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Analysis of Large–Scale SVM Training

Algorithms for Language and Speaker

Recognition
Sandro Cumani and Pietro Laface

Abstract

This paper compares a set of large scale Support Vector Machine training algorithms for language

and speaker recognition tasks.

We analyze five approaches for training phonetic and acoustic SVM models for language recognition.

We compare the performance of these approaches as a functionof the training time required by each of

them to reach convergence, and we discuss their scalabilitytowards large corpora.

Two of these algorithms can be used in speaker recognition totrain a SVM that classifies pairs of

utterances as either belonging to the same speaker or to two different speakers.

Our results show that the accuracy of these algorithms is asymptotically equivalent, but they have

different behavior with respect to the time required to converge. Some of these algorithms not only scale

linearly with the training set size, but are also able to givetheir best results after just a few iterations.

State–of–the–art performance has been obtained in the female subset of the NIST 2010 Speaker Recog-

nition Evaluation extended core test using a single SVM system.

Index Terms

Support Vector Machines, Language recognition, Speaker recognition, Large–scale training.

I. I NTRODUCTION

Support Vector Machines (SVM) provide successful discriminative models in the field of language and

speaker recognition. The main limitation of SVMs comes from their demands in terms of training time

The authors are with the Dipartimento di Automatica e Informatica, Politecnicodi Torino, 10143 Torino, Italy (e-mail:
sandro.cumani@polito.it, pietro.laface@polito.it).
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and memory requirements. Fast algorithms for training SVMs have been proposed, often relying on the

so–called kernel trick [1], where a kernel matrix is computed and loaded in main memory. The kernel

trick not only allows speeding up the computation required to find the solution of the SVM objective

function but also makes possible nonlinear classification invery high dimension spaces.

This approach, however, does not scale well because the required amount of memory grows quadrat-

ically with the number of training samples. Since several real–world classification tasks, including

speaker and language recognition, are performed on large datasets, the allocation of the kernel matrix in

main memory becomes unfeasible even for large memory computers. We are thus interested in training

approaches with time complexity and memory occupation scaling linearly with the number of training

patterns.

In this paper we analyze a set of SVM training algorithms suitable for training large corpora using as

testbeds a language recognition task and a speaker recognition task. In particular, we compare the per-

formance of several algorithms in terms of training time, scalability towards large corpora and possibility

of multi-threaded implementation.

The algorithms themselves are not strictly novel, and their proposers have performed comparative

analyses on large benchmarks [2], [3]. However, this work offers several original contributions of interest

to the speaker and language recognition community. In particular, it is the first report, to our knowledge,

that is devoted to an in-depth evaluation of large-scale SVM training algorithms both for closed–set

(language) and open-set (speaker) classification tasks, using standard corpora, state–of–the–art algorithms

and systems, and considering largely different acoustic and phonetic models.

An extension to the Bundle Methods algorithm [3] has been devised to provide the dual solution to the

SVM problem, which is needed by the pushed–GMM approach in language recognition [4].

Finally, the most interesting training algorithms have beenimplemented from scratch and compared with

their multi–threaded or multi–process implementation, tailored to the specific task for achieving the fastest

training time.

The paper is organized as follows: Section II gives a short overview of the SVM classifier. Section

III and IV describe our language and speaker recognition models, respectively, highlighting the large

dimensions of the features and of the corpora that have been used. Section V illustrates five different

approaches suitable to large scale SVM training. The details of their implementation is given in Section

VI. The experimental results are presented and commented in Section VII, and conclusions are drawn in

Section VIII.
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II. SUPPORTVECTORMACHINES

A Support Vector Machine [5] is a binary classifier which estimates the hyperplane that best discrimi-

nates two given classes of patterns according to a maximum separation margin criterion. The separation

hyperplane is obtained by solving an unconstrainedregularized risk minimizationproblem

min
w

[
1

2
‖w‖2 + C ·

n∑

i=1

l (w,xi, yi)

]
(1)

wherexi ∈ R
d denotes a (d–dimensional) training pattern with associated labelyi ∈ {−1,+1}. This

objective function is the sum of two terms. The second term in (1) is the empirical risk evaluated on the

training set and weighted by parameterC. The first term is a regularization contribution, given by the

squaredL2 norm of the separating hyperplanew, related to the generalization capability of the model

[5].

The standard loss function for the SVM problem, which gives themaximum soft–margin classifier, is

the so–called hinge (L1) loss function

lL1 = max(0, 1− yiw
Txi) (2)

In the following we will focus on L1–SVMs only, however, different classifiers can be obtained by

changing the loss function, for example the squared soft–margin SVM defined by the squared hinge loss

(L2) function

lL2 = max (0, 1− yiw
Txi)

2
(3)

or a classifier based on regularized logistic regression, characterized by the loss function

llog = log
(
1 + e−yiw

T
xi

)
(4)

From (1) and (2) the standardprimal SVM formulation is

w∗ = argmin
w

1

2
wTw + C ·

n∑

i=1

max(0, 1− yiw
Txi) (5)

While it is possible to solve the SVM optimization problem in its primal formulation, many approaches

prefer to solve the dual problem by estimating the Lagrange multipliersα∗ = (α∗
1, . . . , α

∗
n)

T that minimize
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the objective function

min
α

f(α) =
1

2
α

THα− eTα (6)

subject to 0 ≤ αi ≤ C ∀i = 1, . . . , n

wheren is the number of training patterns,e is a vector of ones andH is the matrix of dot–products

Hij = yiyjx
T
i xj .

Solving the dual problem looking for the Lagrange multipliersα
∗ allows the class separation hyperplane

to be expressed in terms of a linear combination of the training vectors as

w∗ =

n∑

i=1

α∗
i yixi (7)

This formulation shows that the separation hyperplane is a function of a subset of training patterns,

namely the ones associated with non null Lagrange multipliers: the so–called Support Vectors.

