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A PDE-CONSTRAINED OPTIMIZATION FORMULATION FOR
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Abstract. We investigate a new numerical approach for the computation of the three-
dimensional flow in a discrete fracture network that does not require a conforming discretization
of partial differential equations on complex three-dimensional systems of planar fractures. The dis-
cretization within each fracture is performed independently of the discretization of the other fractures
and of their intersections. An independent meshing process within each fracture is a very important
issue for practical large-scale simulations, making mesh generation easier. Some numerical simu-
lations are given to show the viability of the method. The resulting approach can be naturally
parallelized for dealing with systems with a huge number of fractures.
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1. Introduction. Efficient numerical simulations of subsurface fluid flows in
fractured rocks are of interest for many applications, including water resources man-
agement, contaminant transport and dissemination, oil prospecting, and enhanced
oil/gas recovery. Among the major difficulties are intrinsic heterogeneity, directional-
ity of the medium, and the multiscale nature of the phenomena, as well as uncertainty
in the medium properties. A discrete fracture network (DFN) is a complex three-
demensional (3D) structure obtained from intersecting planar fractures. DFN models
are frequently preferred to more conventional continuum models as a basis for simu-
lations. A classical approach to the problem is to model fractures as planar ellipses or
polygons and stochastically generate DFNs with probabilistic distributions of density,
aspect ratio, orientation, size, aperture of fractures, and hydrologic properties [9] and
to simulate the flow through the obtained networks. Intensive numerical simulations
with several configurations of DFNs and physical parameters are then performed in
order to tackle the issue of uncertainty. The flow pattern strongly depends on density
and size of fractures and for large-scale simulations different approaches are possible.
For dense fracture networks and continuous distribution of size and aspect ratios,
flow can be modeled as the flow in an equivalent continuous porous medium where
the fracture network pattern leads to the definition of a suitable permeability tensor.
For sparse fracture networks with some large fractures that discontinuously increase
directionality of the flow, an explicit representation of the fracture network is more
reliable. In both cases a stochastic approach to the uncertainty of the parameters is
needed and this requires many simulations, so that efficiency and large applicability
of numerical algorithms are fundamental issues.
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Here the steady flow in a given DFN is considered under the assumption of imper-
vious rock matrix and no longitudinal flow in the intersection between the fractures.
These intersections are called traces and are always segments.

In DFN simulations the first classical numerical challenge is to provide a good-
quality conforming mesh for this 3D structure to be used for the discretization of
the flow equations. Conformity of the mesh requires that for each trace a unique
discretization is introduced, which is shared by all the discretizations of the fractures
intersecting along the trace. Conformity on the traces and good quality of the meshes
for a completely arbitrary DFN can be obtained only with the introduction of a huge
number of elements independently of the required accuracy of the numerical solution.
In [28], a mixed nonconforming finite element method (FEM) on a conforming mesh
is proposed. In [20], an adaptive approach to the conforming mesh generation re-
quiring adjustments of trace spatial collocations is proposed. Local modifications of
the mesh or of the fracture network in order to preserve conformity of the meshes or
alignment of meshes along the traces are considered in several works as for example
[17, 28]. In [11], a method to generate a good-quality conforming mesh on the network
system is proposed. In [23, 24], a mixed hybrid mortar method is proposed, allow-
ing nonconformities of the meshes on the fractures but requiring that the traces are
contained in the set of the edges of each fracture triangulation. Resorting to mortar
methods the discretization of each fracture can lead to a different discretization of the
traces. A different approach to the simulation of the flow in the fracture network is
based on its modelization with a system of monodimensional pipes that are aligned
along the fractures and mutually connect the centers of the fracture intersections with
the surrounding fractures. The resulting mesh of pipes still reflects the topological
properties of the fracture network [6, 22]. An accurate definition of pipe properties
within the fracture system has been obtained by means of a boundary element method
in [10]. However, the geometrical simplification implies errors in the assessment of
the fluid flow regime, depending on the complexity and geometrical properties of the
underlying DFN, and thus the resort to a full discretization is preferred.

Specific commercial codes based on the FEM are available, also simulating the
fluid flow in the rock blocks [19]; contributions can be found in the literature for
the extension to coupled problems with deformable blocks and fractures, even in
conjunction with other methods such as the boundary element mothod (e.g., [12]).
However, these codes suffer for a strong computational demand: the discretization in
fact leads frequently to the generation of huge or poor-quality meshes.

The problem model allows discontinuities of fluxes of the hydraulic head through
the traces when fluxes of the hydraulic head leave a fracture to reach a different
fracture at the common trace. With previous approaches these discontinuities can be
modeled if they are localized at edges between elements or at the border of each piece of
fracture.

In this paper a new method is proposed, which relies on the reformulation of
the problem as a PDE-constrained optimization problem. Following this approach,
fracture meshes are not required to match along traces and any kind of mesh confor-
mity along traces is skipped, thus making the mesh generation process an easy task,
attainable with a standard mesh generator. Furthermore, the problem on the overall
DFN can be decoupled in several local problems on the fractures, thus allowing a
great potential for possible parallel implementation. Discontinuities of fluxes of the
hydraulic head can occur on arbitrary traces with respect to the triangulation and
the used finite elements allow us to catch these discontinuities of the fluxes also inside
elements. This can be obtained by introducing suitable extended finite elements.
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The paper is organized as follows. In section 2, we recall the physical model and
governing equations and introduce the continuous optimization problem that leads
to the solution on the network system. In section 3 we recall basics on extended
finite elements of the type considered herein and give some details for the application
to DFNs. In section 4 a discrete formulation of the optimization problem is given,
which leads to an equality constrained quadratic programming problem. Finally, in
section 5 numerical results are discussed in order to prove the viability, reliability, and
effectiveness of the method.

Notation. In the paper, we will frequently use the following notation. We will
use capital letters for continuous unknowns (for example, the hydraulic head H) and
lowercase letters for the corresponding finite dimensional approximation (e.g., h).
We will use the same lowercase letter for the vector of degrees of freedom (DOFs),
the difference being clear from the context. Roman capital letters will be used for
functional spaces. Given functions gi, for i belonging to some index set I, the symbol∏

i∈I gi denotes the tuple of functions (g1, g2, . . . , g#I), #I being the cardinality of I.

2. Description of the problem.

2.1. The continuous problem. Let us consider an open planar polygonal frac-
ture ω ⊂ R

2 and let us introduce on ω a tangential coordinate system x̂. Following
[1], the problem of subsurface flow through ω can be written as

−∇ · (K∇H) = q in ω,(2.1)

H|ΓD
= HD on γD,(2.2)

∂H

∂ν̂
= GN on γN ,(2.3)

where ∂ω = γD ∪ γN is the boundary of ω and γD ∩ γN = ∅, γD �= ∅. The scalar
function H = P +ζ is the hydraulic head, P = p/(�g) is the pressure head, p is
the fluid pressure, g is the gravitational acceleration, and � is the fluid density. The
variable ζ is the elevation, and K = K(x̂) is the fracture transmissivity tensor and
is a symmetric and uniformly positive definite tensor. The symbol ∂H

∂ν̂ denotes the
outward co-normal derivative of the hydraulic head,

∂H

∂ν̂
= n̂T

K∇H,

with n̂ unit vector outward normal to the boundary γN .
The definition of the hydraulic head in a DFN Ω should require the solution of

problem (2.1)–(2.3) in a system of intersected polygonal fractures in the space. In
order to define 3D fractures Fi, let us consider a set of open planar polygons {ωi}i∈I,
where I is the set of their indices, and let F̄i ⊂ R

3 be the image of the closure of a
polygon ωi ⊂ R

2 through an affine mapping Ti(x̂i) = bi +Qi(x̂i − x̂0,i), where x̂0,i is
the coordinate of a given vertex of the polygon ωi in the local planar reference system
x̂i, and bi is the position of the same vertex in the 3D space. We assume that QT

i Qi

is the identity matrix such that the differential operators defined on the tangential
reference system in Fi are equivalent to the operators defined on the planar fracture
ωi. Let Ω be the 3D set

Ω =
⋃
i∈I

Fi,

and let ∂Ω denote its boundary. Given two fractures, the intersection of their closure
is either an empty set or a set of nonvanishing segments called traces. Vanishing
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Fig. 2.1. An example of DFN split into subfractures.

segments are not considered as no flux exchange among fractures takes place in these
intersections. Let S denote the set of all the traces, and assume traces in S are indexed
by a set of indices M with cardinality �M.

