrix). 
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On the other hand, Nature creates composite structures in hierarchical way, from 

nanoscale to macroscale (Launey and Ritchie, 2009); the structures/materials at 

nanoscale and microscale exhibit highly anisotropy (Ritchie et al., 2009; Yao et al., 

2011); in bioshells, they exhibit structural gradient (so-called functionality grade 

materials), for instance, the exoskeleton of lobsters has three different layers from 

exterior to interior, with decreasing densities, strength and hardness (Raabe et al., 

2009). Honeycomb structure enable these biological materials to exhibit outstanding 

mechanical properties, e.g. low weight, high stiffness, strength, and toughness (Smith 

et al., 2009; Munch et al., 2008). For this reason, bio-inspired material is becoming of 

great interest for both hierarchical science and technology. Recently, Munch et al. 

(2008) synthesized a tough bio-inspired hybrid material basing on aluminum oxide and 

polymethyl methacrylate, and the toughness of the product is more than 300 times 

higher than those of constituent materials. The synthesized structure is lamellar and 

similar to that of nacre, which has two hierarchical levels. Theoretically, Gao and 

co-workers (2006) brought a tensile-shear chain model forward to investigate the 

hierarchical mechanical properties of bone and bone-like materials, basing on the 

principle of flow tolerance; and they showed the hierarchy of load-bearing biological 

materials is dominated by the toughness optimization (Zhang et al., 2011). 

  

(a)                                        (b) 
Fig. 4.2 SEM image of pure aspen wood: (a) aspen wood (Cai, 2007); (b) grassy stem (Gibson, 2005). 

(Permission pending) 

Combining the honeycomb structure with hierarchy, Côté et al. (2009) studied the 

out-of-plane compressive properties of a hierarchical square honeycomb sandwich core 

and found that the hierarchical topology increase the mechanical performance; Taylor 
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et al. (2011) introduced hierarchy into honeycomb structures and considered different 

super- or sub-structures, then, the elastic properties of the hierarchical structure were 

studied, interestingly, they found that the negative Poisson‘s ratio substructure 

increased its relative density substantially; also, Sen et al. (2011) studied the 

size-dependent mechanical properties of a nanosized honeycomb silica structure. 

In this chapter, inspired by the hierarchical structure of natural materials (Fig. 4.2) 

(Cai, 2007; Gibson, 2005) and starting from an orthotropic material, a new hierarchical 

honeycomb material is constructed using a hierarchical approach (Pugno, 2006; Pugno 

et al., 2008; Chen and Pugno, 2011; Pugno and Carpinteri, 2008), see Fig. 4.3 (Chen et 

al., 2011). Extending the Euler critical load of isotropic to orthotropic columns by pure 

bending beam theory, the local buckling stress of the hierarchical honeycomb material 

is formulated due to the significance in the energy-absorbing mechanism. Besides, we 

perform a parametric analysis to investigate the influences of relevant parameters on 

local buckling loads, strength efficiency (i.e. strength-to-density ratio) and virtual 

progressive failure behavior. The results show that there is a possibility to design 

energy absorption materials with multiscale geometrical and multi-plateau buckling 

properties. 

 

Fig. 4.3 Hierarchical honeycombs. 
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4.2 Elastic buckling of hierarchical honeycomb 

4.2.1  Euler buckling formula for orthotropic beams/columns 

Here, cell walls are treated as columns, as done in the classical theory about 

non-hierarchical honeycomb (Gibson and Ashby, 1997). For an orthotropic column, 

assuming the conservation of the plane sections and neglecting the shear effect, the 

buckling load crP  becomes (Timoshenko and Gere, 1961; Tolf, 1985): 

2 2

1

2
 cr

E I
P

l

 
                                                     (4.1) 

where, l is the length of the column,   is a numerical factor depending on the 

boundary conditions, 1E  is the Young‘s modulus in the longitudinal direction of the 

column and 1E I  is the bending rigidity. Eq. (4.1) is the classical Euler buckling 

formula, in which the Young‘s modulus of an isotropic material is substituted by the 

longitudinal one of the orthotropic column. 

 

Fig. 4.4 Schematic of nth level hierarchical honeycombs. 

4.2.2 “Top down” method to calculate buckling loads 

The n
th

 level 

We treat the structure in Fig. 4.4a as the n
th

 level structure and each cell wall as the 

(n-1)
th

 level structure; the structures at each level are approximated as orthotropic due 

to the symmetric configuration. In order to determine its buckling load at level n, we 
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need to calculate the applied loads acting on the six cell walls; then, employing Eq. 

(4.1), we can find the buckling loads for each column. Actually, three pairs are of our 

interest, i.e., ①, ②, ③ (Fig. 4.4); moreover, only two of them (pair ①, ②) are 

treated because of the symmetry. For the sake of the simplicity, the cell walls ① are 

treated as inclined columns and the buckling loads of the pairs ①, ② are expressed 

as (Chang, 2005; Gibson et al., 1982):  

( )

1 ( )

( )

2

2sin

n

n

n

P
P

P P






                                                  (4.2) 

with 

( ) ( ) ( )2 cosn n nP sb l                                                  (4.3) 

where, s is the external stress; b
(n)

, ( )nl  and ( )n  are, respectively, the depth of the 

structure, the length of column ①and the angle made by column ①  and the 

horizontal line at level n. 

(a) Buckling stress analysis 

According to Eqs. (4.2) and (4.3), the axial loads acting on the two beams are 

expressed as  ( ) ( ) ( )

1 2,
T

n n nP P P  with: 

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( )

2

cot

2 cos

n n n n

n n n n

P sb l

P sb l








                                              (4.4) 

Elastic collapse occurs when one of the components in the force vector 
( )nP  

reaches the corresponding one in the critical force vector  ( ) ( ) ( )

,1 ,2,
T

n n n

cr cr crP P P , Namely: 

( ) ( )n n

crP P                                                        (4.5) 

combining Eqs. (4.1), (4.4) and (4.5), we find the external critical stress vector 

 ( ) ( ) ( )

,1 ,2,
T

n n n

cr cr crs s s : 

 

 
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1 1( ) ( )

,1 ( )

2 22 ( ) ( 1) ( ) ( )
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E t
s

l

E t t
s
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 


 






 
  

 

   
    

   

                            (4.6) 

where, h
(n)

 is the length of column ②. For ( )

1

n  and ( )

2

n , we calculated as below: 
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the inclined cell wall is treated with a column with one end clamped and the other 

guided (Gibson and Ashby, 1997). According the reference (Chang, 2005), ( )

1

n , for 

the sake of simplicity, is considered as a constant and equal to 8.669, because it has a 

minor change when θ varies in the range 15
o
~75

o
; β=8.669 is conservative, compared 

with 8.986 when θ=15
o
. For the vertical cell wall, we use the formula (Gibson and 

Ashby, 1997) 
( )( ) ( ) ( )

2 2tan 2
nn n nh l    to calculated ( )

2

n , which only depends on 
( )( ) nnh l .The second expression in Eq. (4.6) is the same as that reported in the reference 

(Gibson and Ashby, 1997) for non-hierarchical honeycomb.And, the Young‘s modulus 

( ( 1)

1

nE  ) of the cell walls is (Chen et al., 2011): 

The second expression in Eq. (4.6) is the same as that reported in reference 

(Gibson and Ashby, 1997) for non-hierarchical honeycomb. The Young‘s modulus 

( ( 1)

1

nE  ) of the cell walls is (Chen et al., 2011): 

 

 

3
1

( 1) ( ) (0)

1 1

1

in
n i

i
i

t
E E

l







  
       

                                         (4.7) 

with 

( ) ( ) ( )
( )

3 ( )

( / sin )

cos

i i i
i

i

h l 





                                             (4.8) 

If we define a new pseudo-vector ( ) ( )( )
1 2( , )n nn T   : 

( ) ( )

1
( ) ( )
2

cot
2cos

n n

n n

 
 




                                                  (4.9) 

then, Eq. (4.4) can be rewritten as: 

( )
( ) ( ) ( )

( )

n
n n n

n

l
P sA

t


 
  
 

                                           (4.10) 

where   is the Kronecker product and ( ) ( ) ( )n n nA b t  is the cross-sectional area of 

the cell wall at the n
th

 level. 

