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PRIME NUMBERS BETWEEN SQUARES

DANILO BAZZANELLA

Abstract

A well known conjecture about the distribution of primes asserts that be-
tween two consecutive squares there is always at least one prime number. The
proof of this conjecture is out of reach at present, even under the assumption
of the Riemann Hypothesis. The aim of this paper is to provide a conditional
proof of the conjecture assuming a hypothesis about the behavior of Selberg’s
integral in short intervals.

Mathematical Subject Classification :
11N5 - Distribution of Primes
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1. INTRODUCTION.

A well known conjecture about the distribution of primes asserts that

Conjecture 1.
For every integer n, the interval [n2, (n+ 1)2] contains a prime.

The proof of this conjecture is quite out of reach at present, even under the
assumption of the Riemann Hypothesis (RH). On the other side it is not dif-
ficult to prove unconditionally that Conjecture 1 holds for almost all integers.

More precisely we can prove that, for every [n2, (n + 1)2] ⊂ [1, N ], we
have the expected number of primes with at most O(N1/4+ε) exceptions, and
O((lnN)2+ε) exceptions under the assumption of RH, see Bazzanella [1]. To
obtain some results in the direction of Conjecture 1 we need to assume hy-
potheses stronger than RH. Define

J(N, h) =
∫ N

1
(ϑ(x+ h)− ϑ(x)− h)2dx,

with ϑ(x) =
∑
p≤x log p and p a prime number, and consider the following

strong form of Montgomery’s pair correlation conjecture.

Conjecture 2. Let γ Euler’s constant. For any ε > 0 we have

J(N, h) = hN log(N/h)− (γ + log 2π)hN + o(hN) +O(N),

uniformly for 1 ≤ h ≤ N1−ε.

Goldston [5] deduced the validity of Conjecture 1 assuming Conjecture 2.
The basic idea of this paper is to connect the distribution of primes in intervals
of the type [n2, (n+1)2] to the exceptional set for the asymptotic formula of the
distribution of primes in short intervals, and using the properties of this set,
see Bazzanella [2] and Bazzanella and Perelli [3], to obtain a new conditional
proof of Conjecture 1.

With this in mind we state the following conjecture.

Conjecture 3.
J(N + Y, h)− J(N, h) = o(hN),

uniformly for 1 ≤ Y ≤ N1/2 and N1/2 � h� N1/2.

Assuming Conjecture 3 we can state our main theorem.

Theorem Assume Conjecture 3. The intervals of type [n2, (n+ 1)2] contain
the expected number of primes for n→∞.

We note that although Conjecture 3 is weaker than Conjecture 2, our Theo-
rem is stronger than the result of Goldston [5], which asserts only the existence
of a prime in intervals of type [n2, (n+ 1)2].
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2. BASIC LEMMA.

The proof of the Theorem is based on a result about the structure of the
exceptional set for the asymptotic formula

ψ(x+ h(x))− ψ(x) ∼ h(x) as x→∞. (1)

Let X be a large positive number, δ > 0, h(x) an increasing function such
that xε ≤ h(x) ≤ x for some ε > 0,

∆(x, h) = ψ(x+ h(x))− ψ(x)− h(x),

and
Eδ(X, h) = {X ≤ x ≤ 2X : |∆(x, h)| ≥ δh(x)}.

It is clear that (1) holds if and only if for every δ > 0 there exists X0(δ) such
that Eδ(X, h) = ∅ for X ≥ X0(δ). Hence for small δ > 0 and X tending to ∞
the set Eδ(X, h) contains the exceptions, if any, to the expected asymptotic
formula for the number of primes in short intervals. Moreover, we observe that

Eδ(X, h) ⊂ Eδ′(X, h) if 0 < δ′ < δ.

The lemma about the structure of the exceptional set is the following.