The classification score of a given pattern is obtained by its dot–product with the separation hyper-

plane, but it can also be evaluated, as shown in (7), from its dot–products with the set of the support

vectors. Non–linear classification can be performed, therefore, through linear classification in a higher–

dimensional space described by the mappingΦ(xi), provided that we are able to evaluate the dot–products

Φ(xi)
TΦ(xj) in the mapped feature space. No explicit expansion of training patterns is actually necessary

because the dual problem (6) can be solved by replacing dot–productsxTi xj with kernel evaluations

Φ(xi)
TΦ(xj). This can be accomplished by replacing the entries of matrixH with the entries of the

kernel matrixK, with Kij = Φ(xi)
TΦ(xj) = K(xi, xj), multiplied by the corresponding element of the

matrix of labelsYij = yiyj (i.e. Hij = Kijyiyj). Care has to be taken in the definition of mappingΦ(xi)

so that kernelK satisfies Mercer’s condition.

III. L ANGUAGE RECOGNITION MODELS

In this section we summarize two state–of–the art language recognition approaches that stem from the

works [6], [7], and [8]. The task is to verify an unknown utterance according to its language given training

utterances for a specified set of possible target languages. Models are estimated for each language, and

a test utterance is scored against each of these models.

State–of–the–art systems rely on two main approaches. In thephonetic approach, the language models

are estimated collecting statistics of the occurrence of sequences ofn phones (n–grams) obtained by

running one or more phonetic decoders [6], [8], [9]. The acoustic approach relies, instead, on Gaussian
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Mixture Models of acoustic features (GMMs) [7], [10], discriminatively trained [11], or used in combi-

nation with SVM classifiers as in [12], [13], [4]. In the latter approach, the models are trained by means

of SVMs estimating, for each language, the hyperplane that separates the patterns of the target language

from the pooled patterns of all the other (non–target) languages.

Training these models requires to deal with large features,and large–scale datasets as introduced in

the next two subsections and detailed in Section VII.

A. Phonetic models

In the phonetic approach, a phonetic decoder estimates the most likely phone transcription or a lattice

of phone hypotheses, organized in a graph where each hypothesis has associated its likelihood and time

boundaries. The decoder language is not necessarily included in the set of the target languages. The

estimated occurrence of the phonen–grams can be obtained from the 1–best transcription or fromthe

lattice phone hypotheses. An utterance is represented by stacking into a vector the estimated frequency

of the differentn–grams appearing in the utterance.

Since linear classification of unnormalizedn–gram counts does not yield good recognition accuracy, a

suitable linear kernel has to be used for classification. Manydifferent kernels have been proposed in the

last years, the most popular being the Term Frequency Log Likelihood Ratio (TFLLR) kernel [14], [4],

which approximates a log–likelihood ratio, computed from n–gram statistics, between the target and the

background set. Since TFLLR kernel is linear, it can be expressed as a normalization ofn–gram features

x̂i =

√
1

fi
xi, fi =

1

n

n∑

k=1

xi
k (8)

where superscripti denotes thei–th component of patternx.

In the experiments reported in this paper, a single phoneticdecoder has been used, i.e. the Loquendo–

ASR recognizer for Italian language [15], which generates a lattice of hypotheses. We estimaten–gram

statistics up to the third order from these hypotheses leading to a 44135–dimensional feature space. Not

only the patterns have high dimensions, but also the size of the corpora is constantly increasing with

more demanding applications or variety of languages and recording conditions. As detailed in Section

VII, in our experiments we have 20543 utterances for training the phonetic models of 23 languages.

B. Acoustic models

The acoustic models that we have trained combine generative GMM models with SVMs, in the so–

called pushed–GMM approach [13], [4], where the discriminative GMM models are derived from the
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generative ones, by exploiting the information provided bythe non–null Lagrange multipliers obtained

by training a SVM. In particular, a probabilistic model of frame–level acoustic features is built based on

GMMs. For each utterance, the distribution of acoustic features is estimated by Maximum A Posteriori

adaptation from a common Universal Background Model (UBM) using a low relevance factor [7]. Starting

from these generative models, a single vector representation for each utterance is obtained by stacking

the GMM mean vectors into thesupervectorg

g =
[
µ
T
1 µ

T
2 . . .µT

m

]T
(9)

whereµi represents the mean of thei-th component of the mixture.

A possible linear kernel for GMM supervectors is the KL kernel [16]

K(ga,gb) =

m∑

i=1

(√
ciΣ

− 1

2

i µai

)T (√
ciΣ

− 1

2

i µbi

)
(10)

whereci andΣi are the weight and the covariance matrix of thei–th Gaussian. This kernel is derived

from the Kullback–Leibler divergence between two GMMs and adapted in order to satisfy Mercer’s

condition.

While the class separation hyperplane could be used to perform classification of unknown utterances as

in the phonetic system approach (GMM–SVM) [12], better results have been obtained by combining the

generative and the discriminative systems [4]. In particular, SVM classification is first performed using

the GMM-SVM approach, then two GMMs are created for each target language: one for the language

g+ and the other for the non–target languages (anti–model)g− according to

g+ =
1∑

i|yi>0 αi

∑

i|yi>0

αigi (11)

g− =
1∑

i|yi<0 αi

∑

i|yi<0

αigi (12)

wheregi is the GMM of thei–th utterance of the target language. Thus, the target model is a weighted

combination of the GMMs belonging to the target language, and the weights are the Lagrange multipliers

α obtained from the dual solution of the SVM problem. The target language anti–model is a weighted

combination of the GMMs of the non–target languages utterances.

It is worth noting that these weights are needed even if we solve the SVM optimization in its primal

formulation.

In our experiments, detailed in Section VII-A, 2048–Gaussians mixtures are used for the UBM and
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the language GMMs, while the feature space is 56–dimensional. In this configuration a supervector has

114688 components, and the training dataset includes the same 20543 utterances provided for training

the phonetic system.

IV. SPEAKER RECOGNITION MODELS

In speaker recognition the task is to verify whether the identity of the speaker in a given test utterance

corresponds to a target speaker, given one or more enrollment utterances for the target speaker. Several

successful approaches have been proposed in the last years based on GMM supervectors [7], [17], [18]. A

discriminative approach using GMM supervectors as features for training SVMs has also been proposed

for this task in [16]. The problem with this paradigm is that itestimates a speaker model using the few

utterances (often just one) that are usually available for the target speaker.