Correspondingly, Eq. (4.6) is expressed as: 
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 
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                               (4.11) 

Furthermore, Eq. (4.11) is expressed as: 

 
1

( ) ( ) ( ) ( 1)

1

n n n n

cr ss K E


                                             (4.12) 

where, 
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1 2
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,

T

n

n n


 
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  
 

 

Accordingly, the local buckling stress at level n is the minimum one in the critical 

stress vector 
( )n

crs , i.e. 

( ) ( )min( )n n

cr crs s                                                    (4.13) 

(b) Buckling strain analysis 

In buckling stress analysis, we dealt with the elastic buckling stress whereas the 

corresponding buckling strain is derived here. First, we make an assumption: when one 

of the beams buckles, it collapses immediately and completely (see Fig. 4.5). The 

displacements  ( ) ( ) ( )

,1 ,2,
T

n n n

cr cr cr     
 

of pair ①, ② at level n are obtained through 

geometrical analysis in a unit cell: 
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n n
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l

h

 
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                                                (4.14) 

and the buckling strains of pair ①, ② are  ( ) ( ) ( )

,1 ,2,
T

n n n

cr cr cr      : 
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Fig. 4.5 Buckling collapse of nth hierarchical honeycomb: (a) initial configuration; (b) collapse of 

beams ①, ③; (c) collapse of beams ②; (d) numbers of unit cells in beam ①, ②. 

Thus, in general: 

( ) ( )

( ) ( ) ( )

1

sin

n n

cr crn n nl h
 


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
                                       (4.16) 

It is worth to say that due to the analogy between hierarchical and fractal in the context 

of mechanics, for the n
th

 hierarchical honeycombs, here, we would like to discuss 

corresponding fractal briefly. According to the fractal definition, the thickness and 

lengths of cell walls are expressed as 
( )( ) tDn

Ft t , 
( )( ) lDn

Fl l  and 

( )( ) hDn

Fh h , respectively, where 
( )nt , 

( )nl  and 
( )nh  are, respectively, real 

thickness and lengths at level n; Dt, Dl and Dh are fractal dimensions of thickness and 

lengths. Therefore, the fractal expressiones can be obtained by replacing 
( )nt , 

( )nl  

and 
( )nh  with Ft ,  Fl  and Fh  respectively from Eq. (4.2) to Eq. (4.16); However, 

in order to investigate the influence of t/l, we do not discuss the fractal in the following 

Sections. 

The (n-1)
th

 level structure 

(a) Buckling stress analysis 

Here, the (n-1)
th

 level structure corresponds to the cell walls of the n
th

 level 

structure treated before, that is to say, each pair cell walls of the n
th

 level contains two 

pairs cell walls of the (n-1)
th

 level structure. Thus, for the (n-1)
th

 level structure, we 

have four pairs. Now we use the results of the n
th

 level and find the stresses of thefour 
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pairs: 

( 1)
( 1) ( 1) ( ) ( 1)

( 1)

n
n n n n
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 
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

 
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                                 (4.17) 

Following the previous procedure, we find the critical loads for the four pairs of 

cell wall at the (n-1)
th

 level: 

   
1 1

( 1) ( ) ( 1) ( 1) ( 2)

1

n n n n n
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 

                           (4.18) 

Thus, the local buckling load at the (n-1)
th

 level is derived as: 

( 1) ( 1)min( )n n

cr crs s                                                  (4.19) 

(b) Buckling strain analysis 

Like at level n, the displacements 
( 1)n

cr   of pair ①, ② at level n-1 can be 

derived as: 

( 1) ( 1) ( 1)
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l
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If we define: 

 ( ) ( )( 1) ( )
1 2sin ,

T
n nn nm m m                                           (4.21) 

where, ( )

1

nm , ( )

2

nm are numbers of unit cells at level n-1 along the longitudinal 

direction of the beams ①, ② at level n (see Fig. 4.6(d)), the buckling strain at level 

n-1 is expressed as: 

( 1) ( ) ( 1)
( )( ) ( )

1

sin
n n n

cr crnn n
m

l h
 


   


                                (4.22) 

The 1
st
 level structure 

(a) Buckling stress analysis 

Similarly, the above stress result can be used for the first level structure by 

extending Eqs. (4.17)-(4.19): 
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The critical loads of each pair at the first level structure are: 

       
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               (4.24) 

The local buckling stress at the first level is: 

(1) (1)min( )cr crs s                                                   (4.25) 

(b) Buckling strain analysis 

Extending Eq. (4.22), the buckling strain at level 1 is expressed as: 

(1) ( ) ( 1) (2) (1)
( )( ) ( )

1

sin
n n

cr crnn n
m m m

l h
 


     


                   (4.26) 

4.2.3 Local buckling load of the whole hierarchical structure 

Now, we have the local buckling loads at each level, but we usually need the 

buckling load for the whole structure, that is: 

( ) (1) (2) ( )min( , , , )n n

cr cr cr crS s s s
                                         (4.27)

 

4.2.4 Strength efficiency 

The strength-to-density ratio is an important index to design and optimize 

energy-absorbing materials. Budiansky (1999) studied the structural efficiency of 

several compression structures (e.g. hollow columns and foam-filled sandwich columns) 

by the maximum stress and strain. Here, in order to evaluate the strength efficiency of 

the hierarchical honeycombs, we employ a strong tie provided by Ashby (2010). For a 

uniaxial loading structure, the strong tie is expressed as Ps1=S/ρ, then, a light but strong 

structure can be obtained by optimizing the value. Employing the expression of the 

relative density for non-hierarchical honeycombs (Gibson and Ashby, 1997), we have: 
( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( / 2)

2cos ( / sin )

n n n n

n n n n n n

h l t

h l l



  





                              (4.28) 

thus, the density of the n-level hierarchical structure is derived by an iterative process 
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as: 
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Therefore, combining Eqs. (4.27) and (4.29), the strength-to-density is expressed 

as:  
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4.3 Parametric analysis 

The influences of the parameters in the vector 
( ) ( ) ( ) ( ) ( ) ( )( , , )i i i i i ih l t l 

 
are 

investigated under the self-similar conditions: ( ) ( )i ih l h l , ( ) ( )i it l t l , and thus 

( ) ( )i it h t h ; the boundary coefficient 
( )

2

i

 is a function of ( ) ( )i ih l , as well as 
( )

2 2

i

  . Thus, the self-similar conditions are: 

( ) ( , , )   1,  2,  ... ,i h l t l i n                                      (4.31) 

In this section, inspired by wood, we treat the example of hierarchical honeycombs.  

The elastic modulus (0)

1 10600E  MPa and density (0) 1.5  g/cm
3
 (Easterling et al., 

1982) of wood cell walls are adapted here. 

4.3.1 Local buckling stress 

Here, the local buckling stress refers to the buckling stress under which the first 

buck Here, the local buckling stress refers to the buckling stress under which the first 

column takes place, see Eq. (4.27). Taking a two-level self-similar honeycomb as an 

example, the parametric analysis results are plotted in Fig. 4.6. 
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Fig. 4.6 Parametric analysis on the buckling stress 
(2)

crS
 

of a two-level hierarchical 

honeycomb. Insets in Fig.4.6a, b are local magnifications, respectively. 

Fig. 4.6 shows the influences of two components in the vector   with the left 

one fixed. We can see that the buckling stress generally increases when t/l and θ 

increase (Fig.4.6a,c); while it decreases when h/l increases (see the inset in Fig.4.6b), 

and increasing h/l produces a weak influence (Fig.4.6c), compared with the other two.. 

For the mechanical behavior influenced by the three geometric parameters in the vector 

 , there are three different reasons: increasing t/l produces a larger bending rigidity of 

the inclined columns, thus, Young‘s modulus is enhanced, furthermore, the buckling 

strength is improved; likewise, increasing θ with other parameters fixed results in 

larger Young‘s modulus (Eqs. (4.7) and (4.8)) and again the structural strength 
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increases; as for h/l, it produces an inverse effect. This is because increasing h/l results 

in a lower buckling stress. 

Also, we compare our result with the transverse strength of natural wood, which is 

defined as the stress at proportional limit corresponding to the first bucking stress in 

our model. For example, radial compression strength of Balsa is about 1500kPa 

(Easterling et al., 1982), which is corresponding to the value 1497 kPa at 

o(20 ,1.0,0.4)   (see the inset in Fig.4.6a). Besides, more strength properties of some 

important commercial woods are available in Green et al. (1999), and their transverse 

compression strength ranges from 1000kPa to 19000kPa, which match our result very 

well by selecting the corresponding parameters. 