In what follows, we make the following assumptions on the DFN:
1. Ω̄ is a connected set;
2. each trace Sm, m ∈ M, is shared by exactly two polygonal fractures Fi and
Fj , i �= j: Sm ⊆ F̄i ∩ F̄j ;

3. on each fracture, the transmissivity tensor Ki(x̂i) is symmetric and uniformly
positive definite.

Given a trace Sm we denote by ISm = {i, j} the set of indices i and j of the
fractures Fi and Fj sharing the trace; for further convenience, we also introduce the
sorted couple cm = (i, j) with i < j. For each fracture Fi, we denote by Si the set of
traces shared by Fi and other fractures.

In order to define the problem on the DFN, let us consider a set of open subfrac-
tures fl, l ∈ L, obtained by splitting each fracture in such a way that each trace is
part of the boundary of some subfractures and Sm ∩ fl = ∅ ∀m ∈ M, ∀l ∈ L; see
Figure 2.1. Note that the traces belong to the boundary of the subfractures, but they
do not necessarily coincide with a whole edge of such boundaries; see, e.g., trace S2

in Figure 2.1. So we have

Ω =
⋃
l∈L

f̄l\∂Ω.

Let us split ∂Ω in two parts ΓD �= ∅ and ΓN , with ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅,
corresponding to Dirichlet and Neumann boundary conditions, respectively.

The global hydraulic head H in the whole connected system Ω satisfies the fol-
lowing equations ∀l ∈ L:

∇ · (Kfl ∇H) = ql in fl,(2.4)

H|ΓD∩∂fl
= HD on ΓD ∩ ∂fl,(2.5)

∂H

∂ν̂
∂fl

= GN on ΓN ∩ ∂fl,(2.6)
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with a two-dimensional (2D) local reference system on fl. Given a trace Sm let
LSm ⊂ L be the set of indices l such that Sm ⊂ ∂fl. Equations (2.4)–(2.6) have to be
complemented with the following coupling conditions, corresponding to the physical
requirement of continuity of the hydraulic head and conservation of hydraulic fluxes
across the traces:

H|f̄l = H|f̄k on Sm ∀Sm ∈ S, ∀l, k ∈ LSm ,(2.7) ∑
l∈LSm

∂H|fl
∂ν̂

∂fl

= 0 on Sm ∀Sm ∈ S .(2.8)

For this formulation of the problem existence and uniqueness of the solution are
known. In the following we want to focus on the whole fracture, disregarding this
subfracture approach. Thus, let us denote by Hi the restriction of the hydraulic head
H to the fracture Fi ∀i ∈ I. Conditions (2.7) and (2.8) are equivalent to

Hi|Sm −Hj |Sm = 0 for i, j ∈ ISm ∀m ∈ M,(2.9) [[
∂Hi

∂ν̂iSm

]]
Sm

+

[[
∂Hj

∂ν̂jSm

]]
Sm

= 0 for i, j ∈ ISm ,(2.10)

where the symbol
[[

∂Hi

∂ν̂i
Sm

]]
denotes the jump of the co-normal derivative along the

unique normal n̂i
Sm

fixed for the trace Sm on the fracture Fi. This jump is independent

of the orientation of n̂i
Sm

.
Let Γi be the boundary of Fi and let it be split in ΓiN , the boundary with

Neumann boundary condition ∂Hi

∂ν̂ = GiN , and ΓiD �= ∅, the boundary with Dirichlet
boundary condition Hi|ΓD

= HiD, satisfying ΓiN ∩ ΓiD = ∅ and ΓiN ∪ ΓiD = Γi. Let
us define

Vi = H1
0(Fi) =

{
v ∈ H1(Fi) : v|ΓiD

= 0
}

and V ′
i its dual space. The hydraulic head Hi in each fracture belongs to the space

V D
i = H1

D(Fi) =
{
v ∈ H1(Fi) : v|ΓiD

= HiD

}
and the hydraulic head H on the whole domain Ω is obtained by suitably matching
via (2.9), (2.10) for m ∈ M the solutions Hi ∈ V D

i for each i ∈ I and belongs to the
space

(2.11) V D = H1
D(Ω) =

{
v ∈
∏
i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm , ∀m ∈ M

}
.

With a similar definition we set V = H1
0(Ω).

For simplicity of notation, in the rest of this section we assume that the traces
S ∈ S are disjoint.

Remark 2.1. The assumption of disjoint traces can be removed by replacing, in
what follows, each single trace S with the union of connected traces. Furthermore,
in our discrete formulation, this assumption is dropped out in a natural way; see
Remark 4.1.
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Let us define for each trace S ∈ S a suitable space US and

USi =
∏
S∈Si

US , U =
∏
i∈I

USi .

Moreover, for each trace S ∈ S, with IS = {i, j}, we introduce suitable variables

US
i ∈ US and US

j ∈ US representing the unknown quantities
[[
∂Hi

∂ν̂i
S

]]
and

[[∂Hj

∂ν̂j
S

]]
,

respectively, and for each fracture Fi let us set

Ui = Π
S∈Si

US
i ∈ USi ,

i.e., Ui is the tuple of functions US
i with S spanning Si. Moreover, we set

U = Π
i∈I

Ui ∈ U

as the tuple of all functions US
i with S ∈ Si and i ∈ I, i.e., U is the 2#M-tuple of

functions US
i on all traces in Ω.

Condition (2.10) is rewritten, in terms of the new unknowns USm

i , USm

j , as

(2.12) USm

i + USm

j = 0 for i, j ∈ ISm .

Let us introduce the linear bounded operators and their duals

Ai ∈ L(Vi, V ′
i ), A∗

i ∈ L(Vi, V ′
i ), AD

i ∈ L(V D
i , V ′

i ),

Bi ∈ L(USi , V ′
i ), Bi

∗ ∈ L(Vi,USi
′
), BΓiN ∈ L(H− 1

2 (ΓiN ), V ′
i ),

and the Riesz isomorphism ΛUSi : USi → USi
′
. The operators Ai, A

D
i , Bi, BΓiN are

defined such that

〈AiH
0
i , v〉V ′

i ,Vi
=
(
K∇H0

i ,∇v
)
, H0

i ∈ Vi, v ∈ Vi,

〈AD
i H

D
i , v〉V ′

i ,Vi
= (K∇HD

i ,∇v), HD
i ∈ V D

i , v ∈ Vi,

〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉USi ,USi ′ , Ui ∈ USi , v ∈ Vi,

〈BΓiNGiN , v〉V ′
i ,Vi

= 〈GiN , v|ΓiN
〉
H− 1

2 (ΓiN ),H
1
2 (ΓiN )

, GiN ∈ H− 1
2 (ΓiN ), v ∈ Vi.

