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COMPLEMENTING MAPS, CONTINUATION 
AND GLOBAL BIFURCATION 

BY P. M. FITZPATRICK, I. MASSABÖ AND J. PEJSACHOWICZ 

ABSTRACT. We state, and indicate some of the consequences of, a 
theorem whose sole assumption is the nonvanishing of the Leray-
Schauder degree of a compact vector field, and whose conclusions yield 
multidimensional existence, continuation and bifurcation results. 

Complementing maps and the Theorem. Let X be a Banach space, m 
be a positive integer, and O Ç Rm x X be open. Suppose ƒ : O —• X is an 
m-parameter compact vector field: i.e. /(X,x) = x — F(X,x), for (X,x) € O, 
where F is continuous and maps bounded sets into relatively compact sets. 
A continuous map g: O —• Rm, which maps bounded sets into bounded sets, 
will be called a complement for ƒ : O —• X provided that the Leray-Schauder 
degree, deg((0, ƒ), 0,0), is defined and nonzero: (g, ƒ)((X, x)) = (g(\, x), ƒ (X, x)), 
for (X, x) € O, and since O is not assumed to be bounded, "defined" means 
(<7, /)_ 1(0) is compact. 

By cohomology we will mean Cech cohomology with integral coefficients. 
By dimension of a topological space we mean the Cech-Lebesgue covering 
dimension, and if p G A, the space A will be said to have dimension at least 
m at p provided that each neighborhood, in A, of p has dimension at least m. 

THEOREM. Let X be a Banach space, m be a positive integer, and O Ç 
Rm xX be open. Suppose that ƒ : O —• X is complemented by g: O —• Rm. 
Then there exists a closed connected subset, C, of / _ 1 (0) , whose dimension at 
each point is at least m, and (*) whenever K is a compact subset of C, with 
g_1(0) n C C K, the map of pairs g: (C, C - K) -> (Rm ,Rm - 0) induces a 
nontrivial map in the mth cohomology group. In particular, Cogf"*1(0) 7* 0 
and either C is unbounded orTJndO # 0 . In the case when f and g are defined 
onÜ with f"1(0)C\g~1(0)ndO — <Z>,C also has the following properties: ifC is 
bounded, then dhafjOndO) >m — l, when m>l, andZïndO has at least two 
points, whenm = 1; ifg: /~1(0)OÜ —• Rm is proper anddim(ÖndO) < m—1, 
theng(0) = Rm. 

SKELETON OF THE PROOF. Since deg((#, ƒ), 0,0) ^ 0, by using the cup-
product in cohomology, it follows that whenever K is compact and 0-1(O) Ç 
K Ç /-^O) the map g: (/-^O), Z"1 -K)-> ( R m , R m - 0 ) is cohomologically 
nontrivial. Passing to the limit over all such K's we obtain a nontrivial class, 
£, in the mth Cech cohomology group with compact supports of /~"^(0). The 
continuity of Cech theory enables us to choose a set, C, which is minimal 
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among the closed subsets of / _ 1 (0) to which £ restricts nontrivially. This C 
has the properties claimed. D 

Some consequences of the Theorem. In what follows, ƒ : O C R m x X - ^ X 
is an m-parameter compact vector field. 

1. Continuation under global hypotheses. Let Xo G R m and let / \ 0 be the 
section of ƒ over the slice O\0. One shows that if deg(/\0,Oxo,0) ^ o then 
ƒ : O —• X is complemented by g : O —• R m defined by #(X, x) = X — Xo. Thus 
the theorem furnishes a description of how / _ 1 (0) emanates from O\0. This is 
a multidimensional refinement of the Leray-Schauder continuation principle 
(see [4, 6 and 7]). 

2. Continuation under local hypotheses. Let (Xo,xo) € O and suppose that 
the map x —• /(Xo,x) has a Fréchet derivative, L, at x — XQ. Assume L G 
L(X,X) is invertible. Then, letting U — O — { (Xo, x) \ x # xo, /(Xo, x) = 0 }, 
one shows that ƒ: £7 —• X is complemented by g: U —• R m defined by 
#(X,x) = X — Xo- Thus, there is an m-dimensional connected subset, C, 
of / - 1 (0 ) Pi U, which contains (Xo,xo), and which is either unbounded or 
Ü 0 {dO U { (X0, x) | x ^ x0, ƒ(X0, x) = 0 }} 7e 0 . Another global version of the 
implicit function theorem was obtained in [3]. 