4.3.2 Strength efficiency 

Based on the density value of wood, the strength to density ratios (2) (2)
crS   of 

the two-level hierarchical structures influenced by ,h l  and t l  are shown in Fig. 

4.7.  

 

 

Fig. 4.7 Parametric analysis on the strength-to-density ratio of the two-level hierarchical 

honeycomb. 

It suggests that the strength efficiency increases when one of these geometrical 

parameters increases. And the increase in   or t l
 

is more efficient than that in h/l. 

The former improve the buckling-resisting capacity by approximately two or six orders 

of magnitude (  from 20
o
 to 60

 o
 and t l

 
from 0.04 to 0.36), while the latter is in the 
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same order when h l  varies from 1.0 to 3.0. However, different from Fig.4.6b, 

Fig.4.7b shows that increasing h/l results in higher strength efficiency. This is because 

the increasing h/l provides a lower density, and the influence on density is stronger than 

that on strength. We can also see that the strength efficiency influenced by the other 

geometrical parameters (  or t l ) are similar as those in Fig.4.6a,c, since the strength 

increment prevails on the density increment. 

4.3.3 Progressive buckling collapse 

 

Fig. 4.8 Schematic of a three-level hierarchical honeycomb. The subscripts of each 

column reflect the location in the hierarchical structure; the first subscript denotes the 

level and the second its location in the level. 

Compared with the first buckling stress, the progressive failure of the hierarchical 

honeycomb is more complex. Thus, due to the complexity, the calculation is here 

simplified by neglecting the influences produced by collapsed columns (e.g., a length 
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modification or a load redistribution in surviving columns) and plotting the stress 

vector 
( ) ( 1) (1) (0)( , , , , )n n

cr cr cr cr   
 in ascending order with corresponding normalized 

strain ( 1  ) obtained from the vector 
( ) ( 1) (1) (0)( , , , , )n n

cr cr cr cr       . Note that 

this simplified assumption is conservative. Here, we investigate a three-level 

self-similar honeycomband treat 14 (8+4+2) different columns, due to the symmetry, 

see Fig.4.8. 

Note that: 

( ) ( ) ( ) ( )

2 1

i i i ih l m m h l                                           (4.32) 

 

 

 

Fig. 4.9 Progressive failure stress-strain relationship of a three-level hierarchical 

honeycomb: (a) h/l=1.0, t/l=0.1; (b) θ=40
o
, t/l=0.1; (c) θ=40

o
, h/l=1.0; (d) comparison 

between theory and experiment. 



Chapter 4 Hierarchical Honeycomb: Elastic Buckling                         99 

4.3.4 Constitutive laws and deformation energy 

In addition, employing the same procedure as Section 4.3.3, we investigate the 

stress/strain curves (Fig.4.10) and energy density (deformation energy per unit volume) 

or specific energy (deformation energy per unit mass) (Fig.4.11) according to different 

level n, which is from one to three. We find that energy density decreases, since 

buckling stress strength decreases as level n increases; while specific energy increases, 

since structural density decreases as level n increases. This indicates that level n 

increases, the hierarchical structure is more efficient. And for the two-level structure, 

the structure reaches a balance between energy density and specific energy, this may 

explain why wood and grass stem have two hierarchical levels in Fig.4.2. 

  

 

 

Fig. 4.10 Stress/strain curve vs level n: (a) h/l=1.0, t/l=0.4, θ=40
o
; (b) h/l=1.0, t/l=0.3, 

θ=40
o
; (c) h/l=2.0, t/l=0.4, θ=40

o
. 
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Fig. 11 Energy density & Specific energy vs level n: (a) h/l=1.0, t/l=0.4, θ=40
o
; (b) 

h/l=1.0, t/l=0.3, θ=40
o
; (c) h/l=2.0, t/l=0.4, θ=40

o
. 

 



 

Chapter 5 

5 Hierarchical Honeycomb: Strength and 

Toughness 

In this Chapter, we analytically calculate the in-plane fracture 

strength and fracture toughness of a defective hierarchical 

honeycomb. Incorporating the surface effect and quantized 

fracture mechanics (QFM), the classical formula for 

honeycomb-strength prediction is modified, then, it is extended to 

hierarchical architectures by employing an iterative process. The 

results show that two main geometric parameters and the 

emergence of cracks produce important influences on the fracture 

strength and fracture toughness. The modified strength prediction 

eliminates the singularity of the classical formula. The theory 

could be helpful to design a new class of real thus defective 

hierarchical honeycomb materials. 

5.1 Introduction 

Honeycomb, as a classical material, holds a promising industrial and 

technological application. In the field of material science, recently numerous 

technologies developed permit us to manufacture various multifunctional cellular 

solids. Multifunctional honeycombs can be used for energy absorption, mechanical 

damping, sound absorption and thermal insulation (Evans et al., 2001; Wadley et al., 

2006; Xu et al., 2009). With such extensive applications, one of the important issues in 
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material science is to characterize and model the in-plane and out-plane mechanical 

behaviors of honeycomb structures (Gibson and Ashby, 1982; Warren and Kraynik, 

1987; Zhang and Ashby, 1992; Papka and Kyriakides, 1994, 1998), in order to design 

various materials for different applications.  

And more, hierarchy, as an important structural property of biological materials, 

e.g. gecko‘s feet (Chen et al., 2008), has inspirationally been incorporated into the 

honeycomb structures. Fan et al. (2008) investigated two-dimensional (2D) hierarchical 

cellular materials made up of sandwich walls and deduced the formulas on stiffness, 

buckling strength, plastic collapse strength, brittle failure strength and fracture 

toughness; whereas Côté et al. (2009) studied the compressive strength of a sandwich 

panel with a hierarchical square honeycomb core; both show that the hierarchical 

topology enhances the mechanical behaviors of the hierarchical structures. However, 

by considering the hexagonal, triangular or square geometries into super and 

sub-structure cells, Taylor et al. (2011) investigated the mechanical behaviors of 

hierarchical honeycombs and reported that additional hierarchy could result in reducing 

behaviors; also, Chen and Pugno (2011a, b, c, d) investigated the self-similar 

hexagonal honeycomb structure, namely, the super- and sub-structures are both 

hexagonal, and its mechanical behaviors, including linear-elastic properties and 

buckling; in particular, the authors consider the structure in nanoscale and surface 

effect is included. 

In this Chapter, we create a hierarchical honeycomb (Lakes, 1993; Pugno, 2006a; 

Pugno et al., 2008; Gao, 2006; Sen and Buehler, 2010; Chen and Pugno, 2011a, b) 

starting from the nanoscale, and investigate its in-plane mechanical strength and 

toughness (see Fig.5.1). Nanostructures have important mechanical properties thanks to 

their high surface-to-volume ratio (Cammarata, 1994), i.e. surface effect becomes 

important and a lot of works (Wong et al., 1997; Miller and Shenoy, 2000) have been 

devoted to the topic; for the nanoporous materials, Ouyang et al. (2008) predicted the 

Young‘s modulus of nanoporous materials by employing the relationship between 

surface energy and Young‘s modulus, and finally investigated the influences of the 

porosity on the material Young‘s modulus. On the other hand, for the toughness, we 

could not treat the honeycomb as a continuous material anymore employing the 

classical fracture mechanics; in particular, when the crack length is comparable to the 

size of the unit cell, the classical prediction about the tensile fracture strength of the 

conventional honeycomb (Gibson and Ashby, 1997) fails. Here, quantized fracture 
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mechanics (QFM) developed by Pugno (2004, 2006b,c) permits to overcome this 

limitation, and thus, a modification on the classical prediction is made. 

 
Fig.5.1 Schematic of defective hierarchical honeycomb 

This chapter is organized as five parts. Following this section, the second part is 

the introduction of surface effect theory and QFM, which is used below. In section 5.3, 

we derive the strength and toughness of the hierarchical honeycomb. Section 5.4 

presents an example and discussion about the strength and toughness of a four-level 

hierarchical structure with the influences of geometric parameters ( ) ( )/i ih l  and ( )i . 

Finally, conclusions are drawn. 

