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ABSTRACT
Speaker recognition systems attain their best accuracy when
trained with gender dependent features and tested with known
gender trials. In real applications, however, gender labels are
often not given. In this work we illustrate the design of a sys-
tem that does not make use of the gender labels both in train-
ing and in test, i.e. a completely Gender Independent (GI)
system. It relies on discriminative training, where the trials
are i–vector pairs, and the discrimination is between the hy-
pothesis that the pair of feature vectors in the trial belong to
the same speaker or to different speakers. We demonstrate
that this pairwise discriminative training can be interpreted as
a procedure that estimates the parameters of the best (second
order) approximation of the log–likelihood ratio score func-
tion, and that a pairwise SVM can be used for training a gen-
der independent system. Our results show that a pairwise GI
SVM, saving memory and execution time, achieves on the last
NIST evaluations state–of–the–art performance, comparable
to a Gender Dependent(GD) system.

Index Terms— Speaker Recognition, I-vector, PLDA,
Discriminative Training, SVM.

1. INTRODUCTION

State–of–the–art text–independent speaker recognition sys-
tems are often designed to achieve best performance when
the gender label is known both at training and test time. The
development of gender dependent systems is normal prac-
tice in NIST Speaker Recognition Evaluations [1], where
the sites participating in the evaluations have access to the
gender labels of the development and test segments. Gender
information, however, is not available in a number of real ap-
plications. The speaker gender can be estimated from the trial
data, but this preliminary classification is a potential source
of accuracy degradation. A gender independent system has
two benefits: a larger amount of training data can be used for
off-line estimation of the Universal Background Model, and
of channel and speaker sub-spaces, and its models require
less memory and computation during testing.

In [2] a solution for the Probabilistic Linear Discriminant
Analysis (PLDA) [3, 4] based oni–vectors [5] has been pro-

posed to deal with the gender dependent problem. It uses
a mixture of male and female PLDA models, but does not
need the gender information in testing to obtain a gender-
independent likelihood-ratio score. Two speaker detection
and two gender discrimination scores, one for the male and
one for the female models, are computed. These scores are
then appropriately combined also taking into account the gen-
der priors.

In this work we address the problem of designing a fully
gender independent speaker recognition system. Our system,
rather than using mixtures of generative models, relies instead
on discriminative training in i-vector space and ignores the
gender labels both in training and in test. In particular we
show that in the pairwise discriminative framework [6, 7],
derived from PLDA, it is possible to train a single GI SVM
system whose performance is comparable to that of gender
dependent SVM systems trained on the same data. More-
over, we give a new interpretation of pairwise discriminative
training which helps to explain why a pairwise SVM system
reaches the performance of state–of–the–art generative mod-
els both for GD and GI training.

The paper is organized as follows: Section 3 describes the
i-vectors and we briefly recall the main PLDA models that
have been proposed for GD and GI speaker recognition. Sec-
tion 4 presents the pairwise discriminative training approach,
focusing on a novel interpretation of this technique. Section
5 presents the experimental results, and in Section 6 we draw
our conclusions.

2. I-VECTORS

I-vectors [8] provide an elegant way of reducing large-
dimensional input data to a small-dimensional feature vector
while retaining most of the relevant information.

The main idea is that the speaker- and channel-dependent
Gaussian Mixture Model (GMM) supervectors can be mod-
eled as:

s = m+Tw (1)

wherem is the Universal Background Model (UBM) GMM
mean supervector,T is a low-rank matrix representingM
bases spanning subspace with important variability in the
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mean supervector space, andw is a latent variable of size
M with standard normal distribution. For an observation
X the i-vectorφ is the Maximum a Posteriori (MAP) point
estimate of the variablew, i.e. the meanwX of the posterior
distributionp(w|X ).

3. GENERATIVE MODELS

I-vectors have been able to achieve good performance by
means of simple LDA and cosine distance scoring [8]. Since
their introduction, the speaker recognition community has
focused on models for computing speaker verification scores
directly from these low–dimensional features. Generative
models based on Probabilistic Linear Discriminant Analysis
[3, 4] have been proposed that achieve better performance
than simple cosine scoring. In this section we briefly recall
the general PLDA framework and its application to gender
independent scoring [2].