Finally, let RiHiD ∈ V D
i be a lifting of Dirichlet boundary condition HiD.

Let us introduce ∀i ∈ I the following problem: find Hi = H0
i + RiHiD with

H0
i ∈ Vi such that(
K∇H0

i ,∇v
)
= (qi, v) + 〈Ui, v|Si

〉USi ,USi ′

+ 〈GiN , v|ΓiN
〉
H− 1

2 (ΓiN ),H
1
2 (ΓiN )

− (K∇RiHiD,∇v) ∀v ∈ Vi(2.13)

or equivalently ∀i ∈ I

(2.14) AiH
0
i = qi +BiUi +BiNGiN −AD

i RiHiD.

The following result states the equivalence between the subfracture setting and
the setting based on fractures. The proof is omitted as it straightforwardly follows
from classical arguments.

Proposition 2.2. Let US =H− 1
2 (S)∀S ∈ S. Then, solving (2.13) ∀i ∈ I with

additional conditions (2.9), (2.12) is equivalent to solving (2.4)–(2.8).
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2.2. The optimal control formulation. The formulation of the problem de-
scribed in the previous section requires the exact fullfilment of some conditions which
couple the solution on different fractures; this happens either in the subfracture set-
ting given by (2.4)–(2.8) or with the formulation (2.13) with coupling conditions (2.9),
(2.12). Hence, finding a numerical solution to the problem solving the previous sets of
equations typically asks for some form of (at least partial) conformity in the meshes
introduced on the fractures; see, e.g., [11, 17, 20, 23, 28].

In order to circumvent this problem, we propose here a different approach. In-
stead of solving the coupled differential problems, we look for the solution of a PDE-
constrained optimal control problem [18], the variable U being the “control variable.”
Let us define for each trace S ∈ S a suitable space HS , the spaces

HSi =
∏
S∈Si

HS , H =
∏
i∈I

HSi ,

and the Riesz isomorphism ΛHSi : HSi → HSi
′
. The linear bounded “observation”

operators CS
i and Ci and the dual Ci

∗

CS
i ∈ L(Vi,HS), Ci ∈ L(Vi,HSi) = Π

S∈Si

CS
i , Ci

∗ ∈ L(HSi
′
, V ′

i )

will be defined for each choice of the spaces HS . For all i ∈ I, let us denote by
Hi(Ui) the solution to (2.13) corresponding to the value Ui for the control variable.
Furthermore, fixing a fracture Fi, we denote by

Π
S∈Si

US
j

the tuple of control variables defined on fractures Fj intersecting Fi in traces S ∈ Si

and by

Π
S∈Si

(
CS

i Hi(Ui)− CS
j Hj(Uj)

)
the tuple of functions

(
CS

i Hi(Ui)− CS
j Hj(Uj)

)
as S varies in Si.

Let us now introduce the following differentiable functional J : U → R:

J(U) =
∑
S∈S

JS(U) =
∑
S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)
=

1

2

∑
i∈I

∑
S∈Si

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)
=

1

2

∑
i∈I

(
|| Π

S∈Si

(
CS

i Hi(Ui)− CS
j Hj(Uj)

)
||2HSi + ||Ui + Π

S∈Si

US
j ||2USi

)
.(2.15)

Proposition 2.3. Let us define the spaces US and HS and the observation
operator CS

i on the trace S as

(2.16) US = H− 1
2 (S), HS = H

1
2 (S), CS

i Hi = Hi|S ∀S ∈ S .

Then, the hydraulic head H ∈ H1
D(Ω) is the unique exact solution of (2.4)–(2.8) if

and only if it satisfies the differential problems (2.13) ∀i ∈ I and, correspondingly,
J(U) = 0.
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Proof. The existence and uniqueness of H ∈ H1
D(Ω) satisfying (2.4)–(2.8) is a clas-

sical result (see, for example, [28] and references therein). Proposition 2.2 states that
problems (2.4)–(2.8) ∀l are equivalent to problems (2.13) ∀i, endowed with matching
conditions (2.9)–(2.12), which in turn are equivalent to J(U) = 0.

Based on the previous proposition, the problem of finding the hydraulic head in
the whole domain is restated here as follows: find U ∈ U solving the problem

(2.17) min J(U) subject to (2.13) ∀i ∈ I.

Proposition 2.4. The optimal control U ∈ U providing the solution to (2.17)
corresponds to

(2.18) (ΛUSi )
−1Bi

∗Pi + Ui + Π
S∈Si

US
j = 0 ∀i ∈ I,

where the functions Pi ∈ Vi ∀i ∈ I are the solutions to the equations

(2.19) A∗
iPi = Ci

∗ΛHSi Π
S∈Si

(
CS

i Hi − CS
j Hj

)
.

Proof. Let us differentiate the cost functional J(U) with respect to the control
Ui; this has effect only for S ∈ Si and we have

J ′(U)(vi − Ui)=
∑
S∈Si

JS ′
(Ui)(vi − Ui)

=
∑
S∈Si

[
2
(
CS

i Hi(Ui)− CS
j Hj(Uj), C

S
i (Hi(vi)

− Hi(Ui)))HS + 2
(
US
i + US

j , v
S
i − US

i

)
US

]
= 2

〈
Ci

∗ΛHSi Π
S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)), Hi(vi)−Hi(Ui)

〉
V ′
i ,Vi

+ 2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉
USi ′,USi

= 2
〈
A∗

iPi, A
−1
i Bi(vi − Ui)

〉
V ′
i ,Vi

+ 2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉
USi ′,USi

= 2 〈B∗
i Pi, vi − Ui〉USi ′,USi

+ 2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉
USi ′,USi

and this yields the thesis.
Equations (2.13), (2.18), and (2.19) ∀i ∈ I then provide a solution to the sub-

surface flow in the network; nevertheless, they couple all the unknowns on the overall
DFN. As an alternative approach, we propose to set up a minimization process that
only requires, at each step, local solutions on the fractures. The key point of this ap-
proach is that the method only requires decoupled solutions of the flows on fractures,
thus avoiding mesh conformity requirements. This target is attained, for example,
by using a gradient-based approach, such as the steepest descent method. This ap-
proach requires the solution of many simple problems with a small exchange of data.
The resulting algorithm is suitable for massively parallel computers and GPU-based
computers.
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In order to describe the minimization process leading to the solution of the con-
tinuous problem (2.17), let us define

(2.20) δUi = Λ−1
USi

Bi
∗Pi + Ui + Π

S∈Si

US
j ∀i ∈ I, δU =

∏
i∈I

δUi,

and let δHi ∈ Vi ∀i ∈ I be defined as the solution of the problem

(2.21) AiδHi = BiδUi.