5.2 Surface effect and quantized fracture strength 

5.2.1 The surface effect 

As the structural size reduces to nanoscale, the surface-to-volume ratio increases 

and surface effects dominate the mechanical behavior in the competition between 
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surface materials and bulk materials. A classical theory of surface stresses, basing on 

energy method, was predicted for the elastic body (Cammarata, 1994; Gurtin and 

Murdoch, 1975), namely: 

0 :ij ij ij ijS                                                         (5.1) 

where, ij  is 2-rank surface stress tensor, 0
ij  is the surface residual stress tensor, ijS  

is the surface stiffness matrix, ij  is surface strain tensor and the symbol :  represents 

the inner product of tensors. 

For the one-dimensional case, it can be expressed in a linear form: 

0s sE                                                          (5.2) 

where, s  is surface stress, 0  is the surface residual stress, sE  is the surface 

Young‘s modulus and   is surface strain. 

5.2.2 The quantized fracture strength 

Basing on energy method, QFM was presented and modified the conventional 

continuum-based fracture mechanics. The crack propagates when (Pugno and Ruoff, 

2004): 

* 2
1

d
A A

I I
A

K K A
A




                                                (5.3) 

where, *
IK  and IK  are the quantized and conventional stress intensity factor, 

respectively, A  is crack area, A  is the fracture quantum and ICK  is the critical 

stress intensity factor of materials. 

Defining A at  , then, Eq. (5.1) becomes: 

* 2
1

d
c a

I I
c

K K c
a



                                                   (5.4) 

where, c  is one half of the crack length and t  is the thickness of the plate. 

For the Griffith‘s crack 
IK c   and thus we find the quantized fracture 

strength as: 

2

IC

f

K

a
c






 

 
 

                                                  (5.5) 

http://en.wikipedia.org/wiki/Stress_intensity_factor
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5.3 Strength and toughness of hierarchical honeycomb 

5.3.1 The effective strength of constituent materials (level 0) 

According to the classical relationship between stress intensity factor and fracture 

toughness, we have: 

(0) (0) (0)

, ,IC eff IC eff effK G E                                                 (5.6) 

where, (0)

,IC effK  and (0)

,IC effG  are the effective stress intensity factor and strain energy 

release rate in mode I, and (0)

effE  is the effective Young‘s modulus. 

Here, for the effective strain energy release rate (0)

,IC effG , we assume: 

(0) (0) (0)

, 2IC eff ICG G                                                   (5.7) 

where, (0) (0)2ICG   is the material‘s surface energy. 

For predicting the effective Young‘s modulus (0)

effE , we apply the Miller and 

Shenoy‘s approach (Miller and Shenoy, 2000): 
(0)

(0) (1)
(0)

(0) (0) (1)
1 6 2

eff s

s

E E t

E E t b


 
    

 
                                     (5.8) 

where, (0)E is the conventional Young‘s modulus, i.e. without considering the surface 

effect, (0)
sE  is the surface Young‘s modulus, whereas, (1)t  and b  are the 

cross-sectional thickness and width of the cell wall, respectively. 

Eq. (5.8) obeys the simple linear scaling law (Wang et al, 2006) 

(0) (0) (0) (0) (0)

in1 /effE E l L  , (0) (0)(0)
in sl E E  represents a material intrinsic length, under 

which surface effect plays an important role; (0) (1)6 2t b    is a dimensionless 

constant, which depends on the geometry of the structural elements at the first level 

and their deformations; (0) (1)L t  is the thickness of the cell wall at the first level. 

Note that, (0)  is close to 6 if (1)t ≪ b  (plate) and 8 if (1)t b  (square beam). 

Substituting 
f  with an effective material strength (0)

,f eff  into Eq. (5.5) and 

combining Eqs. (5.6)-(5.8), we find it as: 

http://en.wikipedia.org/wiki/Stress_intensity_factor
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(0) (0) (0)
(0)

, (0)
(0)

2

( )
2

s

f eff

E

a
c

 








                                             (5.9) 

where, (0)c  and (0)a  are one half of the crack length and the quanta in the constituent 

material. 

The fracture strength can be determined by numerical analyses, e.g. molecular 

dynamic simulation (Yang et al., 2009), or experiments, e.g. Atomic force microscopy 

(AFM) (Sundararajan and Bhushan, 2002;Wong et al., 1997). For plastic materials, the 

critical strain energy release rate can be calculated through J  integral and the stress 

intensity factor as 
(0) (0) (0)

, ,IC eff IC eff effK J E . 

5.3.2 The effective strength and toughness of hierarchical honeycomb 

One level (conventional honeycomb) 

Here, two types of failures happen in nanohoneycombs. One is the bending 

collapse of inclined cell walls before crack propagation, and the other is the tensile 

fracture of vertical cell walls when crack propagates. These two mechanisms are 

discussed below. 

 

Fig.5.2 Schematic of crack propagation. (a) Geometric size of unit cells, (b) Crack path. 

Fracture mechanism 1: For the one-level honeycomb structure (i.e. conventional 
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honeycomb), the classical theory developed by Gibson and Ashby (1997) can be 

employed and the tensile strength in 1 direction (Fig.5.2a) is calculated as: 

2(1)
(1) (1)

,1

(0) (1) (1)3/2 (1)
,

1

3 2 cos

f

f eff

l t

c l



 

 
  

 
                                   (5.10) 

where, (1)  is the angle between inclined cell walls and the horizontal line, (1)l  and 

(1)t  are the length and thickness of the inclined beams, and (1)c  is one half of crack in 

honeycombs (Fig.5.2b). This expression predicts that the strengths tends to infinity 

when (1)c  approaches zero. In contrast, considering (1) (1) (1)2 cosa l   (Fig.5.2), QFM 

implies: 

(1) (1) (1)( / 2)IK c a                                              (5.11) 

where, (1)

IK  and   are the stress intensity factor and external stress acting on the 

honeycombs, respectively. 

Moreover, the stress field of fracture-mode Ⅰ in the vicinity of the crack tip can 

be described by the classical solution of Williams for the maximum principal stress 

 (1) (1)
1 ,r    (Willams, 1957; Becker et al., 2002): 

 
(1)

(1)(1) , ( )
2

I

I

K
r f

r
  


                                           (5.12) 

with 

(1) ( ) cos( ) 1 sin( )
2 2

If
 


 

  
 

  

where, r  is the distance from the crack tip,   is the angle with respect to the crack 

axis, (1) ( )If   is a dimensionless function which is independent from the crack 

geometry and loading condition. 

Considering 0  , we find: 

(1) (1) / 2
( )

2

c a
r

r
 


                                              (5.13) 

Then, the equivalent force acting on the unit cell in the 1 direction is 
(1) (1) (1)2 ( ) cosP a l b  , and the moments acting on both ends of the inclined cell walls 

are (1) (1)cos / 2M Pl 
 

(Gibson and Ashby, 1997). For the ideal brittle and fully 

plastic materials, the maximum moment equals: 
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(0) (1) 2
.

max
(0) (1) 2

.

1
( )     Ideal brittle materials

6
1

( )     Fully plastic materials
4

f eff

f eff

b t
M

b t








 



                          (5.14) 

Thus, the honeycomb collapses when maxM M , and we find: 

2(0)
(1)

.(1)

,1
2 (1) (1) (1) (1)

1

cos 2 / 1

f eff

f

t

c a l




 

 
  

  
                                 (5.15) 

where, (1)

,1f  is the tensile fracture strength of the one-level honeycomb due to fracture 

mechanism 1 along the 1 direction, and   is a coefficient, 2   if cell walls 

collapse in fully plastic way or 3   if cell walls collapse in ideally brittle way. Note 

that Eq. (5.15) reduces to the results of non-crack honeycomb (Gibson and Ashby, 

1997) with the crack length (1)2 0c   (assuming that the tensile and compressive 

strength are same) and that the collapse of honeycomb is due to the bending of inclined 

cell beams. 

If (1) (1) (1)2c m a , namely, the crack length is denotes by the number of crack unit 

cell, then, Eq. (5.15) becomes: 
2

(1)
(1) (0)

,1 .
(1)2 (1) (1)

1 1

cos 1
f f eff

t

lm
 

 

 
   

  
                               (5.16) 

where, (1)m  is the number of crack cell walls (e.g. (1) 6m   in Fig.5.2b). 

Thus, the critical stress intensity factor (1)

,1ICK  can be calculated by Eq. (5.16): 

2
(1) (1)

(1) (1) (0)(1) (1)
,1 .