In the following we outline an alternative discriminative approach that tries to overcome this problem

by changing the recognition paradigm. Rather than modelingthe speaker classes, a binary classifier is

trained to classify a pair of utterances as either belongingto the same speaker or to two different speakers

[19], [20], [21].

This approach has been made feasible by a recently introducedcompact representation of spoken

utterances, the i–vectors [22], [23]. An i–vector is a low–dimensional (few hundred components) rep-

resentation of a spoken utterance, which can be estimated using the same techniques introduced for

Joint Factor Analysis [18]. These features, much smaller than supervectors, have made possible training

Probabilistic Linear Discriminant Analysis (PLDA) generativemodels [24], [25], leading to state–of–

the–art speaker recognition systems. The goal of such systems is to model the underlying distribution

of the speaker and of the channel components of the i–vectorsin a Bayesian framework. From these

distributions it is possible to evaluate the likelihood ratio between the “same speaker” hypothesis and

“different speakers” hypothesis for a pair of i–vectors.

The same paradigm can be used to train discriminative systemswhere the observation patterns are pairs

of i–vectors. In this approach a non–linear SVM model is builtto discriminate between ”same speaker

pair“ (”target“ class) and ”different speaker pair“ (”non–target“ class). The feature expansion is derived

from the PLDA model. The evaluation of log–likelihood ratios between the same–speaker (Hs) and

different–speaker (Hd) hypotheses can be expressed, for Gaussian PLDA models, as a quadratic form of
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the i–vector pair(φ1, φ2) as

s(φ1, φ2) = log
P (φ1, φ2|Hs)

P (φ1, φ2|Hd)

= φT
1 Λφ2 + φT

2 Λφ1 + φT
1 Γφ1 + φT

2 Γφ2 +

(φ1 + φ2)
T
c+ k (13)

whereΛ, Γ, c andk are directly derived from PLDA model parameters estimated on atraining set. The

same parameters can be interpreted as the components of a linear hyperplane in a higher dimensional

feature space [20], [21], by stacking the PLDA parameters in a vector as

w =




vec(Λ)

vec(Γ)

c

k




(14)

wherevec(A) is the operator which stacks the columns of matrixA into a column vector. The non–linear

feature mapping of the i–vector pair(φ1, φ2) given by

Φ(φ1, φ2) =




vec(φ1φ
T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

φ1 + φ2

1




(15)

allows the pair scores(φ1, φ2) to be computed as a dot–product between the hyperplanew and the

expanded patternΦ(φ1, φ2),

s(φ1, φ2) = wTΦ(φ1, φ2) (16)

The pairwise SVM approach estimates the parameterw in order to minimize the SVM loss function.

In this approach the number of pairs grows quadratically with the number of the training i–vectors.

This would make unmanageable training a SVM due to memory and time constraints. Moreover, the

dimensionality of the expanded feature space grows quadratically with the size of the i–vectors. Thus

the solution cannot rely on the explicit evaluation of the feature mapping to generate the training dataset

for the SVM, because the database size would grow asO(n2d2), whered is the i–vector dimension.

Although the i–vector dimension is of the order of hundreds,the total memory required would be really

huge because the number of training i–vectorsn easily reaches tens of thousands. Online feature mapping
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would be, instead, computationally expensive because it has to be performed for each iteration of the

training algorithm. In [20] a memory and time efficient approach to solve this problem has been described,

which allows the SVM loss function and its gradient to be computed inO(n2d).

In the next section we present several SVM training algorithms for these large–scale language and

speaker recognition tasks, whereas in Sections VI and VII we will analyze their feasibility, implementation

details, and performance.

V. L ARGE–SCALE SUPPORTVECTORMACHINES

The ever–increasing size of the training corpora for real–world classification tasks makes it impractical

to solve the SVM problem resorting to medium–scale techniques which assume that the entire dataset

can be stored in main memory. We have shown in the previous sections that a large number of high

dimensional patterns are needed to train speaker and language recognition systems. We are thus interested

in SVM training approaches with time complexity scaling linearly with the number of the training patterns,

and with reasonable memory requirements.

Many algorithms have been proposed to handle SVM optimization for large–scale problems, most of

them are efficient only forlinear kernel SVMs. In this section we present five algorithms, focusing on

their complexity and possible speedup by means of threaded implementations.

A. Dual solvers

We first analyze three dual SVM problem solvers, whereas in Section V-B we will describe two

primal solvers and the steps to derive their corresponding dual solutions. In the following,C denotes the

regularization parameter of the SVM andε denotes the optimization accuracy.

1) SVMLight: A popular “fast” linear–space SVM solver is SVMLight [26]. The performance of the

models trained with this solver are our reference in this work. SVMLight decomposes the SVM problem into

a set of subproblems and iteratively optimizes such subproblems. Its memory occupation scales linearly

with the number of training patterns and of support vectors.Since SVMLight solves the dual problem it

provides the Lagrange multipliers needed in language recognition by the pushed–GMM approach.

The main limitation of this algorithm comes from its time complexity, which has been empirically

shown to beO(n2d). If memory is not a constraint, a fast implementation of SVMLight can be obtained

by caching all the kernel evaluations. Of course, the kernelmatrix has a size, and thus a computational

cost, which still grows quadratically with the training setsize.
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2) Dual Coordinate Descent:The dual problem is solved in [2] by means of a coordinate descent

approach, referred to in the following as Dual Coordinate Descent Method (DCDM). The multivariate

problem is split into a sequence of univariate optimizations which are iteratively solved until convergence

to the optimal multivariate solution is attained. Assumingthat a sub–optimal solutionα of the dual

problem (6) is known, thei–th component of the optimal solution, given all the other coordinates, can

be evaluated by solving

min
h

f(α+ hei) subject to0 ≤ αi + h ≤ C (17)

The objective function is quadratic inh

f(α+ hei) =
1

2
Hiih

2 +∇if(α) +K (18)

for a given constantK. The minimization of this function leads to the update rule [2], [27]

αi ← min

[
max

(
αi −

∇if(α)

Hii
, 0

)
, C

]
(19)

where the gradient∇if(α) is

∇if(α) =

n∑

j=1

Hijαj − 1 (20)

The computation of the gradient is in general expensive, but for linear SVMs simplifies as

∇if(α) = yiw
Txi − 1 (21)

The cost of evaluatingw givenα would be linear with the size of the training set. However, bykeeping

the previous value ofw it can be updated according to

w← w + (αi − αold
i )yixi (22)

whereαold
i refers to the value the parameterαi had before being updated.