Proposition 2.5. Given a control variable U , let us increment it by a step λδU .
The steepest descent method corresponds to the stepsize

(2.22) λ = − ||δU ||2U∑
S∈S

(
||CS

i δHi − CS
j δHj ||2HS + ||δUS

i + δUS
j ||2US

) ,
where δUS

i = δUi|S .
Proof. Let us compute J(U + λδU). We have

J(U + λδU) = J(U) + 2
∑
S∈S

(
CS

i Hi(Ui)− CS
j Hj(Uj), λ(C

S
i δHi − CS

j δHj)
)
HS

+ 2
∑
S∈S

(
US
i + US

j , λ(δU
S
i + δUS

j )
)
US + λ2

∑
S∈S

||CS
i δHi − CS

j δHj ||2HS

+ λ2||δUS
i + δUS

j ||2US

= J(U) + 2
∑
i∈I

∑
S∈Si

(
CS

i Hi(Ui)− CS
j Hj(Uj), λC

S
i δHi

)
HS

+ 2
∑
i∈I

∑
S∈Si

(
US
i + US

j , λδU
S
i

)
US

+ λ2
∑
S∈S

(
||CS

i δHi − CS
j δHj ||2HS + ||δUS

i + δUS
j ||2US

)
= J(U) + 2

∑
i∈I

(
Π

S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)), λCiδHi

)
HSi

+ 2
∑
i∈I

(
Ui + Π

S∈Si

US
j , λδUi

)
USi

+ λ2
∑
S∈S

(
||CS

i δHi − CS
j δHj ||2HS + ||δUS

i + δUS
j ||2US

)
.

From the previous relation, recalling (2.19) we obtain

J(U + λδU)− J(U)− λ2
∑
S∈S

(||CS
i δHi − CS

j δHj ||2HS + ||δUS
i + δUS

j ||2US )

= 2λ
∑
i∈I

〈
A∗

iPi, A
−1
i BiδUi

〉
Vi

′,Vi
+ 2λ

∑
i∈I

〈
ΛUS (Ui + Π

S∈Si

US
j ), δUi

〉
USi ′,USi

= 2λ
∑
i∈I

〈
Λ−1
USi

Bi
∗Pi + Ui + Π

S∈Si

US
j , δUi

〉
USi ,USi

= 2λ
∑
i∈I

||δUi||2USi .
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Then the value of λ in (2.22) nullifies the derivative of J (λ) := J(U + λδU) with
respect to λ, thus providing the minimum of the function J (λ).

Summarizing, problem (2.17) can be solved in the continuous framework either
solving (2.13), (2.18), and (2.19) or following an iterative algorithm such as the steep-
est descent, in which at each iteration one step is taken along the direction δU com-
puted by (2.20) with a stepsize λ given by (2.22).

The discrete counterparts of these two approaches are presented in section 4.

3. The DFN problem with the extended FEM. In this section, we briefly
account for the application of the extended FEM (XFEM) to our context. In the
first subsection, we briefly recall from the literature some key points of XFEM; in the
second subsection, these ideas are applied to the DFN framework.

3.1. Description of XFEM. The XFEM [3, 8, 4] is a mesh-based numerical
technique for the solution of PDEs in variational form, when nonsmooth or discon-
tinuous solutions are considered. The XFEM can reproduce irregularities that are
arbitrarily placed in the domain, regardless of the underlying triangulation. The
concept at the basis of the XFEM consists in combining the standard finite element
approach with the partition of unity method (PUM) [2], in order to overcome the
limitations of the finite element approach in dealing with singularities. Customized
enrichment functions are added to the standard finite element approximation space
in order to catch the nonsmooth character of the solution and extend approximation
capability.

In what follows only the description of the method in the case of continuous
solutions with discontinuous first order derivatives (weak discontinuities) is reported,
being the only situation of interest in our application. Customizations of the method
for other cases can be found in [4, 14].

Given a problem with exact solution H in a domain ω ∈ R
n, with a sharp or weak

singularity along the interface described by the manifold S ⊂ ω, S ∈ R
n−1, let Tδ be

a conforming triangulation on ω, and let Vfem
δ be a finite dimensional trial and test

space defined on the elements of Tδ and spanned by Lagrangian FE basis functions
φξ, ξ ∈ I =

{
1, . . . , Ndof

}
:

(3.1) Vfem
δ = span

(
{φξ(x̂)}ξ∈I

)
.

Each basis function φξ has compact support Δξ.
In our applications, provided that the edges of the elements in Tδ surrounding S

match it exactly, the approximate solution of H with standard finite elements has the
following form:

(3.2) hfemδ (x̂) =
∑
ξ∈I

hfemξ φξ(x̂),

where hfemξ is the DOF corresponding to the basis function φξ(x̂). Functions in Vfem
δ

are continuous and can have discontinuities in the first order derivatives across element
edges.

Let us assume Φ is a continuous bounded function on ω, Φ ∈ H1(ω)∩C0(ω̄) that
well approximates the behavior of H in a neighborhood of S called ΔS . With the
XFEM this function is introduced into the standard finite element space, thus defining
a new enriched functional space with extended approximation capabilities. This can
be done by means of the PUM, using the standard finite element shape functions for
the definition of a partition of unity. The new enriched functional space is
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(3.3) Vxfem
δ = span

(
{φξ(x̂)}ξ∈I , {φξ(x̂)Φ(x̂)}ξ∈J

)
⊂ H1

0(ω),

where we have identified with J ⊂ I the subset of indices of functions φξ whose
support belongs to ΔS . DOFs in J are called enriched DOFs and the corresponding
nodes enriched nodes. Typically, as sketched in Figure 3.1 it is

(3.4) J = {ξ ∈ I : Δξ ∩ S �= ∅} .

Consequently the approximate solution hxfem of the problem with the XFEM is

(3.5) hxfemδ (x̂) =
∑
ξ∈I

hxfemξ φξ(x̂) +
∑
ξ∈J

axfemξ φξ(x̂)Φ(x̂),

where hxfemξ and axfemξ are the unknowns related to the standard and enriching basis
functions, respectively. Since functions representing the nonsmooth behavior of the
solution are now present in the discrete subspace, the nonsmooth behavior of the
solution can be reproduced independently of the positioning of elements in Tδ with
respect to the interface S.

According to (3.4) only a small subset of total elements is enriched and this is
a peculiarity of the XFEM if compared to the PUM or other similar methods, for
example, the generalized FEM [25, 26]. Elements in Tδ may thus have a variable
number of enriched nodes. In particular it is possible to group elements in three
categories, following the classification used in [14] (see Figure 3.1):

(i) standard elements: no nodes enriched;
(ii) reproducing elements: all nodes enriched;
(iii) blending elements: some nodes enriched.

In reproducing elements, where all the nodes are enriched, the function Φ can be
correctly reproduced, providing the desired behavior for the discrete solution. In
blending elements, instead, where only some nodes are enriched, spurious terms are
introduced in the local discrete space in order to preserve continuity. This may affect
the convergence rate of the method compared to the standard FEM. Numerous tech-
niques are suggested in order to prevent this issue, for example, those in [7, 27, 13].
In particular the modified XFEM suggested in [13] and adopted here introduces a
redefinition of enrichment functions and enriched DOFs in order to correctly account
for the contribution of blending elements and recover the standard finite element rate
of convergence. We denote by Φ̃ and J̃ the modified version of Φ and J , respectively,
defined as

(3.6) Φ̃ = Φ(x̂)R(x̂), J̃ = {ξ ∈ I : Δξ ∩ΔS �= ∅} ,

where R(x̂) =
∑

ξ∈J φξ. The new enrichment function Φ̃ coincides with Φ in re-
producing elements where R = 1 and vanishes on the boundaries and outside ΔS ,
where R = 0. Thus anywhere the enrichment function Φ̃ is nonzero it is correctly
reproduced, avoiding problems related to parasitic terms.