3.1. PLDA

PLDA makes use of the following latent variable model for
i-vectors:

φ = m+ U1y + U2x+ ε

whereφ is an i-vector,y is a speaker factor,x a channel
factor, andε a residual noise. The model parameters are a
mean vectorm, a matrixU1 whose columns are referred to as
eigenvoices, and a matrixU2 whose columns are referred to
as eigenchannels. These matrices constrain the speaker and
channel factors to be low–dimensional. The generation of an
i-vector requires choosing a random speaker factory accord-
ing to speaker prior distributionp(y) and a random channel
factorx according to channel prior distributionp(x). The i-
vector is then the sum ofU1y + U2x and the residual noiseε
generated according to distribution priorp(ε).

The model parameters are estimated in order to maximize
the posterior probability for the observed i-vectors, assum-
ing that i-vectors extracted from the same speaker share the
same speaker factor, i.e. the same value for the latent vari-
abley. The conditional likelihoods of two i-vectors can then
be computed to obtain the speaker verification log–likelihood
ratio score between the “same–speaker” hypothesisHs and
“different–speaker” hypothesisHd:

s = log
P (φ1, φ2|Hs)

P (φ1, φ2|Hd)
(2)

whereφ1, φ2 are two i-vectors (or two sets of i-vectors) that
must be scored.

3.2. PLDA models

The simplest PLDA model (GPLDA) assumes a Gaussian dis-
tribution for the prior parameters. Under the Gaussian as-
sumption, the log-likelihood ratio in (2) can be expressed in

a closed form as a quadratic function of the i-vectors under
consideration [3]. However, in the same reference it is shown
that ML estimation of the PLDA parameters under Gaussian
assumption fails to produce accurate models for i-vectors.

Thus, heavy tailed distributions for the model priors have
been proposed leading to the Heavy-Tailed PLDA model,
which however, is computationally expensive.

A simpler approach keeps the Gaussian distribution as-
sumption, but incorporates a preprocessing step where the
vector dimensionality is further reduced by means of LDA,
and length normalization is then applied to the resulting pat-
terns [9]. The performance of the two approaches is compa-
rable, the latter being much faster both in training and testing.

The mixture of Gaussian PLDA models [2] is a recently
proposed application of the GPLDA approach for GI speaker
recognition. In this approach, two GD Gaussian PLDA mod-
els are trained using GI i–vectors, but a GI score is obtained
from the two GD models’ detection scores appropriately com-
bined with the gender discrimination scores and the gender
priors.

4. PAIRWISE DISCRIMINATIVE TRAINING

The PLDA framework has contributed to the development of
a new flavour of discriminative techniques for speaker verifi-
cation. Based on the two covariance PLDA formulation [10],
a framework for speaker trial verification based on SVM and
Logistic Regression has been introduced in [6, 7]. In the fol-
lowing we will refer to such a framework as pairwise dis-
criminative training, where a speaker trial is a pair of speech
segments, and the hypothesis to test is whether the two seg-
ments were spoken by the same speaker. In particular, we will
discuss and present results for the pairwise SVM approach,
where an SVM hyperplane is trained to directly answer this
question.

4.1. From PLDA to discriminative training

Under the assumption of Gaussian distribution for the priors
p(y), p(x) andp(ε), PLDA scoring can be reformulated as a
quadratic function of the pair of i–vectors in a given trial. The
formal expression of the log–likelihood ratio for the i–vector
pairφ1 andφ2 is given by

s(φ1, φ2) = φT
1 Λφ2 + φT

2 Λφ1 + φT
1 Γφ1 + φT

2 Γφ2

+ (φ1 + φ2)
T
c+ k (3)

wherec, k,Λ,Γ are functions of the parameters of the PLDA
model [6].