Since DCDM solves the dual formulation of the SVM problem, it directly provides the Lagrange

multipliers required by the pushed–GMM approach.

The time complexity of the algorithm isO
(
nd log

(
1
ε

))
. DCDM is very fast, however it cannot take

advantage of a distributed environment because the solution is updated after each pattern is processed.

3) SVMPerf: One of the most effective linear–time SVM solver is SVMPerf [28], [29], [30]. Though

the package provides different algorithms for solving the SVM problem, its main innovation is the

Cutting–Plane Subspace–Pursuit (CPSP) approach [30]. Cutting–Plane algorithms are based on a different
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formulation of the primal problem (5)

min
w,ξ

1

2
wTw + Cξ

subject to ∀ŷ1 . . . ŷn ∈ {−1,+1} : (23)

1

2
wT

[
n∑

i=1

(yixi − ŷixi)

]
≥

n∑

i=1

∆(yi, ŷi)− ξ

where∆(y, ŷ) is the zero–one loss function, which takes value 1 when its arguments are equal, and value

0 otherwise.

The solution is found by iteratively building a working set ofconstraints over which a Quadratic Problem

(QP) is solved. An accuracy ofε can be obtained using at mostO
(
1
ε

)
constraints. The CPSP algorithm

modifies the traditional Cutting–Plane algorithm by iteratively building a set ofbasis vectors{b1, . . .bk}
whose span is approximatively the sub–space where the optimal solution lies. The approximate solution

is thus given by

w∗ ≈
k∑

i=1

βibi (24)

The rationale for the introduction of the basis vectors is to reduce the number of kernel evaluations for

non–linear classification. Since basis vectors are associated with the Cutting Plane constraints, which are

supposed to be a constant number with respect to the trainingset, the hyperplane can be represented

similarly to (7) but using a much smaller set of patterns. It is worth noting that since the basis vectors

do not belong to the training set, it is not possible to exploit the possible speedup coming from the

pre-computation of the kernel matrix. Moreover, computingthe kernel matrix is unfeasible for large

datasets.

Due to the nature of the algorithm, it can be easily modified to be executed in a distributed environment.

B. Primal solvers

In this section we describe two primal solvers and the steps to derive their corresponding dual solutions,

which are necessary for the pushed–GMM approach in languagerecognition.

1) Pegasos:The first solver is based on gradient descent in the primal solution space. Standard

gradient descent techniques try to reach the minimum of the objective function by iteratively moving an

approximate solution along the direction that gives the greatest decrease of the objective function. For
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the L1–loss function this leads to the update rule

wt+1 = wt − ηt

[
wt + C

n∑

i=1

∇w max(0, 1− yiw
Txi)|wt

]
(25)

whereηt is the learning rate at iterationt. The selection of the learning rate values is crucial for fast

convergence of the algorithm. Since the L1–loss function is not completely differentiable but still convex,

a subgradientof the loss function can be computed as

∇w max(0, 1− yiw
Txi) =




−yi if yiw

Txi ≤ 1

0 otherwise
(26)

Stochastic Gradient Descent (SGD) approximates the gradientcomputation step by evaluating the

subgradient of the objective function on a pattern (or on a small subset of patterns)

wt+1 = wt − ηt [wt + nC∇wl(w,xit , yit)|wt
] (27)

whereit is chosen randomly for each iteration.

Pegasos [31] combines SGD for the SVM L1–loss function with a projection step ensuring faster

convergence to the optimal solution. A set of training patternsAt is randomly chosen at each iteration.

The subgradient of the objective function is estimated from this subset as

∇t = wt −
nC

|At|
∑

i|xi∈At

yiw
T
xi<1

yixi (28)

and the hyperplane is updated by

wt+ 1

2

= wt − ηt∇t (29)

The optimal SVM solution is bounded by‖w‖ ≤
√
nC [31]. Thus, the current solution is projected

onto a ball of radius
√
nC by scalingwt+1/2 according to

st = min

{
1,

√
nC

‖wt+1/2‖

}
(30)

wt+1 = stwt+1/2 (31)

This projection step, combined with a fast–decaying learning rate, allows bounding toO
(
1
ε

)
the average

number of iterations required to achieveε optimization accuracy .

Since Pegasos solves the primal formulation of the SVM problem it does not produce the Lagrange
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multipliers, which are necessary in the pushed–GMM approach. In [31] the authors propose an extension

of their algorithm that allows the hyperplane to be estimated as a linear combination of training patterns

w =
∑

i αixi where the set ofα’s are iteratively obtained as

αt+1 =

[
αt − ηt

(
αt +

nC

|At|
χi
t

)
st

]
(32)

with

χi
t =





1 if xi ∈ At

0 if xi /∈ At

(33)

Since Pegasos is based on stochastic gradient descent, which performs sequential updates, it cannot take

advantage of a distributed environment.

2) Bundle Methods:Bundle methods approximate a convex function by means of a set of tangent

hyperplanes (subgradients) and solve the simpler optimization problem on the approximated function.

The approach is similar to SVMPerf, where a small and incremental subset of constraints is built until

the solution approximates the optimal solution up to a givenerror. Bundle Methods for Regularized

Risk Minimization (BMRM) [32], [3] offer a general and easily extensible framework to general risk

regularization problems, of which SVM is an example. In particular, an incremental working set of

approximate solutions{w0,w1,w2, . . . } is built by defining, at each iteration, the set of hyperplanes

which are tangent to the objective function in the working set points (starting fromw0 = 0)

ft(w) = lemp(wt) +∇lemp(wt) · (w −wt) (34)

where lemp(w) =
∑n

i=1 l(w,xi, yi) is the empirical loss. At each iteration, a new working pointis

selected as the minimizer of the approximated function

wt+1 = argmin
w

[
1

2
‖w‖2 + C ·max

(
0, max

t′≤t+1
ft′ (w)

)]
(35)

In [32] it is shown that this problem is equivalent to the dualquadratic problem

min
β

Di(β) = C
2 β

TATAβ − βTb (36)

subject to β ≥ 0, eTβ ≤ 1

whereA is the matrix[a1a2 . . . ai] of gradientsat+1 = ∇lemp(wt) andb is the vector[b1b2 . . . bi]
T of
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offsetsbt+1 = lemp(wt)− aTt+1wt, and the new solution is obtained as

wt+1 = −CAβ (37)

This quadratic problem is not expensive because its complexity does not increase with the size of the

training dataset, but with the number of iterations only.