The generalization to other kind of discontinuities follows the same outline de-
scribed above, with specific redefinition of functional spaces. A comprehensive review
of the XFEM/generalized FEM method with details of all implementation aspects is
available in [14].

3.2. The discrete DFN problem. With reference to definitions and notation
introduced in section 2, we now discuss the application of the XFEM to DFN prob-
lems. For brevity we focus here on closed interfaces, i.e., traces entirely crossing a
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X

Y

Interface S
Enriched DoF
Reproducing el.
Blending el.

Fig. 3.1. Selection of nodes in J . Fig. 3.2. Function Ψ(x̂).

fracture plane, for example, the one depicted in Figure 3.1. Generalizations to other
geometrical configurations of interfaces follow the same outline of this description,
requiring, in some cases, the introduction of different enrichment functions. More
general cases are considered in [5].

Let us consider a fracture F ⊂ R
2 that has #M intersections with other fractures

in Ω in the traces Sm ∈ Si, m ∈ M. The starting point for XFEM implementation
is a standard finite element setting, defined by a triangulation T F

δ not necessarily
conformal to the traces and the discrete test space Vfem

F,δ as defined by (3.1). On F the
exact solutions HF , PF , and δHF to (2.13), (2.19), and (2.21), respectively, may have
a jump of fluxes (a weak discontinuity) across the traces in Si. The numerical solution
of previous equations with XFEM allows the triangulation to be set on each fracture
independently of the disposition and number of the traces. This is much more relevant
as the number of traces increases or when traces intersect with arbitrary orientations,
since in these situations a good quality mesh fitting the interfaces could hardly be
produced and would require a huge number of elements, regardless of the required
accuracy. Enrichment functions for weak discontinuities were introduced in early
works with the XFEM, mainly in the context of fracture mechanics. A comprehensive
description can be found in [4, 27, 8, 14]. The description of each trace is performed
introducing a signed distance function dm that is defined for x̂ ∈ F as the distance
with sign from segments Sm [27, 4]:

dm(x̂) = ‖x̄− x̂‖ n̂S · (x̄− x̂)

‖n̂S · (x̄− x̂)‖ ,

where x̄ is the projection of x̂ on Sm and n̂S the fixed unit normal vector to Sm. The
enrichment functions are built starting from the signed distance functions. For a closed
interface we use the enrichment function Ψm defined as Ψm(x̂) = |dm(x̂)|. Clearly
Ψm is a continuous function, but its first order derivatives have a jump across Sm,
thus introducing the required nonsmooth behavior in the approximation (Figure 3.2).
The sets of enriched DOFs, Jm, are defined according to (3.4) for each trace.

In order to avoid problems related to blending elements, the XFEM modified
version [13] is used. Functions Ψ̃m and sets J̃m are built starting from Ψm and Jm

according to definition (3.6). The discrete approximation space is thus

(3.7) Vxfem
F,δ = span

(
{φξ(x̂)}ξ∈I , {φξ(x̂)Φm(x̂)}m∈M,ξ∈Jm

)
⊂ H1

0(ω),

and the discrete solution is
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(3.8) hxfemF,δ (x̂) =
∑
ξ∈I

hξφξ(x̂) +
∑
m∈M

∑
ξ∈ ˜Jm

amξ φξ(x̂)Ψ̃m(x̂).

We remark the additivity of the previous formula with respect to the interfaces: the
previous expression does not depend on where traces are located, how close they are
to each other, or whether they do intersect each other, nor on which elements the
enriched functions are defined.

The numerical integration of nonsmooth functions is performed on subdomains
where the restriction of basis functions is regular. A Gauss quadrature rule is used,
adopting the number of integration nodes required by the polynomial degree of the
integrands.

4. Discrete formulation. In this section we provide a discrete formulation of
problem (2.17). For simplicity, we assume in this section homogeneous Dirichlet
boundary conditions, i.e., HD = 0. All the results can be extended to the general
case HD �= 0; see Remark 4.2. For simplicity of notation again, in this section, given
two (or more) vectors x ∈ R

p and y ∈ R
q, we will write (x, y) denoting the vector

(xT , yT )T ∈ R
p+q.

Under assumptions (2.16), the minimum of the functional J(U) is characterized by
conditions involving a fractional power of the Laplace operator on the traces. Hence,
we develop our numerical method for the approximation of the solution adopting the
following choices:

(4.1) US = L2(S), HS = L2(S) ∀S ∈ S .

Remark 4.1. We remark that with these choices the assumption of disconnected
traces can be removed. This is due to the following property of the L2-norm: if S1

and S2 are two possibly connected traces, then ‖ · ‖2L2(S1∪S2)
= ‖ · ‖2L2(S1)

+ ‖ · ‖2L2(S2)

(see also Remark 2.1).
For all i ∈ I, let Ji ⊂ I be the subset of indices such that for j ∈ Ji, the fracture

Fj shares a trace with Fi. Furthermore, ∀i ∈ I and ∀S ∈ Si, let us fix a finite
dimensional subspace of US for the discrete approximation uSi of the control variable
US
i . With similar notation let us also denote by hi the discrete approximation of Hi.

Let us introduce a basis {ψS
i,k}k=1,...,Ni,S for this subspace, so that we write

uSi =

Ni,S∑
k=1

uSi,kψ
S
i,k ∀i ∈ I, S ∈ Si .

Replacing these expressions in (2.15), using the L2-norm and CS
i hi = hi|S , we get

J(u) =
1

2

∑
i∈I

∑
S∈Si

⎛⎜⎝∫
S

⎛⎝ Ni∑
k=1

hi,kφi,k|S −
Nj∑
k=1

hj,kφj,k|S

⎞⎠2

dγ(4.2)

+

∫
S

⎛⎝Ni,S∑
k=1

uSi,kψ
S
i,k +

Nj,S∑
k=1

uSj,kψ
S
j,k

⎞⎠2

dγ

⎞⎟⎠ .

For all i ∈ I and S ∈ Si, let us introduce the subset Ki,S ⊆ {1, . . . , Ni} of indices
k of functions φi,k whose support has a nonempty intersection with S. The first
integral in (4.2) is rewritten as
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IS,hij =
∑

k∈Ki,S

h2i,k

∫
S

φi,k
2
|S dγ + 2

∑
k,�∈Ki,S

hi,khi,�

∫
S

φi,k |Sφi,�|S dγ +
∑

k∈Kj,S

h2j,k

∫
S

φj,k
2
|S dγ

+ 2
∑

k,�∈Kj,S

hj,khj,�

∫
S

φj,k|Sφj,�|S dγ − 2
∑

k∈Ki,S

∑
�∈Kj,S

hi,khj,�

∫
S

φi,k|Sφj,�|S dγ.

Let us introduce vectors hi ∈ R
Ni , hi = (hi,1, . . . , hi,Ni)

T , i ∈ I, and setting

NF =
∑

i∈INi, let h ∈ R
NF

be obtained concatenating, for i ∈ I, vectors hi. Hence
from now on, besides denoting the discrete solution, hi will also denote the vector of
corresponding DOFs.

Next, for all i ∈ I, S ∈ Si let us define matrices MS
i ∈ R

Ni×Ni and (for j ∈ Ji)
MS

ij ∈ R
Ni×Nj as

(MS
i )k� =

∫
S

φi,k|Sφi,�|S dγ, (MS
ij)k� =

∫
S

φi,k|Sφj,�|S dγ.

