
Post print (i.e. final draft post-refereeing) version of an article published on Engineering Fracture

Mechanics. Beyond the journal formatting, please note that there could be minor changes from

this document to the final published version. The final published version is accessible from here:

http://dx.doi.org/10.1016/j.engfracmech.2010.02.030

This document has made accessible through PORTO, the Open Access Repository of Politecnico di

Torino (http://porto.polito.it), in compliance with the Publisher’s copyright policy as reported

in the SHERPA-ROMEO website:

http://www.sherpa.ac.uk/romeo/issn/0013-7944/

Fracture Mechanics Characterization of an Anisotropic
Geomaterial

F. Barpi1, S. Valente1, M. Cravero2, G. Iabichino2, C. Fidelibus2

1 Department of Structural and Geotechical Engineering, Politecnico di Torino

2 Institute of Environmental Geology and Geoengineering, National Research Council of Italy, Torino

Keywords: Semi-Circular specimen under three-point Bending (SCB), transversal isotropy, co-

hesive crack, non-linear fracture mechanics, fictitious crack model, argillites, size effect, fracture

energy, apparent fracture toughness

1



Nomenclature

• a0: specimen notch depth

• aij : compliance coefficients

• α: softening law parameter

• b0: notch width

• ci: generic coefficients

• CMOD: crack mouth opening displacement

• D: core diameter

• E1 = E2, E3: elasticity moduli transversely isotropic material

• η: deflection

• ft: ultimate tensile strength

• ft⊥s: normal-to-bedding tensile strength

• ft‖s: parallel-to-bedding tensile strength

• G13 = G23: shear moduli

• Gf‖s: fracture energy parallel-to-bedding plane

• H: semi-circular specimen height

• KI: stress intensity factor

• KIc: critical value of stress intensity factor

• L: support span

• ν12, ν13 = ν23: Poisson coefficients

• P : applied load

• r, θ: polar coordinates
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• R: normal stress ratio

• sj : roots of the characteristic equation

• S: specimen thickness

• σ: stress tensor

• σθ: circumferential stress

• σθ,m: admissible maximum value of the circumferential tensile stress

• σn: normal stress in the cohesive law

• σns: normal stress on the bedding plane

• u1, u2, u3: displacement components

• wm: critical value of wn

• wn: normal-to-crack displacement discontinuity component

• wm‖s: critical value of wn for a crack opening parallel to bedding

• wt1, wt2: displacement discontinuity tangential components

• W : semi-circular specimen weight

• x1, x2: crack local coordinate system

• x, y, z: Cartesian coordinates

1. Introduction

Argillites are considered worldwide as potential host rock for high level ra-

dioactive waste given the low permeability and strong adsorption potential.

However, the excavation of the galleries of a repository would produce a dis-

turbed zone around the boundaries rich of new fractures which may enhance

the conductivity of the rock along the gallery axis. Several mine-by experiments

have been performed in Underground Research Labs (URLs) to investigate the
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features of such a disturbed zone. In Mont Terri URL (Kanton Jura, Switzer-

land) the EZ-B experiment was specifically conceived for the measurement of

excavation-induced fractures around a small chamber ([1]).

The host rock of the URL is a particularly compact and resistant argillite,

known as the Opalinus Clay (OPA). During experiments, boreholes were exca-

vated and OPA samples were subjected to fracture mechanics tests at the rock

mechanics lab lab of IGAG-CNR1. The tests aimed at the understanding of the

fracturing process occurring in OPA at Mont Terri; the rock may be considered

a transversely isotropic geomaterial, whose planes of isotropy coincide with the

bedding.

In such a rock Fracture Mechanics (FM) parameters are orientation-dependent.

Bedding planes in the samples are aligned 45◦ with respect to the borehole axis.

Semi-Circular specimen under three-point Bending (SCB) FM tests were ac-

complished to derive these orientation-dependent parameters. The results were

interpreted by resorting to a three-dimensional Cohesive Crack Model (CCM)

in the framework of the Non-Linear Fracture Mechanics (NLFM) theory. The

advantages of a NLFM model with respect to a Linear Elastic Fracture Mechan-

ics (LEFM) model are the following: both pre-peak and post-peak (softening)

phases can be simulated by means of CCM; the requirements in terms of mini-

mum specimen size are less restrictive.

Mode-I tensile crack growth was addressed in these tests. Mode-I is in fact

deemed as a dominant process around a tunnel, even at the sidewalls where the

crack growth under compressive stress is driven also by tensile failure at the

tips.

The note reports a synopsis of the results of the tests, together with the

related interpretation via CCM, anticipated by a short review of the existing

contributions about the crack growth in anisotropic materials and a description

of the features of the CCM. A comparison is also given with the results of the

1Institute of Environmental Geology and Geoengineering, National Research Council of

Italy, Torino, Italy
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application of a LEFM model. Finally, scale-dependent effects are addressed and

remarks on the importance of a careful petrographical analysis, aimed at the

definition of type, extension and occurrence of heterogeneities, are also reported.

2. Crack growth in anisotropic materials

Scientific contributions concerning crack growth in Mode-I in anisotropic

materials are framed into LEFM ([2], [3] and [4]).

The essential position underpinning LEFM is the lack of a plastic zone at

the tip of a crack. This implies a fully elastic behavior with stress singularities.