2 (1) (1)

1 1
( / 2)

cos 2
IC f f eff

t a
K c a

l


  

 

 
     

 
               (5.17) 

Again, the results is the same as that of Gibson and Ashby
 
for regular hexagonal 

honeycomb, when 3  . 

Fracture mechanism 2: In this case, tensile fracture of vertical cell wall happens 

( (1) / 2r a ) before the bending collapse of inclined cell walls. Based on Eq. (5.13) and 

the maximum stress theory, the fracture of the vertical cell wall happens when 

(0)(1)
.( / 2) f effa  , i.e.:  

(1)
(1) (0)

,2 .
(1) (1) / 2

f f eff

a

c a
 


                                          (5.18) 
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and the corresponding critical stress intensity factor (1)

,2ICK  is calculated as: 

(1) (1) (0)(1) (1) (1) (1)
,2 ,2 .( / 2) 2 cosIC f f effK c a l                              (5.19) 

Comparing Eqs. (5.16) and (5.18), thus, we find the fracture strength (1)

f  of the 

nano-honeycombs, which is expressed as: 

(1) (1) (1)

,1 ,2min( , )f f f                                                 (5.20) 

and the transition from fracture mechanism 1 to mechanism 2 takes place for: 

(1)
(1)

(1)
2cos

t

l
                                                     (5.21) 

 

Fig.5.3 (a) Comparison between the classical (C) and QFM theories. ‗W‘ or ‗WO‘ denote predictions 

with or without surface effect; (b) Influence of θ(1) on fracture strength of defective nanohoneycombs 

with t(1)/l(1)=0.25; (c) Influence of t(1)/l(1) on fracture strength of defective nanohoneycombs 

withθ(1)=80o. Note that ‗M1‘ and ‗M2‘denotes the fracture mode1 and fracture mode 2, respectively. 

As an example, we here study the fracture strength (1)

f  of a nano-honeycomb. 

The single-crystal silicon is considered as the constituent material ( 3  ), and for the 

considered (110) surface the Young‘s modulus is (0) 169E  GPa, whereas the surface 

elasticity is (0) 1sE   N/m (Sadeghian et al., 2010) and the surface energy is 

(0) 1.51  J/m
2 

(Jaccodine, 1963). The thickness of the cell walls is (1) 10nmt  << b , 

(1) (1)/ 0.25t l   and o(1) 30  ; the cell wall is considered crack-free, i.e. (0) 0c  nm 

and 
(0) 0.5431a  nm (Sundararajan and Bhushan, 2002). Then, according to Eq. (5.9), 

we calculated the effective fracture strength (0)

, 24.4f eff  GPa. 

The comparison between the classical result and the QFM one (fracture mode 1) is 
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reported in Fig.5.3a. As the crack number increases, these two predictions tend to the 

same value, and this explains why the result is close to those of continuum mechanics 

for (1) (1)/ 7c l   (Gibson and Ashby, 2010). Besides, the competition between mode 1 

and mode 2 of failure is plotted in Fig.5.3b, c vs (1)  or (1) (1)/t l . It shows that failure 

mode 2 happens only when the inclined angle (1)  and (1) (1)/t l  are very large (e.g. 

(1) =85
o 

in Fig.5.3a, (1) (1)/t l =0.4 in Fig.5.3b). In other words, the failure usually is 

due to fracture mechanism 1. 

Therefore, the fracture mechanism 1 is based to study the fracture strength and 

fracture toughness, thus, the critical strain energy release rate (1) (1)

,1 ,IC IC effG G  is easily 

derived according to Eq. (5.17): 

 
2

(1)
(1) (1)

(1) (0)

,(1) 2 (1) (1) (1) (1) (1) (0) (0)
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with 
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  

 
 

where, (1)E  is the Young‘s modulus of the honeycomb along the loading direction. 

Two-level hierarchical honeycomb 

For the two-level hierarchical structure, we treat the first level as the constituent 

material. Then, the iterative process can be employed through Eq. (5.16) if 

(2) (2) (2) (2) (2) (2)2 2 cosc m a m l   : 
2

(2)
(2) (1)

.
(2)2 (2) (2)

1 1

cos 1
f f eff

t

lm
 

 

 
   

  
                               (5.23) 

with the effective tensile strength of the first level: 

(1) (1) (1)
,(1)

, (1)
(1)( )

2

IC eff s

f eff

G E

a
c










 

where, (2)

f  is the tensile fracture strength of the second level, (2)m  is the number of 

crack cell walls at the second level, (2)  is the angle made by inclined cell walls at the 

second level and the horizontal line (Fig.5.2), (2)t  and (2)l  are the thickness and 

length of the inclined cell walls, respectively, (1)
s  can be calculated through Eq. (5.8) 
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by substituting the corresponding superscripts . 

Accordingly, the stress intensity factor (2)

ICK  at the second level can be derived: 

2
(2) (2)

(2) (1)

.
2 (2) (2)

1 1

cos 2
IC f eff

t a
K

l




 

 
   

 
                               (5.24) 

Similarly, we find the critical strain energy release rate (2) (2)

,IC IC effG G at the second 

level: 

(2) (2)
(2) (1)

,
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with (Chen et al., 2011a) 
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where, (2)E  is the Young‘s modulus of the two-level structure in the loading direction. 

n
th

-level hierarchical honeycomb 

Employing the same procedure, for the n-level hierarchical honeycomb, the result 

of the strength can be expressed as ( ( ) ( ) ( ) ( ) ( ) ( )2 2 cosn n n n n nc m a m l   ): 
2
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with the effective tensile strength of the (n-1) level given by: 
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The critical strain energy release rate ( ) ( )

,

n n

IC IC effG G : 
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with (Chen et al., 2011a) 
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where, ( )nE  is the Young‘s modulus of the n-level structure along the loading 

direction. 
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5.3.3 Relative-density ratio 

As we know, ( ) ( )/n nt l  can be expressed as a function of the honeycomb‘s 

geometry and relative density as (Gibson and Ashby, 1997; Chen et al., 2011a): 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( 1)

2cos ( / sin )

( / 2)

n n n n n n

n n n n

t h l

l h l
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



                                  (5.28) 

thus, the formulas of strength and fracture energy, i.e., Eqs. (5.26) and (5.27), are 

expressed as: 
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                  (5.30) 

 

Fig.5.4 (a) Influence of ( ) ( )/ /i ih l h l  on strength with ( ) o30i  ; (b) Influence of 

( ) ( )/ /i ih l h l  on toughness with ( ) o30i  ; (c) Influence of  ( )i   on strength with 
( ) ( )/ 1.0i ih l  ; (d) Influence of  ( )i   on toughness with 

( ) ( )/ 1.0i ih l  . 
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5.4 Example and discussion 

In this section, we continue the aforementioned example on single-crystal silicon 

but investigate the fracture strength ( )n

f  and the critical strain energy release rate 

( )n

ICG  of a four-level self-similar hierarchical honeycomb with ( ) ( ) ( )2 cosi i ia l  , 

( ) ( 1) (1)/ 100, 25i il l l   nm and ( ) ( 1)/ 0.2i i    . Because of the size of the second 

level is much larger than that of the first level, the surface effect is neglected when 

level 2n  . For perfect hierarchical honeycombs (i.e., ( ) 0im  ), the influences of two 

key geometric parameters on their fracture strength and fracture toughness are reported 

in Fig.5.4 

 

Fig.5.5 (a) Influence of a single defect on strength at one hierarchical level; (b) Influence of a single 

defect on toughness at one hierarchical level; (c) Influence of multi-defects on strength at different 

hierarchical levels; (d) Influence of multi-defects on toughness at different hierarchical levels. 
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For the defective hierarchical honeycomb (i.e., ( ) 0im  ), an investigation on the 

influences of a single crack at different hierarchical levels (e.g. ( ) 1im  , i=1 or 2 or 3 

or 4) is performed. Also, the influences of multi-cracks are studied (e.g. ( ) 1im  , 

1,2i   or 1,2,3i   or 1,2,3,4i  ). The results are depicted in Fig.5.5. 