With these definitions, the first integral in (4.2) is written in compact form as

(4.3) IS,hij = hTi M
S
i hi + hTj M

S
j hj − 2hTi M

S
ijhj .

Let us turn to the second integral in (4.2). For a convenient compact form of
this second integral, let us consider a different numbering of functions uSi induced by
the trace numbering. Let S = Sm be a given trace with cm = (i, j) (hence i < j).
We denote by u−m the control function related to the mth trace and corresponding to
fracture Fi and by u+m the control function related to the same trace and corresponding
to the other fracture, Fj . This numbering induces a different numbering also on
the basis functions ψS

i,k, ψ
S
j,k which can be labeled as ψ−

m,k, ψ
+
m,k, respectively, and

accordingly we set N+
m = Ni,S , N

−
m = Nj,S .

Then we have, for � = − or +,

u�m =

N�
m∑

k=1

u�m,kψ
�
m,k ∀m ∈ M.

Now, let us introduce the vectors u�m ∈ R
N�

m , u�m = (u�m,1, . . . , u
�
m,N�

m
)T , m ∈ M,

� = −,+, and setting NT =
∑

m∈M(N−
m +N+

m) we define u ∈ R
NT

as

u = (u−1 , u
+
1 , . . . , u

−
#M, u

+
#M).

Let us also define the following matrices:

M�
m ∈ R

N�
m×N�

m , (M�
m)k� =

∫
S

ψ�
m,kψ

�
m,� dγ, m ∈ M, � = −,+

M±
m ∈ R

N−
m×N+

m , (M±
m)k� =

∫
S

ψ−
m,kψ

+
m,� dγ.

The second integral in (4.2), after some straighforward algebraic manipulation, is
rewritten as

IS,uij =

N−
m∑

k=1

u−m,k

2
∫
S

ψ−
m,k

2
dγ + 2

N−
m∑

k=1

N−
m∑

�=1

u−m,ku
−
m,�

∫
S

ψ−
m,kψ

−
m,� dγ +

N+
m∑

k=1

u+m,k

2
∫
S

ψ+
m,k

2
dγ

+ 2

N+
m∑

k=1

N+
m∑

�=1

u+m,ku
+
m,�

∫
S

ψ+
m,kψ

+
m,� dγ + 2

N−
m∑

k=1

N+
m∑

�=1

u−m,ku
+
m,�

∫
S

ψ−
m,kψ

+
m,� dγ
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and in compact form as

(4.4) IS,uij = (u−m)T M−
m u−m + (u+m)T M+

m u+m + 2(u−m)T M±
m u+m.

We can now write the whole functional J(u) in matrix form properly assembling
the previous matrices into a single one and resorting to vectors h and u. Let Gh ∈
R

NF×NF

and Gu ∈ R
NT×NT

be defined blockwise as follows: for i ∈ I, m ∈ M we set

Gh
ii =

∑
S∈Si

MS
i , Gh

ij = −MS
ij for j ∈ Ji,

Mm =

(
M−

m M±
m

(M±
m)T M+

m

)
, Gu = diag(M1, . . . ,M#M).

Since obviously (MS
ij)

T = MS
ji, matrix Gh is symmetric. The same property

clearly holds true for Gu. With these definitions, the functional J(u) can be
rewritten as

J(u) =
1

2
hTGhh+

1

2
uTGuu.

Now, let us turn our attention to the constraints, writing the algebraic counter-
parts of operators Ai, Bi in (2.14): overloading notation, we let Ai ∈ R

Ni×Ni and
Bi ∈ R

Ni×NSi with NSi
=
∑

S∈Si
Ni,S also denote the matrices defining the algebraic

operators as follows. We set

(4.5) (Ai)k�=

∫
Fi

∇φi,�∇φi,k dFi,
(
BSm

i

)
k�
=

∫
Sm

φi,k |Sm
ψ�
m,� dγ,

where, recalling that ISm = {i, j}, we take � = − if i < j or � = + otherwise.
Matrices BSm

i , Sm ∈ Si, are then grouped rowwise to form the matrix Bi, which acts
on a column vector ui containing all the control DOFs corresponding to traces of Fi.
Vector ui is obtained appending the blocks u�m in the same order used for assembling

Bi, as the action of a suitable operator Ri : R
NT �→ R

NSi such that ui = Riu. Hence,
constraints (2.14) lead to the algebraic equations

(4.6) Aihi −BiRiu = q̃i, i ∈ I,

where q̃i accounts for the term qi in (2.14) and for the weak discrete imposition of

boundary conditions. Letting w = (h, u) ∈ R
NF+NT

and defining

A = diag(A1, . . . , A#I) ∈ R
NF×NF

, B =

⎛⎜⎝ B1R1

...
B#IR#I

⎞⎟⎠ ∈ R
NF×NT

,

C = (A −B) ∈ R
NF×NF+NT

, G = diag(Gh, Gu),(4.7)

the overall problem reads

min
w

1

2
wTGw,(4.8)

s.t. Cw = q̃.(4.9)
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Hence the problem is a quadratic programming (QP) problem with equality con-
straints. First order necessary conditions for a point w∗ to be a solution to (4.8)–(4.9)
are given by the Karush–Khun–Tucker conditions (see, e.g., [21]):

(4.10) A =

(
G CT

C 0

)
, A

(
w∗

−p∗
)

=

(
0
q̃

)
,

where p∗ is the vector of Lagrange multipliers.
Remark 4.2. The results presented here do not rely on the assumption of ho-

mogeneous Dirichlet boundary conditions. If nonhomogeneous Dirichlet conditions
are taken into account, the quadratic functional in (4.8) also contains a linear term;
correspondingly, the right-hand side of (4.10) has a nonzero block, and the structure
of the problem is therefore the same.

For further discussion, we recall the following classical result concerning solution
of equality constrained QPs of the form (4.8)–(4.9); see, for example, [21]. Referring
to problem (4.8)–(4.9), let n and p denote the dimension of w and the number of
constraints, respectively, so that G ∈ R

n×n and C ∈ R
p×n.

Theorem 4.3. Let C have full row rank and assume that the matrix ZTGZ is
positive definite, where Z is a n × (n − p) matrix whose columns are a basis of the
null space of C. Then the matrix A defined in (4.10) is nonsingular and the vector
w∗ satisfying (4.10) is the unique global solution of problem (4.8)–(4.9).

Proof of existence and uniqueness of the solution to the discrete counterpart of
problem (2.17) is now a direct application of Theorem 4.3.

Theorem 4.4. Let us consider the discrete formulation (4.8)–(4.9) to the problem
of subsurface flow in a DFN with G and C defined as in (4.7). Then, the solution
exists and is unique and coincides with the solution to (4.10).