3. Nonlinear perturbation of linear Fredholm operators. Let fi Ç R2 be 
simply connected, open and bounded, with dfi a smooth closed curve. Suppose 
r : dft -> S1 is smooth and such that the winding number of r : dQ -> S1 

equals — k < 0. Given </>,?/>: Q x R ^ R w e consider the following nonlinear 
Riemann-Hilbert problem: find u,v: Ü —• R such that, if r = (7*1, T2) 

... fw I- t ; ! / = 0(x,y,u,v), . 
1 ., x mil, 

IVxH-Wy = il)(x,y,u,v) 
(R-H) 

(ii) uri — VT2 = 0 on 3H. 
Let a G (0,1) be such that ip and </> lie in C 1 + a(Ü X A,R) for each bounded 
subset A of R2 (C1+a denotes the usual Schauder space). Under the assump­
tion that V>(x,y,0,0) = 0(x,t/,O,O) = 0, for each (x,y) G fi, it follows that for 
each r > 0, {(w,v) G C1 + 0 !(n,R2) | (w,v) solves R~H, ||(w,v)||1+a = r} has 
dimension at least 2k. 

Let W = {{u,v) G C1 + a(n,R2) |(n,v) satisfies (ii)}, and let L: W -+ 
C a (n ,R 2 ) be the linear operator defined by the left-hand side of (i). Choose 
zi,..., Zk in Q and define g : W —• R2fc+1 by 

g((n, v)) = (u(*i), v(2?i),...,u(^fc), v(2ffc), ƒ [rit; -f r2u] ds). 

Letting X = g_1(0), the linear theory (see [10]) implies L: X - • Ca(Ü,R2) 
has an inverse, T, and W = V © X, with dim(V) = 2/c + 1. 

If we rewrite (R-H) as ƒ((u, i/)) = T(L — üf)((n>v)) == 0, one shows that 
ƒ : V 0 X —• X is complemented by 0 on each ball about the origin in W, and 
so we can apply the Theorem. 

4. Global bifurcation. For simplicity, we assume O = R m X X. We assume 
R m X {0} Ç / _ 1 (0) , and call R m X {0} the trivial solutions of ƒ. Suppose a, (3 G 
R m are such that (a, 0) and (f3,0) are not bifurcation points of ƒ _1(0) and that 
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ind(/a,0) ^ ind(//3,0), where "ind" denotes the Leray-Schauder index. Then, 
if T is any open curve (i.e. homeomorphic image of R) in Rm X {0} which 
passes through (a, 0) and (/3,0), there exists a connected set, C, of nontrivial 
zeros of ƒ, whose dimension at each point is at least m, which intersects the 
segment, (a, 0), (/?, 0), of T, determined by (a,0) and (/3,0), and either C is 
unbounded or Ü intersects V — {(a,0),(/9,0)}. 

When a = 0, /3 = (1,0,. . .) and T is the line through a and j3 the proof 
runs as follows. Choose r > 0 such that f(\x) ^ 0 when 0 < ||x|| < r and 
either |X| < 3r or \\ — /3\< 3r. Let h: R —• [0,r] be continuous, vanish outside 
of [-r, 1 + r], and equal r on [r, 1 - r]. Then define g: Rm X X -+ Rm by 
ff(Xi,..., Xm) = (||x||2 - (fe(Xi))2, X2,..., Xm). 

One shows that if U = Rm X { X - {0}}, then deg((g, ƒ), £/, 0) = ind( fa0) -
ind(/a,0), and so g complements ƒ on [/. So we extract the subset, C, of 
ƒ _1(0)n[7, having the properties in the conclusion of the Theorem. Conclusion 
(*) implies our assertions regarding ÜOT. 

This bifurcation result yields the principle abstract global bifurcation results 
of [9 and 1]. J. Ize (see [8]) has given a proof of the bifurcation theorem in [9] 
using a map similar to the above g. 

REMARK. In the definition of complementing map if one replaces the 
Leray-Schauder degree by the Browder-Petryshyn degree for A-proper map­
pings (see [5]) the Theorem still holds. We believe that approximation results 
similar to those used in [2] will also yield the Theorem when F is assumed to 
be condensing. 
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