From the results concerning perfect hierarchical honeycomb (Fig.5.4), we note 

that the magnitude of the strength at level (i+1) is about 96% that at level i; besides, the 

strength and toughness obey the classical exclusive relationship, namely, if strength 

increases, toughness decreases; otherwise, strength decrease, toughness increase 

(Launey and Ritchie, 2009; Ritchie, 2011). The reason is that the greater ( ) ( )/i ih l  or 

( )i , the greater the moment acting on both the ends of the inclined beams, then, a 

larger external stress is required, so the strength increases; for toughness, this implies 

the less deformation and absorbed energy. 

As for the results of the defective hierarchical honeycomb (Fig.5.5), we note that 

both the cases can reduce the strength and toughness influencing the mechanical 

properties at higher hierarchical levels. The existence of defects causes the jump of 

materials mechanical properties. This is very interesting, because new functionally 

grade materials could be developed with this method. In all, as the hierarchical level n 

increases, materials strength decreases, but with proper design, the materials toughness 

can be improved. 

 



 

Chapter 6 

6 Hierarchical Foam: Elasticity and Strength 

In this chapter, we study the mechanics of new three-dimensional 

hierarchical open-cell foam, and, in particular, its Young’s modulus and 

plastic strength. We incorporate the effects of the surface elasticity and 

surface residual stress in the linear elastic and plastic analyses. The 

results show that, as the cross-sectional dimension decreases, the 

influences of the surface effect on the Yong’s modulus and plastic 

strength increase, and the surface effect makes structure stiffer and 

stronger; similarly, as level n increases, these quantities approach to 

those of the classical theory as lower bounds. 

6.1 Introduction 

The structure of materials plays an important role in determining their mechanical 

properties. In particular biological materials, e.g. bone and wood (Fratzl and 

Weinkamer, 2007), display sophisticated hierarchical structures with different length 

scales and they have attractive mechanical performances, e.g. their toughness (Launey 

and Ritchie, 2009; Smith et al., 1999). These outstanding properties of all hierarchical 

structures at different length scales are generating enormous interest. In this regard, the 

toughening mechanisms in nacre have been extensively studied (Evans et al., 2001) 

and recently, two theoretical models (Gao, 2006; Zhang et al., 2011; Keten et al., 2010) 

were brought forward to investigate the mechanical properties of bone-like materials 

and spider silk. Up to now, engineers and scientists created only a few hierarchical 

structures. For example, the Eiffel Tower is considered as a three levels structure 
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(Lakes, 1993); Geim et al. (2003) developed arrays of microfabricated polyimide hairs 

to mimicking the adhesive and self-cleaning properties of gecko‘s feet; Munch et al. 

(2008) synthesized a tough bio-inspired hybrid material basing on aluminum oxide and 

polymethyl methacrylate, and the final toughness of the product, whose synthesized 

structure is lamellar as that of nacre, is more than 300 higher than that of the 

constituent materials. 

Foam structures (e.g. sponge bone, animal quill and plant stems), on one hand, are 

often found in Nature, and they provide animals and plants with low weight, high 

strength etc.; biomimicking of the foam structures may offer the potential to increase 

the mechanical efficiency of engineering materials (Karam and Gibson, 1994). On the 

other hand, varieties of artificial open cell foam are studied widely, and recently, Biener 

et al. (2006) combined nanoindentation, column microcompression and molecular 

dynamics simulations to study the mechanical behavior of nanoporous Au, and they 

found nanoporous Au can be as strong as bulk Au, despite possessing high porosity; 

Wang and Xia (2010) investigated the mechanical properties of hierarchical 

nano-porous solids, and found that the Young‘s modulus of the nanostructure is 

intrinsically size-dependent when considering the surface effect. The surface effect, 

due to the high surface-to-volume ratio (Cammarata, 1994), plays an important role in 

determining the mechanical properties of nano-systems. Extensive works (Wang and 

Feng, 2009; Shankar and King, 2007; Wong et al., 1997; Zhang et al., 2010) studied its 

influence on linear elastic and plastic properties; in some cases, the surface effect 

stiffens materials; while in others soften (Zhou and Huang, 2004). In particular, 

considering the surface energy of nanostructured materials with negative radius of 

curvature, including nanocavities, nanotubes and shell-core nanostructures, Ouyang et 

al. (2009) reviewed the status and recent progress on their thermodynamic behavior 

(e.g. nonlinear shrinkage) 

Inspired by biological materials, we build three-dimensional hierarchical foam 

(Fig. 6.1) (Wang and Xia, 2010; Gibson and Ashby, 1997; Pugno, 2006; Pugno and 

Carpinteri, 2008; Pugno et al., 2008; Bosia et al., 2010; Chen and Pugno, 2011), and 

incorporating surface effect at each hierarchical level, we study its linear-elastic and 

plastic behaviors. Here, we include the effect of surface elasticity in the linear elastic 

analysis and the effect of the surface residual stress in the plastic analysis, respectively. 

Finally, considering a three-level hierarchy, we analyze the mechanical properties at 

each hierarchical level. 
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Fig. 6.1 Schematic of hierarchical foam. 

This chapter consists of six parts. Section 6.1 is the introduction. Section 6.2 

invokes the surface effect. Section 6.3 is the linear-elastic analysis; the Young‘s 

modulus is derived, based on an effective bending stiffness, a longitudinal stiffness and 

an iterative procedure. Section 6.4 presents the plastic analysis and the plastic strength 

is calculated, basing on an effective yield stress and the iterative procedure. Section 6.5 

gives an example of application and employs the self-similar assumption as simplified 

from Sections 6.3 and 6.4 to analyze the three-level-hierarchical foam. Finally, 

conclusions are made. 

6.2 Surface effect 

Surfaces of solids, possessing atoms with fewer neighbor atoms, display an excess 

energy than the bulk; surface effect is an important property of solid surfaces (Shenoy, 

2005), especially in nano-structures. Surface effect consists of two types: the surface 
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residual stress and surface elasticity. Surface effect was first defined by Gibbs (1961) 

and, according to Cammarata (1994), the classical surface stress s
  is expressed as: 

s

s 




 




 


                                                 (6.1) 

where,   is the surface energy,   is the Kronecker delta, s
  and s

  are the 

surface stress and strain tensors, respectively. The expression suggests that the surface 

energy of nanostructures plays an important role in determining the surface stress. 

Regarding the relationship between Young‘s modulus and surface energy, Ouyang et al. 

(2007), basing on the thermodynamics and continuum medium mechanics, studied the 

correlation between Young‘s modulus and surface energy; they focused on carbon 

nanotubes, explaining the anomalous behavior of the Young‘s modulus. 

In particular, for the one-dimensional linear elastic case, Eq. (6.1) becomes (Wang 

and Feng, 2009): 

s sE                                                         (6.2) 

where,   is the surface residual stress and *
sE E t  is the surface Young‘s modulus. 

*E
 

is the Young‘s modulus of the surface layer and t is the thickness. 

6.3 Young’s modulus 

 
(a)                 (b)                     (c) 

Fig. 6.2 Unit cell at the first level. (a) unit cell; (b) representative of ribs; (c) external stress acting on 

the unit cell. 
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The 1
st
 level 

For the first level, the hierarchical foam (Fig. 6.2), is conventional (Gibson and 

Ashby, 1997) but we here consider the effect of surface elasticity. Under the external 

stress   (Fig. 6.2(c)), the linear-elastic deformation displays three components: the 

first part is caused by the bending of beam 1, and the second and third ones are the 

axial deformations of beam 2 and beam 3, respectively. Assuming the 

clamped-clamped boundary condition of beam 1 and small deformations, the 

displacement due to bending is: 

3
1

1

2
2

192( )e

F l

EI


                                                     (6.3) 

where, 2
14F l ,   is the mid-point displacement of the beam 1, F  and   are 

respectively the equivalent concentrated force and the external stress acting on the unit 

cell, 1l  is the rib length, 1( )eEI  is effective bending rigidity including the surface 

elasticity and it is expressed as: 

34
0 1 0 1

1

2
( )

12 3

s

e
E t E t

EI                                                  (6.4) 

where, 0E  and 0
sE  are the bulk and surface Young‘s moduli, respectively, and 1t  is 

the side length of the square cross-section of the ribs at the first level. Note that, Eq. 

(6.3) is based on the Euler beam theory; if t1/l1 is not small enough, then, the shear 

effect have to be employed, i.e., the Timoshenko beam theory. 