The BMRM algorithm does not directly provide the Lagrange multipliers for the dual SVM problem.

Thus, we devised a method for evaluating an approximation of theα values.

The L1 loss function can be rewritten to make explicit its dependency on the dot product betweenw

and a given patternx as

l(w,x, y) = l̃(wTx, y) (38)

and its gradient with respect tow as

∇wl(w,x, y) =
∂l̃(wTx, y)

∂wTx
x (39)

Defining an arraỹat = [l̃1 l̃2 . . . l̃n]
T

, wherel̃i =
∂l̃(wT

xi,yi)
∂wTx

, we can expressat as

at = Xãt (40)

whereX is the complete set of training patterns represented as a matrix. Matrix A in (36) can then be

evaluated asA = XÃ with Ã = [ã1ã2 . . . ãt], and (37) can be rewritten as

wt+1 = −CXÃβ (41)

Settingα = −CY −1Ãβ, whereY is the diagonal matrix of the target labelsYii = yi, allows obtaining the

separation hyperplane in terms of a linear combination of the training patternsw = XYα =
∑

i yixiαi

as in (7).

The BMRM algorithm converges to its optimal solution up to theaccuracyε in O
(
1
ε

)
iterations.

Usually the number of required iterations is small, thus thetime required to solve the sub–problems (36)

can be neglected, and the global complexity of the algorithmis O
(
nd
ε

)
.

Similarly to SVMPerf, BMRM incrementally builds a working set of approximate solutions, thus its

algorithm can be easily modified to run in a distributed environment.
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VI. SVM ALGORITHMS IMPLEMENTATION

SVM training for language and speaker recognition was performed using tailored or new implemen-

tations of the algorithms presented in the previous section.

The DCDM, BMRM and Pegasos algorithms have been implemented from scratch using a Python/C

framework, where the modules requiring expensive computations are either written in C language or are

evaluated by means of fast and parallelized NumPy/BLAS functions [33]. Due to the overhead that is

introduced by the mixed Python/C framework, training is performed in “bunch” mode, i.e. by loading

into main memory and processing a fraction of the dataset. Inparticular, Python prepares and loads the

patterns, while the computation intensive tasks are performed by fast external libraries (NumPy/BLAS)

and C code. Thus large bunches minimize the communication overhead between Python and the library

routines. Memory occupation of our algorithms is essentially determined by the size of the bunches,

which can be limited by the user, possibly to a single patternin a different implementation.

A. Algorithms for language recognition

For language recognition, all the algorithms, with the exception of SVMLight, have been implemented

to jointly train all the language models in parallel in orderto minimize the disk accesses. SVMLight

has been modified to effectively compute by means of multi threaded NumPy/BLAS libraries the kernel

matrix, and to cache it in memory. Thus, all the language models share the same kernel matrix computed

just once. This approach is faster than caching kernel computations on the fly.

DCDM has been implemented as illustrated in [2]. The shrinking technique [26] has been exploited

to further speedup the execution time. Shrinking tries to reduce the quadratic problem size by ignoring

a subset of the bounded variables, thus reducing the number of dot products that have to be computed,

with no impact on the classification performance.

Since all language models are trained simultaneously, a multi–threaded implementation (referred in the

following as MTDCDM) has also been developed, where each thread is devoted to training a single

language model. However, the obtained speedup is not relevant due to the sequential nature of the

algorithm.

The BMRM algorithm has been implemented as described in Section V-B2. The quadratic problem

(36) is solved by means of the CVXOPT Python solver [34]. The shrinking technique was not adopted

in the BMRM algorithm, which solves the problem in its primalformulation, thus each iteration of the

algorithm performs a full scan of the training dataset. Theα’s needed for the pushed–GMM approach

have been evaluated as outlined in Section V-B2.
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Since, at each iteration, the gradient computations can be performed in parallel, a distributed version

of BMRM has been implemented (referred to as MPBMRM in the following) where the dataset is split

among different processes, and each process exploits the multi–threading capabilities of the NumPy/BLAS

functions.

Pegasos has been slightly modified with respect to the algorithm presented in Section V-B1. In order to

reduce the number of accesses to secondary memory, trainingis performed in epochs. At the beginning

of each epoch a block of randomly selected training patternsis loaded in memory, and the classification

hyperplane update is performed using only the patterns belonging to this subset. Due to its sequential

update rule we did not implement a multi–threaded version ofPegasos.

Finally, SVMPerf was modified to fit the format of the other implementations and toread the training

patterns on demand rather than loading all the dataset in main memory. A multi–threaded implementation

(referred to as MTSVMPerf in the following) was obtained by modifying the original code with the

OpenMP [35] instructions that allow core computations to beparallelized.

B. Algorithms for speaker recognition

The feasibility of training large datasets using the discriminative i–vector pairs approach for speaker

recognition described in Section IV requires some additional considerations. Since patterns are pairs of

i–vectors, the number of the training trials grows asO(n2). The feature mapping described in Section IV

produces mapped features havingO(d2) components, thus the global dataset size isO(n2d2). Caching

the complete kernel matrix is impractical even for relatively small sized datasets because it would require

O(n4) memory.

SVM training of the i–vector pairs by means of SVMLight is not viable because, as shown in Section

V-A1, its time complexity isO(n4d).

In DCDM the hyperplane is updated for each pattern, thus it requires either the complete dataset of

mapped features (O(n2d2) memory) or online feature mapping (O(n2d2) operations for each iteration).