Proof. First, let us observe that G is symmetric positive semidefinite as for
any w = (h, u) we straightforwardly have wTGw ≥ 0. Furthermore, since all Ai

are nonsingular, due to standard properties of finite element discretizations, A is
nonsingular as well and C has full row rank. As rank(C) = NF we have dim(ker(C)) =

NT . Let z1, . . . , zNT ∈ R
NF+NT

be vectors forming a basis of ker(C). Then ∀zk, let
us partition zk = (zhk , z

u
k ) with zhk ∈ R

NF

and zuk ∈ R
NT

. We have Azhk = Bzuk ,
and thus zk has the form (A−1Bzuk , z

u
k ). In particular, take zuk = ek, where ek is the

kth vector of the canonical basis of RNT

, hence zk = (A−1Bek, ek). Let us compute
y = Gzk = (GhA−1Bek, G

uek). Let eNF+s be a vector of the canonical basis of

R
NF+NT

with s ≥ 1. We have yNF+s = eTNF+sGzk = eTs G
uek with es ∈ R

NT

. In
particular, taking s = k, we have

(4.11) yNF+k = eTkG
uek =

∫
S

ψS
i,�

2
dγ

for some i ∈ I and some 1 ≤ � ≤ Ni,S . Since the integral in (4.11) is nonzero, we
have at least one component of Gzk different from zero. Hence we have proved that
for any vector z ∈ ker(C), we have Gz �= 0 (unless z = 0), hence z /∈ ker(G). This
proves that ker(G) ∩ ker(C) = {0}. Now let Z be the matrix whose columns are
given by the basis vectors zk previously introduced. Since G is positive semidefinite

we have, for any y ∈ R
NF+NT

, yTGy ≥ 0 and yTGy = 0 if and only if y ∈ ker(G)

(see, e.g., [16]). Let v ∈ R
NT

be an arbitrary vector, v �= 0. Since Zv ∈ ker(C) and
ker(G) ∩ ker(C) = {0}, we have Zv /∈ ker(G) and so vTZTGZv > 0. This proves
positive definiteness of ZTGZ. Applying Theorem 4.3, the thesis is proved.
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4.1. Computing numerical solutions. Saddle point system (4.10) represents
a possible approach for obtaining a numerical solution. For a DFN of moderate size,
sparse (even direct) solvers can be used efficiently to compute a solution to (4.10).
Nevertheless, when the DFN system is composed of a huge number of fractures, even
if poor discretizations are introduced on each fracture, solving the linear system may
be a quite demanding task and parallel computing has to be taken into account. If
this is the case, instead of assembling the linear system and splitting information and
operations among processors/cores, a gradient-based method such as the basic one
depicted in what follows can be taken into account. The following numerical method
arises from the discretization of the steepest descent method briefly described at the
end of subsection 2.2. At step k, given uk, let us compute hki as the solution to (4.6)
and pki as the solution to

(4.12) AT
i p

k
i = Gh

iih
k
i +

∑
j∈Ji

Gh
ijh

k
j ∀i ∈ I.

Then, we define a vector δuki componentwise as the L2(Si) projection of the function

pki + ΠSm∈Si
((u−m)k + (u+m)k) against basis functions. Nodal interpolation can be

taken in the case of Lagrangian basis functions. Then, we move along direction δuk

with a stepsize

(4.13) λk = −
∑

i∈I(δu
k
i )

T δuki
1
2

∑
i∈I

∑
Sm∈Si

(
‖δhik|Sm

−δhjk|Sm
‖2L2(Sm)+‖(u−m)k+(u+m)k‖2L2(Sm)

) ,
where δhki is the solution to

(4.14) Aiδh
k
i = Biδu

k
i ∀i ∈ I.

The corresponding algorithm is the following.

Algorithm 4.5.

1. Set k = 0 and initial guess for control variable u0;
2. compute h0 = h(u0) solving (4.6) on each fracture;
3. Do

3.1 compute pk solving on each fracture the dual problem (4.12);
3.2 compute δuk and solve (4.14) to get δh;
3.3 evaluate λk according to (4.13) and update uk+1 = uk + λkδuk;
3.4 compute hk+1 = hk + λkδhk

3.5 k = k + 1
while stopping criterion is not satisfied.

Remark 4.6. Algorithm 4.5, which is the discretization of the infinite dimen-
sional steepest descent method, is equivalent to the application of the steepest descent
method to the finite dimensional problem (4.8)–(4.9).

Each iteration of Algorithm 4.5 essentially requires the solution of (4.12) and
(4.14), whereas it is not necessary to solve the primal equation (4.6) at each iteration,
because, thanks to linearity, the new value hk+1 for the numerical hydraulic head
can be computed as shown in Step 3.4 Nevertheless, in practical computations, it is
advisable to periodically replace Step 3.4 with the computation of hk+1 via the primal
equation, in order to improve numerical stability.

We end this section by highlighting that solutions to problems (4.12) and (4.14)
can be obtained by decoupling the computation among fractures. This point makes
the method appealing when parallelization comes into play, as this approach turns
out to be highly parallelizable in a very natural way, by distributing fractures among
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processors and involving a moderate exchange of data. This approach is suitable for
massively parallel computers and GPU-based computers.

5. Numerical results. In this section we present some preliminary results
which aim to show the viability and effectiveness of the method proposed here in
circumventing any kind of problem concerning mesh generation on the whole DFN.

Two test problems have been considered here. In Problem 1 the numerical simu-
lations are performed both with standard finite elements on conforming grids aligned
to a trace and with extended finite elements with a trace crossing mesh elements.
Numerical results are compared to the known exact solution. In Problem 2 a more
complex domain is considered. In both tests, traces entirely crossing a fracture are
considered. The application of the method to more complex DFN configurations is
shown in [5]. Triangular meshes and first order finite elements are used in all the tests.
Let Vi,δ be the discrete enriched finite element space on the fracture Fi ∀i ∈ I, defined
according to (3.7). Let Uδ ⊂ U be the discrete space for the control functions. The
space Uδ is here defined as the space of the piecewise linear functions on the traces
Sm, m ∈ M; the nodes of the one-dimensional mesh on each trace are given by the
intersections of the 2D mesh on the corresponding fracture with the trace itself. If an
edge of the 2D mesh lies on the trace, the endpoints of the edge are taken as nodes
of the one-dimensional mesh.

In the presentation of numerical results the following convention is used:
• FEM: our optimization approach on standard finite element meshes without
enrichments; meshes are aligned along the traces (Figure 5.1, left). For Prob-
lem 1 the same mesh is used in all the fractures. This method is used to
compare our results with those obtained on a conforming mesh, in which it
is ensured that the minimum of J equals 0.

• XFEM: extended finite elements are used and the meshes in all the fractures
do not match along the traces (Figure 5.1, right). In this case the minimum
of functional J computed with the discrete solutions is in general �= 0.

In all tests we computed the numerical solution both using the gradient method
and solving the linear system (4.10). When the gradient method was applied, we
started from a null control u0. Both the overall linear system (4.10) and the smaller
dimension systems involved in (4.12) and (4.14) have been solved with the MATLAB
built-in direct solver.

Depending on the choices of the mesh on each fracture Fi, the minimum of func-
tional J(u) can be different from zero. In Algorithm 4.5 the following stopping criteria
have been used:

(5.1) J(uk)− J(uk+1) < tol1 or
J(uk)− J(uk+1)

J(uk+1)
< tol2.

In the results here reported we used tol1 = 10−15 and tol2 = 10−3.

5.1. Problem 1. Let us define Ω = F1 ∪F2, where x = (x, y, z), and F1 and F2

are given by

F1 =
{
x ∈ R

3 : x ∈ (−1, 1), y ∈ (0, 1), z = 0
}
,

F2 =
{
x ∈ R

3 : x = 0, y ∈ (0, 1), z ∈ (−1, 1)
}
.

Let S = F1 ∩ F2. The problem is set as follows:

−ΔH = q in Ω\S(5.2)
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with homogeneous Dirichlet boundary conditions on all the boundary ∂Ω. The forcing
function q is defined as follows:

q(x) =

{
6(y − y2)|x| − 2(|x3| − |x|) on F1,
−6(y − y2)|z|+ 2(|z3| − |z|) on F2,

and the exact solution is given by

H(x) =

{
−y(1− y)|x|(x2 − 1) on F1,
y(1− y)|x|(x2 − 1) on F2.