Lemma. Let 0 < θ < 1, h(x) increasing fuunction such that h(x) � xθ,
X be sufficiently large depending on the function h(x) and 0 < δ′ < δ with
δ − δ′ ≥ exp(−

√
logX). If x0 ∈ Eδ(X, h) then Eδ′(X, h) contains the interval

[x0 − ch(X), x0 + ch(X)] ∩ [X, 2X], where c = (δ − δ′)θ/5. In particular, if
Eδ(X, h) 6= ∅ then

|Eδ′(X, h)| �θ (δ − δ′)h(X).

Proof.
We will always assume that x and X are sufficiently large as prescribed

by the various statements, and ε > 0 is arbitrarily small and not necessar-
ily the same at each occurrence. From the Brun-Titchmarsh theorem, see
Montgomery-Vaughan [7], we have that

ψ(x+ y)− ψ(x) ≤ 21

10
y

log x

log y
(2)

for 10 ≤ y ≤ x. From (2) we easily see that

ψ(x+ y)− ψ(x) ≤ 9

4α
cY (3)

for X ≤ x ≤ 3X and 0 ≤ y ≤ cY , where 0 < α < 1, Xα−ε ≤ Y ≤ X and
α

5
exp(−

√
logX) ≤ c ≤ 1.

Let h(x) � xθ, x0 ∈ Eδ(X, h) and x ∈ [x0 − ch(X), x0 + ch(X)] ∩ [X, 2X],
where c satisfies the above restrictions. We have

|∆(x, h)| = |∆(x0, h) + ∆(x, h)−∆(x0, h)| ≥
|∆(x0, h)| − |ψ(x+ h(x))− ψ(x0 + h(x0))| − |ψ(x)− ψ(x0)| − |h(x)− h(x0)|.



5

Hence from (3) with α = θ we obtain

|∆(x, h)| ≥ δh(x)− 9

2θ
ch(X) +O(X2θ−1+ε) ≥ δh(x)− 5

θ
ch(X) ≥ δ′h(x),

by choosing c = (δ− δ′)θ/5, since h(x) is increasing. Hence x ∈ Eδ′(X, h) and
the Lemma follows.

3. PROOF OF THE THEOREM.

The prime number theorem implies that

ψ(x+ h(x))− ψ(x) ∼ h(x) as x→∞,
for h(x) sufficiently large with respect to x. Hence the expected number of
primes in intervals of type [n2, (n + 1)2] is (n + 1)2 − n2 ∼ 2n and then the
Theorem asserts that

ψ((n+ 1)2)− ψ(n2) ∼ 2n as n→∞. (4)

In order to prove the Theorem we assume that (4) does not hold. Then
there exist δ0 > 0 and a sequence xj →∞ with |∆(xj, h)| ≥ δ0h(xj) and

h(x) = 2
√
x+ 1. (5)

For xj sufficiently large, choose δ′ = δ0/2 in the Lemma. Hence

|∆(x, h)| ≥ δ0
2
h(x) ≥ δ0

2

√
xj for xj ≤ x ≤ xj +

δ0
20

√
xj.

From our assumption it follows that

x
3/2
j �

xj+Y∫
xj

|∆(x, h)|2dx, (6)

where

Y =
δ0
20

√
xj. (7)

From (5) we see that

h(x) = h(xj) +O(1) uniformly for xj ≤ x ≤ xj + Y,

and therefore∫ xj+Y

xj

|∆(x, h)|2dx =
∫ xj+Y

xj

|ψ(x+ h(xj))− ψ(x)− h(xj)|2dx+O(x
1/2
j ).

(8)

Recalling the definitions of the functions ψ(x) and ϑ(x) we find that∫ xj+Y

xj

|ψ(x+ h(xj))− ψ(x)− h(xj)|2dx =

∫ xj+Y

xj

|ϑ(x+ h(xj))− ϑ(x)− h(xj)|2dx+O(x
1/2
j log2 xj). (9)
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From (6), (8) and (9) we can conclude that

x
3/2
j �

xj+Y∫
xj

|ϑ(x+h(xj))−ϑ(x)−h(xj)|2dx = J(xj +Y, h(xj))−J(xj, h(xj)).

Assuming Conjecture 3 we get a contradiction, and then the Theorem follows.
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