In [6] it has been shown that this expression can be refor-
mulated as a dot–product in a feature space expanded from the
original feature space consisting of i–vector pairs. As a con-
sequence, a pairwise SVM system has been proposed: a clas-
sifier able to discriminate directly between thesame speaker



class anddifferent speakers class. The feature vectors for the
SVM are pairs of i–vectors, and non–linear classification is
obtained through the mapping

ϕ(φ1, φ2) =



vec(φ1φ

T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

φ1 + φ2

1


 =



ϕΛ(φ1, φ2)
ϕΓ(φ1, φ2)
ϕc(φ1, φ2)
ϕk(φ1, φ2)


 (4)

wherevec is the operator that stacks the columns of a matrix
into a single vector.

4.2. A novel interpretation of pairwise SVM

The derivations in the previous section show that pairwise
SVM and GPLDA are closely related. However, in [6] we
showed that pairwise SVM achieves much better performance
than GPLDA, unless normalization of the i–vectors is per-
formed to better fit the Gaussian assumptions [9].

In this section we introduce a novel interpretation for pair-
wise SVM training which allows us to explain why this dis-
criminative model achieves the same performance as Heavy–
Tailed PLDA and why a GI system can be trained by simply
pooling male and female trials, without performance loss with
respect to a GD system.

Rather than making assumptions about the probability
distributions that models the i–vector generation process, we
focus directly on the log–likelihood ratio score as a function
of two i–vectors, defined in (2):

s = log
P (φ1, φ2|Hs)

P (φ1, φ2|Hd)
= s(φ1, φ2) = s(Φ) (5)

whereΦ = [φT
1 φ

T
2 ]

T
.

Under the assumption thats(Φ) admits a Taylor expan-
sion around a point̂Φ, we can writes(Φ) as

s(Φ) =
+∞∑
k=0

((
Φ− Φ̂

)
· ∇

)k

s|Φ̂
k!

(6)

where∇ is the differential operator∇ =
(

∂
∂Φ1

, . . . , ∂
∂Φd

)
.

If we consider the second order approximation of such
function around̂Φ = 0 we obtain

s(Φ) = s(Φ̂) + (Φ · ∇s|Φ̂) + ΦT (Hs|Φ̂)Φ (7)

whereHs is the Hessian of function s.
Assuming thats(φ1, φ2) is an analytic function symmet-

ric in its two arguments, that iss(φ1, φ2) = s(φ2, φ1), we can
set

Hs|Φ̂ =

[
Γ Λ
Λ Γ

]
(8)

By also settings(Φ̂) = k and∇s|Φ̂ = c we can rewrite (7)
as:

s(φ1, φ2) = k + (φ1 + φ2)
T
c+ φT

1 Λφ
T
2

+ φT
2 Λφ1 + φT

1 Γφ1 + φT
2 Γφ2 (9)

It is worth noting that the choice of̂Φ = 0 is not restric-
tive, since any other choice would lead to a formally equiv-
alent expression fors. The log–likelihood ratio given in (3)
for GPLDA and the one obtained in (9) by Taylor expansion
have exactly the same expression. Although the two expres-
sions are formally equivalent, an important difference has to
be highlighted. The parameters estimated in GPLDA are con-
strained, due to the positive definiteness constraints of the co-
variance matrices of the PLDA model. In pairwise discrimi-
native training, on the contrary, no parameter constraints are
imposed, except for the ones arising from the regularization
of the optimization function. Thus, pairwise discriminative
training can be interpreted as a procedure that estimates the
parameters of the best (second order) approximation of the
log–likelihood ratio score function.

4.3. GI Pairwise SVM

The interpretation of pairwise discriminative training illus-
trated in the previous section provides the rationale for a
straightforward approach to gender independent pairwise
SVM training. The generative models of Heavy-Tailed or
Mixtures of PLDA differ only in the formal expression of
their log–likelihood ratio score function. In pairwise SVM
training we directly optimize the best second order approx-
imation of such functions. A gender independent SVM can
therefore be implemented by training a single system with
pooled gender i–vectors, without even the need for gender
labels in the training stage. Some care might, however, be
required in case of very unbalanced male and female training
sets.