Since in our experimentsd = 400 andn is approximately 20000, these dual algorithms cannot be used

to train the models for our discriminative approach.

Training is feasible, instead, by using primal solvers suchas BMRM and Pegasos because it is possible

to efficiently evaluate the loss function and its gradient with respect tow over appropriate subsets of

trials. Given a subsetA including m training i–vectors, the loss function and its gradient withrespect

to w over all trials, consisting of pairs of i–vectors inA, can be evaluated inO(m2d+md2) using the
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strategy presented in [20] without the need to compute the mapping of the i–vectors. For BMRM, the

setA includes all the training i–vectors.

Pegasos has been slightly modified: instead of randomly picking a bunch of trials among all possible

trials, at each iteration all the i–vector instances of a setof random speakers are selected to build the set

A, and the hyperplane is adapted according to the approximation of the gradient evaluated on this set of

trials only. This reduces the risk of random selecting “different speaker pair” trials only.

Due to the small size of the i–vectors, the dataset of training utterance can easily be loaded in main

memory. The evaluation of loss functions and gradients in these algorithms requires matrix–by–matrix

multiplications of large matrices (n ∗ n), however it is not necessary to store the complete matricesin

main memory because the computations can be performed through block decomposition of the matrices.

As reported in the next section, using this discriminative approach we reach state–of–the–art results

for the NIST SRE 2010 extended core condition [36].

Finally, SVMPerf complexity theoretically grows linearly with the number ofpatterns, and a solution

similar to the BMRM one can be devised for online evaluation of kernels (dot–products with the mapped

basis vectors). However, we did not implemented a solution similar to the BMRM one because SVMPerf

does not allow us to easily control class balancing without replicating copies of the i–vectors, which

would further increase the size of the dataset.

VII. E XPERIMENTS

In this section we compare the performance of the described algorithms by training language models

for the closed–set NIST Language Recognition Evaluation 2009 (LRE-09) [37] and for the extended tel-

tel condition (condition 5) of the NIST Speaker Recognition Evaluation 2010 (SRE-10) [36] tasks. The

reported results for the speaker recognition task refer to the more difficult subset of the female speakers.

A. Language recognition task

The LRE-09 core condition task consists in the detection of the language of given test segments among

a set of 23 possible target languages including accented languages such as American English and Indian

English. Three test conditions have been defined according to the nominal utterance duration (30s, 10s

and 3s). Test data consist of both Conversational TelephoneSpeech (CTS) and telephone bandwidth

broadcast radio speech segments. Achieving state–of–the–art recognition performance would require the

combination of different acoustic and phonetic systems, possibly trained taking into account that the

recordings were collected through two different channels (CTS and narrowband broadcast). However,
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since the aim of this work is to compare the relative performance of the SVM classifiers, we have trained

just a single–decoder channel–independent phonetic system and a single channel–independent acoustic

system.

The training set for the acoustic system consists of 17521 utterances taken from the Callfriend cor-

pus, the corpora provided by NIST for the 2003, 2005 and 2007 Language Recognition Evaluations,

the Russian through switched telephone network, the OGI corpus, and the Voice of America corpora.

References for these data and the details on the selection process for training patterns are given in [38].

In our experiments we use 2048–Gaussians mixtures for the UBM and the language GMMs. The acoustic

features are 7 Mel frequency cepstral coefficients and their 7–1–3–7 Shifted Delta (SDC) coefficients

[10], 56 acoustic features in total, compensated for nuisances in the feature domain as in [39].

The phonetic system is trained using the same dataset, though2005 LRE utterances were split into

chunks of approximately 30s. This results in 20543 training utterances.

The first issue in training SVM classifiers is class balancing. It can be faced by appropriately filtering

the dataset, or by replicating the patterns of the less populated classes, or even better, by giving different

weights to the loss function of patterns belonging to different classes. The first method is not attractive

because it reduces the amount of training patterns. The second approach increases the secondary memory

accesses, and makes difficult jointly training the differentlanguage models because language dependent

datasets have to be generated from the full dataset. We trained all the SVMs using the third method

of class balancing, except for SVMPerf, which does not provide a simple and direct way to apply this

technique.

The second issue is the selection of an appropriate value for the regularization parameterC. In our

experiments it has been set according to the default value provided by our reference solver SVMLight.

It is estimated asC =
(

1
n

∑n
i=1

(
xT
i xi

) 1

2

)−2
and has proven to produce good models and reasonable

results in a large variety of experiments.

System performance is presented in terms of Equal Error Rate (EER)and average cost Cavg as defined

by NIST [37]. Scores are normalized by means of a Gaussian back–end trained on a held–out set [40].

The performance is given as a function of time by testing models obtained after a variable number of

iterations. Timings were evaluated on a HP DS160G5 server equipped with two Xeon X5472 3 GHz

quad-core processors, 32 GB of DDR2-800 RAM and a SATA 7200 RPM hard disk. All results are given

in terms of wall clock time.

1) Phonetic system:In this section we compare the behavior of the language models trained by means

of the techniques illustrated in Section V using phonetic features.
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TABLE I: PHONETIC SYSTEM: ASYMPTOTIC VALUES FOR Cavg AND EER

Algorithm 30s 10s 3s

SVMLight 0.0375 0.0858 0.2037
3.972% 8.881% 20.772%

BMRM
0.0375 0.0860 0.2032
3.941% 8.981% 20.842%

DCDM
0.0376 0.0861 0.2031
3.965% 8.948% 20.785%

SVMPerf 0.0434 0.0944 0.2061
4.583% 9.782% 21.057%

Pegasos
0.0392 0.0879 0.2032
4.198% 9.116% 20.979%

TABLE II: PHONETIC SYSTEM: TIME REQUIRED TO ACHIEVE 1% SVMLight Cavg ACCURACY
(“-” MEANS NOT REACHED)

Algorithm 30s 10s 3s

SVMLight 6991s 6991s 6991s
BMRM 6672s 5563s 1598s

MPBMRM 1493s 1148s 210s
DCDM 184s 143s 96s

MTDCDM 85s 66s 46s
SVMPerf - - -

MTSVMPerf - - -
Pegasos - - 3364s
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Fig. 1: Phonetic system: Cavg as a function of the training time for the 30s condition

SVMLight and SVMPerf models are tested only after convergence because training SVMLight is slow and

we are interested only in its classification accuracy that we consider our reference. As far as SVMPerf is

concerned, it is less attractive for our applications due tothe difficulties in class balancing, which led to
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worse recognition results as reported in the following.