Alternatively, from Eq. (6.4), the dimensionless Young‘s modulus 0 0/eE E  can be 

derived as: 

0 0

0 0 1

1 8
e sE E

E E t
                                                      (6.5) 

Expression (6.5) coincides with the result by (Miller and Shenoy, 2000), and it obeys 

the scaling law 0 0 in 1/ 1 /eE E l t   (Wang et al., 2006) with in 0 0/  and 8.0sl E E   . 

Note that inl  is an intrinsic material length, reflecting a condition under which surface 

effect plays an important role compared to bulk;   is a dimensionless constant, which 

depends on the geometry of structural elements (e.g. bar, plate, etc.) and their 

deformations (e.g. bending, tension, etc.). 
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The axial displacements of the second and third components are easily derived: 

1

1

1

1
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F l
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F l
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                                                 (6.6) 

where,   and   are the displacements of beam 2 and 3, respectively, 
1( )eEA  is 

the effective longitudinal stiffness considering the surface elasticity and it is expressed 

as 2
1 0 1 0 1( ) 4e sEA E t E t  . Like Eq. (6.4), the expression of 

1( )eEA  is rearranged as a 

dimensionless quantity:  0 0 0 0 11 4e sE E E E t  . 

Therefore, the total displacement is obtained by summing Eqs. (6.3) and (6.6), i.e., 

1
       . At the same time, considering 2

14F l , we obtain: 
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thus, the strain 1  of the unit cell at the first level can be found: 

4 2
1 1 1

1 34 2
1 0 1 0 1 0 1 0 1

3

2 8( 8 ) 2( 4 )s s

l l

l E t E t E t E t

 



  

 
                             (6.8) 

Furthermore, the Young‘s modulus of the first level is calculated by 1 1/E    and 

normalized by the Young‘s modulus ( 0E ) of solid materials, we have: 

4 0 0
1 1 1 1

0 01

20 00
1 1 1 1 1 1

0 0

8( ) ( 4 )( 8 )

( 4 ) 12( ) ( 8 )

s s

s s

E E
t l t t

E EE

E EE
t t t l t t

E E

 



  

                              (6.9) 

The geometry in Fig. 6.2 gives a relative density: 
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Accordingly, the normalized Young‘s modulus 1 0E E  is expressed through the 

relative density as: 
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                           (6.11) 
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If the rib size 1t  is large enough, then, the surface effect could be neglected 

( 0 0sE  ), and: 

2

1 01

0 1 0
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81 432( )

E
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                                             (6.12) 

The expression (6.12) obeys  2

1 0 1 0 1 0/ ( ) 1 ( )E E       , which is a numerical 

result by curve fitting for three dimensional open cell foams basing on Voronoi models 

(Gan et al., 2005). Therefore, with the effect of the surface elasticity, the normalized 

Young‘s modulus is expressed as the classical power law with respect to the relative 

density: 
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with 
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In addition to the above structural analysis, Ouyang et al. (2008) predicted the Young‘s 

modulus of nanoporous materials by employing the relationship between surface 

energy and Young‘s modulus, and finally investigated the influences of the porosity on 

the material Young‘s modulus. 

The 2
nd

 level 

For the second level, if the structure has a considerable large size compared with 

that of the first level and we could neglect the effect of the surface elasticity. However, 

in general, Eq. (6.13) is employed as an iterative procedure and the normalized Young‘s 

modulus of the second level is calculated: 
2

2 2

1 2

0 0

E
C C

E





 
  

 

                                                  (6.14) 

where 2C  is calculated by replacements of the corresponding parameters of the second 

hierarchical level in the expression of 1C . 

The n
th

 level 
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Likewise, the normalized Young‘s modulus of the n
th

 level can be obtained: 
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10 0

n
n n

i

i

E
C

E
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 
  

 
                                                  (6.15) 

where, iC  are obtained through replacements of the corresponding parameters of level 

i in the expression of 1C . 

6.4 Plastic Strength 

As discussed in the Introduction, hierarchical natural materials or structures 

exhibit high toughness, and this is because the crack path becomes longer along the 

different hierarchical levels; meanwhile, the hierarchical structures can inhibit the 

crack propagation at each level. In our case, we are not considering the presence of a 

matrix, thus we investigate the plastic strength of the hierarchical foam as main 

mechanism for energy dissipation. Here, Here, we assume that ribs collapse in a fully 

plastic way, and the portion below the neutral axis is totally tensile yielded whereas 

that above the neutral axis is totally compressive yielded.  

6.4.1 Effective yield strength 

 
     (a)                                   (b) 

Fig. 6.3 A unit-cell collapse at the first level. (a) 12 plastic hinges; (b) rotation angles of the plastic 

hinges. 

Like the elastic analysis, we only consider the influence of the surface residual 

stress on the plastic strength of the first level. Based on the von Mises yield condition, 
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the effective initial yield strength in axial tension or on compression is expressed as 

(Yang et al., 2009; Gioia and Dai, 2006): 

 
2

2
0

2
1 1

3
e

t t

 
   

 
                                          (6.16) 

where,    and    are surface residual stresses acting on surfaces 1 and 2 (Fig. 6.2 

(b)), 0  is the yield strength of bulk materials enhanced by any pertinent size effects 

instead of the surface effect caused by the surface effect,   stands for tension (  ) or 

compression (  ) of the ribs, respectively.  

The 1
st
 level  

For the external stress, an upper bound on the plastic collapse stress could be 

calculated equating the work of the external force F  to the plastic work of 12 plastic 

hinges (Fig. 6.3), i.e.: 

1 16 pFl M                                                     (6.17) 

where, 
pM  is the plastic moment due to the yield (compression and tension) of all the 

cross-sectional area,   is the rotating angle of the rib after that plastic hinges emerge. 

 
(a)                      (b)                             (c) 

Fig. 6.4 Stress distribution along the cross-section of ribs. (a) surface effect on cross-sectional area; (b) 

stress distribution with surface effect; (c) stress distribution without surface effect. 

Considering the surface residual stress, the cross-sectional stress distribution is 

shown in Fig. 6.4. Besides, we define the surface thickness (Zheng et al., 2010): 

h nd , where n is the number of atomic layers which displace a significant surface 
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residual stress and can be determined by experiments or numerical analysis, and d is 

the characteristic size of atoms. Here the thickness is considered the same in all 

hierarchical levels. If h is much smaller than t1, the neutral axis could still be 

considered in the middle of the cross-section (Fig. 6.4(b) and (c)). Then, 
pM  is 

calculated as: 
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                (6.18) 

substituting 
pM  and F  into Eq. (6.17), we have: 
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                 (6.19) 

Eq. (6.19) is different from the Hall-Petch relationship, which is used to calculate the 

ligament yield strength of nanoporous Au foams influenced by size effect (Hodge et al., 

2007). On the other hand, a lower bound is obtained by equating the plastic moment 

pM
 

to the maximum bending moment maxM  along the beam, i.e.: 

maxpM M                                                      (6.20) 

where, 
max 1

1

16
M Fl  is the maximum moment along the beam. Employing 

pM  (Eq. 

(6.18)), we find: 

3

1 13 2

0 1 0 1 1 1 1

(1 2 ) 2 1 3( ) 2 (1 2 )
th h h

t t t t l

  

 

     
            

    
                (6.21) 

Eqs. (6.19) and (6.21) are the same, showing that the result represents the real value. 

The normalized strength of the first level is expressed by the relative density as: 

3 2

1 1'
1

0 0

C
 

 

 
  

 
                                                  (6.22) 

with 
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' 3 2
1

1 0 1 1 1
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

   
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If the influence of the surface residual stress is negligible, the stress distribution will be 

like that reported in Fig. 6.4(c) and the yield stress will be 0 . Repeating the 

procedure or letting 0     and 0h  , we have: 

3 2

1 1

0 0

0.3
 

 

 
  

 
                                                  (6.23) 

This is a classical power law. Note that, the coefficient 0.3 was obtained by 

experimental fitting (Gibson and Ashby, 1997); here, our derivation provides a 

theoretical proof.  

The 2
nd

 level 

Like in the linear elastic analysis, Eq. (6.23) is employed and, iteratively, we find 

the yield strength of the second level: 

3 2

2 2' '
1 2

0 0

C C
 

 

 
  

 
                                                (6.24) 

where, '
2C  is calculated by replacements of the corresponding parameters of level 2 in 

the expression of '
1C . 