5. EXPERIMENTS

5.1. Experimental setup

In our experiments, we used cepstral features, extracted using
a 25 ms Hamming window. 19 Mel frequency cepstral coeffi-
cients together with log-energy were calculated every 10 ms.
This 20–dimensional feature vector was subjected to short
time mean and variance normalization using a 3 s sliding
window. Delta and double delta coefficients were then calcu-
lated using a 5–frame window giving 60-dimensional feature
vectors. Segmentation was based on the BUT Hungarian
phoneme recognizer and relative average energy threshold-
ing. Also, short segments were pruned out, after which the
speech segments were merged together.
One gender-independent UBM was represented as a full co-
variance 2048-component GMM. It was trained using LDC



Table 1. Results for the SRE2008 tests in terms of % EER
and minDCF08 with 400 and 600 dimension i–vectors

Gender Female Male
System EER minDCF08 EER % minDCF08

400 GD 2.65 % 0.081 1.26 0.053
400 PGI 2.69 % 0.077 1.34 0.056
400 GI 2.54 % 0.078 1.29 0.056

600 GD 2.64 % 0.078 1.74 0.055
600 PGI 2.59 % 0.076 1.42 0.052
600 GI 2.39 % 0.067 1.18 0.044

releases of NIST 2004–2005 SRE telephone data. Both gen-
der dependent and gender independent i–vector extractors
were trained on the following telephone data: NIST SRE
2004–2006, Switchboard II Phases 2 and 3, Switchboard
Cellular Parts 1 and 2, Fisher English Parts 1 and 2.

Both 400 and 600 dimensional i–vectors were extracted.

5.2. Pairwise SVM

We compare the performance of three types of pairwise SVM
systems: a fully GD system (GD), where both i–vector extrac-
tion and SVM training is gender dependent, a partially gen-
der independent system (PGI) where the i–vectors are gender
independent, whereas SVM is trained using GD trials, and fi-
nally a totally gender independent (GI) system, where both i–
vectors and SVM are trained without using gender labels. For
GD and PGI systems gender labels are provided at test time,
while for the GI system no gender information is used to score
trials. Pairwise SVMs are trained according to [6], applying
Within–Class Covariance Normalization to the i–vectors.

Results are reported in Tables 1 and 2 for the tel–tel
condition in the NIST 2008 and for the extended telephone
condition in the NIST 2010 evaluations, respectively, and for
400 and 600 dimension i–vectors. The recognition accuracy
is given in terms of Equal Error Rate (EER) and Minimum
Detection Cost Functions defined by NIST for SRE 2008
(minDCF08) and SRE 2010 (minDCF10) [1].

Considering the performance of the 400-dimension i–
vector systems on SRE08, the GI system has results com-
parable to the GD and to the partially gender independent
system (PGI). Surprising results were obtained with the 600-
dimension i–vector system on the same data: the minDCF is
similar to the 400 i–vector GI and the PGI systems, but the
EER is worse. The 600 GI system, on the contrary shows a
substantial improvement mostly for male speakers.

On the more meaningful extended telephone tests of
SRE10 the GI systems, both with 400 and 600 i–vectors,
are comparable to the PGI systems and not far from the GD
systems.

Overall these experiments show that the performance of
a fully gender independent pairwise discriminative SVM sys-
tem is comparable to the one of a more expensive GD model.

Table 2. EER and minDCFs for the SRE2010 tests with 400
and 600 dimension i–vectors

Gender Female Male
System EER DCF08 DCF10 EER DCF08 DCF10

400 GD 2.21 % 0.109 0.360 1.73 % 0.081 0.303
400 PGI 2.49 % 0.115 0.369 1.84 % 0.084 0.298
400 GI 2.51 % 0.115 0.382 1.82 % 0.087 0.309

600 GD 2.32 % 0.106 0.342 1.76 % 0.077 0.290
600 PGI 2.59 % 0.103 0.358 1.82 % 0.082 0.274
600 GI 2.51 % 0.108 0.383 1.80 % 0.078 0.307

6. CONCLUSIONS

A novel interpretation of pairwise discriminative training for
speaker recognition has been presented, based on the best sec-
ond order approximation of the the log-likelihood ratio score,
which explains why discriminative training achieves state–
of–the–art performance in speaker verification. A fully Gen-
der Independent discriminative system has been trained which
achieves, using GI i–vectors, the same performance of similar
Gender Dependent systems. Its accuracy is just slightly worse
than a fully GD system where i–vector extraction is also gen-
der dependent.
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