Our first set of results shows the asymptotic classification performance of the different algorithms,

i.e. the results obtained using a model estimated after a high number of iterations. Table I compares the

accuracy of the different phonetic models in the 30, 10, and 3sec conditions of the NIST LRE09 tests.

Both DCDM and BMRM models converge, in terms of Cavg and EER, to the results provided by our

baseline SVMLight. Models trained with Pegasos give slightly worse performance, and SVMPerf does not

produce models as good as the other approaches due to the lackof class balancing.

Fig. 1 shows, in logarithm scale and for the 30s condition, thetime required by each algorithm to

reach convergence to the reference Cavg. The convergence properties of the different technique can be

appreciated looking at Table II, which reports the time required by each algorithm to estimate a model

that reaches an accuracy within 1.0% of the Cavg value obtained using a model trained by SVMLight. The

conditions which did not reach the desired accuracy at the end of training are denoted by “-”. The same

trend has been obtained for the EER and for all the segment durations (30s, 10s and 3s).

Considering the single–threaded implementations, we can observe that, in the 30s condition, DCDM is

the fastest algorithm: it reaches more than satisfactory results in just 184 seconds, after 5 iterations. The

other solvers are much slower, and BMRM is faster and slightly better than Pegasos.

The parallel implementation of DCDM and BMRM takes into account the different characteristics of

the two approaches. In particular, 23 threads are used for MTDCDM (each thread is devoted to training

the model of one language) whereas MPBMRM computations are distributed among 4 processes, each

one using 8 threads for NumPy/BLAS operations. As expected, DCDM cannot take much advantage

of the increased number of cores, being intrinsically sequential, whereas BMRM benefits from multiple

processes because training is done in batch mode. It takes also advantage of multi–threading for the

NumPy/BLAS operations. For this dataset, single–thread DCDMhas faster convergence rate than multi–

process BMRM. Obviously, massive parallelization of BMRM could easily outperform DCDM for larger

datasets.

2) Pushed–GMM system:The pushed–GMM models are evaluated by reporting their performance as

a function of the training time, with the exception of the baseline SVMLight. Since testing the acoustic

models is expensive, fewer models were trained and tested compared to the phonetic ones. We recall

again that SVMPerf cannot be used for the pushed–GMM approach because it produces basis vectors

rather than support vectors. Thus it cannot be used to evaluate the required models and anti–models.

The results are presented in Table III, and in Fig. 2 for the 30s condition. The three entries associated to

each algorithm in Table III refer to Cavg, EER and time required to achieve 1% SVMLight Cavg, respectively.
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TABLE III: PUSHED–GMM: ASYMPTOTIC VALUES FOR Cavg AND EER, AND TIME REQUIRED
TO ACHIEVE 1% SVMLight Cavg ACCURACY

Algorithm 30s 10s 3s

SVMLight 0.0276 0.0621 0.1616
3.120% 6.592% 16.594%
2871s 2871s 2871s

BMRM
0.0276 0.0626 0.1618
3.153% 6.587% 16.579%
1194s 723s 311s

DCDM
0.0276 0.0626 0.1619
3.157% 6.596% 16.592%

655s 655s 121s

Pegasos
0.0272 0.0617 0.1605
3.112% 6.543% 16.623%
8433s 1800s 938s
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Fig. 2: Pushed–GMM: Cavg as a function of the model training time for the 30s condition

Since a single SVMLight model is trained for the three test conditions, and the modelis tested only after

convergence has been achieved, the times shown in the first rowof Table III are the same. It is also

worth noting that the training times are sampled at the end ofthe algorithm iterations, thus the measured

times are the same when the target Cavg is reached at the end of the same iteration.

Given enough training time, all algorithms, including the primal ones, estimate sets of Lagrange

multipliersα that allow good pushed–GMM models to be generated.

The DCDM algorithm is the fastest to reach convergence, followed by the BMRM algorithm. Pegasos

is much slower but its models give slightly better results, probably due to the fact that its algorithm for

the evaluation of the (approximate) Lagrange multipliers does not impose constraints to theα values.
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Fig. 3: SRE-10 DCF of Pegasos models as a function of their training time for different bunch sizes (%
of the training dataset)
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Fig. 4: SRE10 loss function of Pegasos, BMRM, and OCAS models as a function of their training time

B. Speaker recognition task

In this section we compare the performance of the speaker models trained according to the pair-wise

discriminative approach presented in Section IV. It is worthrecalling that training is feasible using two

solvers only: BMRM and Pegasos.

The training set for this task consists of 21663 segments from1384 female speakers taken from NIST

2004, 2005, and 2006 Speaker Recognition Evaluations, Switchboard II Phase 2 and 3 and Switchboard

Cellular Parts 1 and 2 [41].

The i–vectors estimated from 60–dimensional 2048–mixture GMMs have 400–dimensions. The UBM

and the i–vector extractor are trained on NIST 2004, 2005, and2006 SRE corpora, and on Switchboard
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TABLE IV: SPEAKER RECOGNITION TASK: SRE-10 FEMALE TEL-TEL TEST PERFORMANCE

Algorithm Model EER DCF08 DCF10

BMRM/OCAS asymptotic 2.54% 0.120 0.416
Pegasos asymptotic 2.54% 0.119 0.420

BMRM/OCAS ≈ 7000s 2.32% 0.110 0.401
Pegasos ≈ 7000s 2.62% 0.121 0.434

BMRM/OCAS best 2.19% 0.106 0.369

and Fisher data. More details about the i–vector extraction procedure can be found in [42]. System

performance is presented in terms of Equal Error Rate and minimum Detection Cost Functions defined

by NIST for the 2008 (DCF08) and for the more challenging 2010 (DCF10) evaluations [36]. The two

functions differ for the relative cost attributed to False Alarms with respect to Miss Classification errors

(much higher for DCF10).