The n
th

 level 

Based on the results of the first and second level structures, the plastic strength of 

the n
th

 level can be easily derived: 

3 2

'

10 0

n
n n

i

i

C
 

 

 
  

 
                                                (6.25) 

where, '
iC  are obtained through replacements of the corresponding parameters of level 

i in the expression of '
1C . 

6.4.2 Analytic results 

In this section, because for the levels greater than or equal to 2, the sizes of their 

structures are much larger than that of the first level, so, the surface effect can be 
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neglected and we only consider the influence of the surface effect on the first level. 

Firstly, for the Young‘s modulus, we compare our predictions with the result by 

Wang and Xia (2010) considering the first level of a conventional foam composed by 

the same material Au having 0 78E  GPa, 6.6sE  N/m and 1 0/ 0.2   ( Wang and 

Xia, 2010; Kiely and Houston, 1997). The comparison is depicted in Fig. 6.5. It shows 

that the Young‘s modulus of our structure is 20% higher than calculated by Wang and 

Xia (2010) because of the different nanostructure (the macro-mechanical properties of 

materials depend on their micro-structures). However, the influence of the surface 

effect is comparable, although the influence of the surface effect on the present 

structure is a little higher than that on the reference. 

 

Fig. 6.5 Comparison of Young‘s moduli between different nano-structures. Note, ―PSW‖ or ‖PSWO‖ 

denote present structure with or without surface effect; ‖WSW‖ or ‖WSWO‖ denote Wang‘s structure 

with or without surface effect. 

Also, we investigate a three-level-hierarchical structure with the same Au elastic 

constants stated above, while surface residual stresses 1.4    N/m (Shenoy, 2005) 

on the (001) surface and yield strength 0 1450  MPa (Lee et al., 2007) are adopted. 

Also, for the plastic strength, we use 3n  , and Au 0.288d  nm and a ratio / 1/ 5i it l  ; 

the hierarchical structure is self-similar. Accordingly, the relative density is 

1 / 0.09i i    (Eq. (6.10)). 
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(a)                                      (b) 

Fig. 6.6 Influence of the cross-sectional size t1. (a) Young‘s modulus vs t1; (b) Plastic strength vs t1. 

Note: 1st (or 2nd, 3rd) level denote the results of the three-hierarchical structure with consideration of 

surface effect; ‗classical‘ denotes the result calculated from classical theory without consideration 

surface effect. 

The analytic calculations of the Young‘s modulus and plastic strength are reported 

in Figs. 6.6. It shows that the smaller t1, the greater the influence on the Young‘s 

modulus and strength and that as t1 increases, the predictions considering the surface 

effect approach those of the classical theory. Besides, our predictions including the 

surface effect are always higher than the classical ones; namely, the material becomes 

stiffer in the presence of surface effect. 

 



 

 



 

Chapter 7 

7 Conclusions and Outlook 

Inspired by the hierarchical structure of natural materials, this thesis formulates 

three multi-scale hierarchical models, from 2-D hierarchical woven tissue to 2-D 

hierarchical honeycomb and further to 3-D hierarchical foam, and develops 

corresponding theories. More specifically, the linear-elastic behavior of 2-D 

hierarchical woven tissues, the linear elastic, elastic buckling and fracture behavior of 

the 2-D hierarchical honeycomb, and the linear elastic behavior and strength of the 3-D 

hierarchical foam are investigated. 

Chapter 1 mainly introduces the research background and our motivation. In this 

section, we analyze several natural hierarchical structures, from nano- to macro-scale, 

and biomechanical mechanisms governing the mechanical properties of the natural 

materials. In particular, we stress how cellular structure in natural materials has a high 

mechanical efficiency which is influenced by its surrounding environment. 

Chapter 2 develops a new theory to describe the elastic anisotropy of hierarchical 

tissues. The method outlined in this chapter shows the possibility of better 

understanding the elastic properties of biological materials or designing bio-inspired 

hierarchical tissues with desired elastic properties. Also, the results show the possibility 

of designing a new class of hierarchical 2-D scaffolds by tailoring elastic anisotropy, 

better matching the anisotropy of the biological tissues and thus maximizing the 

regeneration at each hierarchical level. Experimental results on tendons and leaves 

show a relevant agreement with the predictions of the proposed hierarchical theory. 

Chapter 3 calculates the in-plane elastic properties (linear-elastic and buckling 

properties) of hierarchical nano-honeycombs. The surface effect modifies the classical 

results of non-hierarchical honeycomb (or conventional honeycomb), which is 

considered to be the first level (or a one-level structure). Then, employing an iterative 
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procedure, we obtain the stiffness (or stiffness-to-density ratio) and strength (or 

strength-to-density ratio) of the nth level. Parametric analysis reveals the influences of 

two key geometrical parameters on the stiffness (or stiffness-to-density ratio) and 

strength (or srength-to-density ratio), and shows that the elastic properties can be 

optimized by combining these parameters; furthermore, efficient structures can be 

obtained.  

Chapter 4 derives the buckling stresses and strains of hierarchical honeycomb 

materials. Parametric analysis is performed for a two-level or three-level hierarchical 

honeycomb material, respectively. The former is employed to investigate the 

geometrical influence on the local buckling stress and mechanical efficiency of the 

structure, in general, these improve when increasing the parameter values except in the 

case of h/l, whose increase results in a lower local buckling stress. The transverse 

compression strength of natural wood agrees well with our results. The latter is 

considered to investigate the influence of geometry on the progressive collapse. Finally, 

the study on the stress/strain law and deformation energy shows that the increasing 

number of hierarchical levels n induces a lower energy density but higher specific 

energy. The results indicate that the mechanical behaviors of the hierarchical structure 

can be tuned at each hierarchical level and thus is attractive for designing new 

materials. 

Chapter 5 investigates the fracture strength and fracture toughness of a defective 

hierarchical honeycomb. Incorporating surface effects and Quantized Fracture 

Mmechanics (Pugno, 2002; Pugno and Ruoff, 2004), classical fracture strength and 

fracture toughness are modified. The modification to fracture strength eliminates the 

singularity when a crack vanishes. The two mechanical properties are studied for 

perfect and defective hierarchical honeycombs. We discover that the variations of the 

two mechanical parameters are exclusive when level N changes by varying two 

geometric parameters ( ( ) ( )/i ih l  and ( )i ) and the crack reduces the fracture strength 

and toughness. The theory allows us to calculate the fracture strength of the 

conventional honeycomb materials with defects and design energy-absorption materials 

with high fracture toughness. 

Chapter 6 derives the Young‘s modulus and plastic strength of a 3-D hierarchical 

foam, considering surface effects. Based on structural analysis, the Young‘s modulus is 

derived considering the effect of surface elasticity and the plastic strength is calculated 

considering the effect of surface residual stress. We find that the two mechanical 
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parameters are size-dependent. Both the Young‘s modulus and the plastic strength 

increase as the cross-sectional size 1t  of ribs at the first level decreases. This explains 

the important role of surface effects when considering nanostructures. Thus, the present 

theory could be used to design some cellular nano-materials for different applications. 

However, we must point out that the thesis is only dealing with the structural 

skeleton compared with natural composite materials, and there is still a distance 

between models and real bio-inspired materials. Of course, the bio-inspired materials 

should be based on natural mechanisms, occurring in natural materials. In this regard, 

although scientific communities have been making progress in revealing some natural 

mechanisms, progress is still at an early stage and more sophisticated models and 

methods should be proposed. From the point of view of mechanics, we suggest that 

future work should take into account the following aspects: 

 Hierarchical structure. Usually, the structure at each hierarchical level of natural 

materials is not self-similar, and therefore, new numerical and theoretical models 

should try to consider the real structure by combining variety of methods or 

iterative theories (e.g. molecular dynamics simulations at the nanoscale and 

continuum mechanics at the macroscale). 

 Size effects. 

 Anisotropy. Material/structure at each hierarchical level is anisotropic, a fact 

which is often neglected in models. 

 Interaction between different hierarchical levels. The load transfer from 

macroscale to nanoscale is very important. This is because the load acting on each 

hierarchical level determines its failure behavior. Thus, the behavior of a single 

level usually influences the overall performance. 

All in all, there is still a long way to go to understand the natural construction 

principles of natural materials, and interdisciplinary collaboration becomes essential to 

accelerate process. We strongly believe that the field of bio-mimetic materials is 

extremely promising and that it will possibly bring us to a material revolution. 
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