Figure 5.1, left, shows a mesh used for the fractures F1 and F2 using standard finite
elements, whereas the right shows the domain and, on each fracture, the mesh used
with the extended finite elements. Note that in the second case the two meshes on F1

and F2 are not conforming. Both figures refer to intermediate meshes, corresponding
to meshsize δmax = 0.06, where δmax = 0.25 and δmax = 0.016 are the meshsizes of
the coarsest and finest grids used, respectively.

Figure 5.2 displays the solutions on F1 and F2 obtained with XFEM on the
intermediate grid. The same solution is also represented in Figure 5.1, right, with
a colorbar. Near the trace the numerical solution is plotted on the subelements
generated by cutting XFEM elements along traces. It can be noted that the correct
nonsmooth behavior of the solution is caught by XFEM enrichments even if element
edges do not match the trace. Figure 5.3 shows the behavior of L2 andH1 error norms
with respect to the meshsize δmax during a uniform mesh refinement process. The

F1

F21.2

1

0.8

0.6

0.4

0.2

0

–0.2

–1 –0.5 0 0.5 1

Fig. 5.1. Problem 1: Left: standard FEM conforming mesh on each fracture; right: domain
description with XFEM meshes and solution h in colorbar.
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Fig. 5.2. Problem 1: Solution with XFEM on fracture F1 (left) and F2 (right) for δmax = 0.06.
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Fig. 5.3. Problem 1: L2 (left) and H1(Ω) (right) error norms under grid refinement.
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Fig. 5.4. Problem 1: Minimum of
√
J under

grid refinement.
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Fig. 5.5. Problem 1: Control variable and
exact solution (intermediate grid).

slopes m of the curves, reported in the legend of each figure, agree with the expected
values for P 1 elements even in the case of XFEM.

Remark 5.1. For this test problem we have H(x) /∈ H2(Fi), i = 1, 2, whereas
H(x) ∈ H2(f), f being any one of the four subfractures in which F1 and F2 are
divided by the trace. As described in [15, 29], this regularity is enough to provide the
convergence orders of Figure 5.3, which are the theoretical ones for H(x)∈H2(Fi).

Figure 5.4 displays the minimum value of
√
J as a function of the meshsize on

nonconforming meshes. In the XFEM case the target minimum of the functional is
different from zero and, as expected, its value depends on the meshsize, while this is
not the case for the standard FEM, since the minimum of the functional can vanish
independently of the meshsize.

In Figure 5.5 the exact value of
[[
∂H1

∂ν̂1
S

]]
is compared with the computed values of

the control variable u1 obtained on the intermediate grids, both with FEM and with
XFEM. The figure clearly shows a very good agreement between all the values. The
norm of the flux mismatch on the trace, i.e., ‖u1 + u2‖L2(S), has been computed with
both approaches, obtaining ‖u1 + u2‖L2(S) � 10−16 with FEM and ‖u1 + u2‖L2(S) =
3.1 10−8 with XFEM.

Remark 5.2. The vanishing of the minimum value of the functional with stan-
dard FEM does not correspond to a significantly better approximation of the global
solution, as we can argue by comparing the errors in the solution in Figure 5.3, where
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Fig. 5.6. Problem 1: Functional trend
against iterations with XFEM (five grids).
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Fig. 5.7. Problem 2: Fractures configura-

tion, projection on x− y plane.

we can see that the errors corresponding to the same meshsize are comparable in the
FEM and XFEM cases, with both L2- and H1-norms. As seen in Figure 5.5, the
accuracy of the fluxes on the trace are comparable. The vanishing minimum value of
J for FEM is only related to a better satisfiability of the matching conditions between
the approximated solutions on the fractures, and the accuracy of the overall solution
is comparable for XFEM and FEM.

In Figure 5.6 the behavior of
√
J during the minimization process attained by the

gradient method is shown. As expected the functional related to the XFEM solution
reaches a plateau corresponding to a nonvanishing value when one of the stopping
criteria in (5.1) is satisfied. As shown in Figure 5.6, mesh refinement can reduce the
final functional value.

No effort has been spent here for improving convergence properties of the min-
imization process, as our main target is proving viability of the approach. Many
improvements in the optimization process are possible; future work will be devoted
to this issue. Nevertheless, despite the number of iterations required by the gradient
method, the computational cost of each iteration is small, as it essentially requires the
solution of the state equations on each fracture. This aspect itself makes the method
appealing when parallelization comes into play.

5.2. Problem 2. In the second test problem the proposed method is applied to
a DFN composed by seven rectangular fractures. Figure 5.7 shows the intersections
of the fractures with the plane z = 0. All the fractures have z ranging from 0 to
1. In Figure 5.7, Pn, n = 1, . . . , 14, denotes the starting and ending points of the
intersections; Fi, i = 1, . . . , 7, the intersection of the fractures with z = 0; and
Tm, m = 1, . . . , 11, the intersections of the traces Sm with z = 0. The 3D DFN
configuration is shown in Figure 5.8.

The problem is set as follows:

−ΔH = 0 in Ω \ S,(5.3)

H|ΓD
= y +

√
z on ΓD,(5.4)

∂H

∂ν̂
= 0 on ΓN ,(5.5)

where S =
⋃

m=1,...,11 Sm, ΓD is the set of the edges along the z direction intersecting
z = 0 in the points P13, P9, P1, P3, P6, P5, and P7, whereas ΓN is the set of
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Fig. 5.8. Problem 2: Fracture configuration and meshes.
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Fig. 5.9. Problem 2: Solution on fracture F4 (left) and flux mismatch on the fractures (right).
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all the other boundaries of the fractures. The computing mesh used is depicted in
Figure 5.8. We remark that the meshes on the fractures are independently generated
with meshsize δmax = 0.39 without requiring any conformity constraint along the
traces.

The solution is shown on some selected fractures. In Figure 5.9 the solution on
fracture F4 is shown. Here, in order to better display the enriched numerical solution,
it is plotted, rather than on the actual computing elements, on subelements generated
by splitting the computing elements along traces.

Figure 5.10 shows, using a colormap, solutions on fractures F3 and F7. Here, the
mesh depicted is the actual computing mesh. The vertical dashed lines correspond
to traces. The rightmost dash-dot vertical line is a common trace between the two
fractures. Nonconformity of meshes is clearly shown in the figure. Finally, in the
table on the right of Figure 5.9 we report, for each fracture Fi, i = 1, . . . , 7, the flux
mismatch and total flux, computed as

∑
S∈Si

∫
S
uSi + uSj dγ and

∑
S∈Si

∫
S
uSi dγ,

respectively. The overall flux mismatch on the whole DFN is 8.14e-6.

6. Conclusions. In this paper we propose a new approach to DFN simulation,
which does not need any kind of conformity along the traces for the meshes introduced
on the fractures. The method proposed thus circumvents all the difficulties typically
related to mesh generation processes of partially or totally conforming grids. This
novel approach is based on a PDE-constrained optimization problem and is devel-
oped in order to be easily parallelized on massively parallel or GPU-based or hybrid
parallel computers. The key point which makes the method suitable for a parallel
approach is that the global solution is obtained through the resolution of many small
local problems that require a moderate exchange of data among fractures. Some
preliminary numerical simulations prove the viability of the approach. A detailed
analysis of the performance of the method on more complex fracture configurations
is proposed in [5].
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