Fig. 3 compares the DCF10 performance of Pegasos for different bunch size as a function of the

training time. The slowest converging approach is standard Gradient Descent (Pegasos 100%), where

all patterns are considered at each iteration before updating the hyperplane. Stochastic Gradient Descent

applied to bunch of patterns - shown as a fraction of the totaldataset in Fig. 3 - allows faster convergence,

but the bunch size cannot be reduced to small fractions of thedataset (less than 3% in these experiments)

without loosing the benefits of the efficient training strategyintroduced in [20], [21].

In the following, the BMRM models will be compared with the ones produced by using a bunch size

of 3% in Pegasos.

Fig. 4 shows the SVM loss function value with respect to training time for the BMRM and Pegasos

approaches. BMRM requires more time to reach convergence compared to Pegasos, moreover, its loss

function is unstable even after several iterations. We did not take care of this behavior in the phonetic

system because DCDM was sensibly faster. This is not the case for the speaker recognition system as can

be seen in Fig. 5 (a) where the BMRM DCF10, plotted as a function of the time spent to train its models,

shows large fluctuations. This behavior is not surprising because at each iteration BMRM finds a cutting

plane which approximates the objective function at the current solution. However the objective function

does not necessarily decrease at each iteration. These fluctuations, of course, reduce toward convergence,

and the algorithm reaches the asymptotic performance of Pegasos.

A solution to this problem has been proposed in the OptimizedCutting Plane Algorithm (OCAS)

approach [43], [3], which improves the BMRM by trying to simultaneously optimize the original and the

approximated objective function and to select cutting planes that have higher chance to actively contribute
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Fig. 5: DCF10 (a) and DCF08 (b) as a function of the training time for models produced by BMRM,
Pegasos, and OCAS

to the approximation of the objective function around its optimum. OCAS choice of the cutting planes

allows reducing the number of iterations needed for convergence, at the expense of an higher execution

time per iteration. In particular, OCAS complexity isO(n logn), however it can be considered linear,

because usuallylog n≪ d (this holds also in our experiments), thus the global complexity of the algorithm

is dominated by the factorO(nd) needed for the computation of dot–products and gradients.

Using BMRM and the OCAS approach for cutting planes selection allows obtaining a loss function,

shown in Fig. 4, with a fast and smooth convergence similar to the one obtained by Pegasos.

As far as the DCF is concerned, the asymptotic performance ofBMRM/OCAS and Pegasos is similar, as

reported in the first two rows of Table IV. However, the comparison of the DCF10 and DCF08 in Fig. 5 (a)
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TABLE V: COMPARISON OF THE PROPERTIES OF THE SELECTED SVM ALGORITHMS

Algorithm Complexity Parallel
Provides PLDA

α’s SVM

SVMLight O(n2d) Yes Yes No
SVMPerf O(nd

ǫ
) Yes No Yes

DCDM O(nd log 1

ǫ
) No Yes No

Pegasos Õ( d

δǫ
)* No Yes Yes

BMRM/OCAS O(nd
ǫ
) Yes Yes Yes

*Reachesǫ accuracy with probability1− δ

and (b), respectively, shows that Pegasos reaches slowly itsasymptotic performance confirming the results

obtained in the language recognition experiments. BMRM haslarge fluctuations, thus finding an early

stopping criterion is difficult. However, BMRM has also the potential to give much better generalization

results on the evaluation data if its models are trained witha reduced number of iterations. BMRM/OCAS

allows to fit the best performance of BMRM using models obtained by stopping the iterations when the

loss function decrease is less than 3%. This condition, whichis usually achieved after a few tens of

iterations, avoids over-fitting that manifests itself in theasymptotic convergence region. The stopping

criterion value was estimated using the NIST-SRE 2008 evaluation data as held–out development set. In

these experiments the stopping criterion has been reached in 50 iterations corresponding to approximately

7000 seconds of training time. Table IV compares the resultsof the models trained by BMRM/OCAS

and by Pegasos in this same amount of time, showing that the performance of Pegasos is worse compared

not only to BMRM/OCAS, but also to its asymptotic results. Lastrow of the table shows, for reference,

the results of the best model.

VIII. C ONCLUSIONS

An analysis of five large–scale SVM training algorithms has been presented. With the exception of the

pushed-GMM approach, which requires a relatively expensive likelihood scoring, an accurate analysis

was possible for the other test experiments because SVM scoring is extremely fast, which makes viable

testing thousands of different models.

A comparison of the properties of the SVM algorithms that we analyzed is given in Table V. The

algorithms scale linearly with the training set size, and reach approximately the same classification

performance given enough training time, but they have different characteristics with respect to their

speed of convergence and scalability. Moreover, the selection of the best algorithm for a task depends

also on the two paradigms we have presented: the standard onethat builds a model for each class, and
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the pair-wise discriminative approach of Section IV, which estimates a single discriminative model.

A. Classical SVM

SVMPerf is fast to reach convergence, behind DCDM only, and can be parallelized, but it has shown

two drawbacks for our applications: classes cannot be easily balanced and there are no means to estimate

Lagrange multipliers for the pushed-GMM approach.

Pegasos is not attractive because it is slower than the other implementations even though it can be easily

extended to different loss functions.

BMRM is faster than Pegasos and even faster with a multi-threaded implementation.

DCDM is the preferred solution for training these classifiers: it is the fastest to converge on a single

processor and it allows a multi–threaded implementation, where a set of threads can be devoted to training

in parallel the models of different classes, even though thecore utilization is not optimal. However, it

cannot exploit distributed architectures and is much less flexible than Pegasos and BMRM.

B. Pair-wise SVM

As remarked in Section VI-B only primal solvers, such as BMRM/OCAS and Pegasos, are good

candidates for pair-wise SVM training. Using these algorithms, the training complexity is reduced from

O(n2d2) to O(n2d), wheren2 is the number of the training patterns.

BMRM/OCAS is the preferred choice for fast training of a pair-wise discriminative model because

Pegasos reaches its asymptotic performance slowly, thus stopping its iterations before convergence does

not produce models as good as the BMRM/OCAS models obtained after a comparable time.
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