Rather than comparing the stresses with some reference values to indicate fail-

ure, the severity of the stress field around the crack tip is measured by a factor

applied to the asymptotically singular solution. This factor is called Stress In-

tensity Factor (SIF). The value reached by SIF at the onset of crack growth can

be assumed as a property of the materials and called critical value of the SIF.

If the relative displacement of the crack walls is characterized by the opening

component, then the corresponding SIF is called KI and the critical value is

called KIc (fracture toughness).

A solution for the stress field around sharp cracks (under tensile loading)

in infinite anisotropic plane domain is available (see [5]) and described in the

following.

With reference to a polar system of coordinates (r,θ) centered at the tip of

a crack, the circumferential stress is as follows:

σθ =
KI√
2πr

Re

[
1

s1 − s2

(
s1 (s2 sin θ + cos θ)3/2 − s2 (s1 sin θ + cos θ)3/2

)]
(1)

for Mode-I loading and:

σθ =
KII√
2πr

Re

[
1

s1 − s2

(
(s2 sin θ + cos θ)3/2 − (s1 sin θ + cos θ)3/2

)]
(2)

for Mode-II. In Equations 1 and 2 sj represents the complex roots of the fol-

lowing characteristic equation:
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a11s
4 − 2a16s

3 + (2a12 + a66)s2 − 2a26s+ a22 = 0 (3)

where aij are the compliance coefficients with reference to the coordinate system

of the crack (x1 aligned with the crack). In case the crack is aligned with one of

the principal direction of anisotropy, the previous equation simplifies as follows:

a11s
4 + (2a12 + a66)s2 + a22 = 0 (4)

where the elastic compliance coefficients are related to the engineering constants:

a11 = 1/E1, a22 = 1/E2, a12 = a21 = −ν12/E1, a66 = 1/G12.

By compounding Equations 1 and 2 one has:

σθ =
KI√
2πr

Re [c1 (s1c2 − s2c3)] +
KII√
2πr

Re [c1 (c2 − c3)] (5)

where ci coefficients are as follows:

c1 =
1

s1 − s2

c2 = (s2 sin θ + cos θ)
3/2

c3 = (s1 sin θ + cos θ)
3/2

The propagation criterion for the anisotropic case requires to maximize the

following normal stress ratio R from crack tip:

R(r, θ) =
σθ
σθ,m

(6)

where σθ,m represents the admissible maximum value of the circumferential

tensile stress, which is a property of the material. This limit value can be

defined from Equation 1. It is:

σθ,m =
KIc(θ)√

2πr
(7)

where the fracture toughness Mode-I KIc is orientation-dependent and has an

elliptical variation as follows:
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KIc(θ) = KIc,1 cos2 θ +KIc,2 sin2 θ (8)

By considering Equations 5, 7, 8, the normal stress ratio R is then equal to:

R(θ) =
KIRe [c1 (s1c2 − s2c3)] +KIIRe [c1 (c2 − c3)]

KIc,1 cos2 θ +KIc,2 sin2 θ
(9)

Under a specific combination of loads, the crack propagates along the direc-

tion θ0 for which R is 1. Equation 9 represents an important step towards the

understanding of the processes involving cracking in anisotropic solids.

3. The cohesive crack model

wm

ft

inelastic

stress distribution

elastic

stress distribution

visible crack

true crack process zone

stress free

Figure 1: Scheme of the Fracture Process Zone according to the Cohesive Crack Model

LEFM theories are adequate when the plastic zone at the tip of a crack is

small compared to the crack length, as occurring for brittle bodies. On the

contrary, experimental tests on specimens show that KIc for concrete, rock and

masonry depends on size. These materials belong to a class called quasi-brittle

materials, also known as concrete-like materials. This scale dependency is con-

ceptually linked with the existence of a relatively large (with respect to the

crack size) and non-linear zone in front of a crack tip. To overcome the limita-

tions of LEFM, the cohesive crack model was introduced first by Barenblatt [6]
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and Dugdale [7] and later applied to concrete by Hillerborg et al. [8], Bocca et

al. [9, 10, 11], Bocca and Carpinteri [12] and Barpi and Valente [13].

According to this model when the principal tensile stress achieves the ulti-

mate tensile strength ft a complex non-linear behaviour occurs at the micro-

scale. This behaviour can be simulated by assuming a fictitious crack extension

where the material, albeit damaged, is still able to transfer stresses that are a

decreasing function of displacement discontinuity component wn, i.e., the rela-

tive normal displacement of the crack walls. Along the crack two distinct points

are marked: the fictitious crack tip, where the non-linear phenomenon starts

and real crack tip, where wn achieves the critical value wm. Beyond the last

point no stress transfer occurs and the crack is stress free. The zone between

the tips is called Fracture Process Zone (FPZ). The material response outside

FPZ is considered linear. Figure 1 shows a scheme of FPZ.

4. Description of tests and results

In this section a description of the equipment utilized and type of test is

given together with the illustration of the results obtained.

In order to define OPA FM parameters and given the intrinsic heterogeneity

of such a material, there was the need to accomplish a sufficient number of tests

in spite of a limited amount of material available, therefore the SCB test was

selected. This test is an accurate and fast method to measure FM parameters

when core-based cylindrical samples are available. The preparation time is

short (provided the rock type is not sensitive to machining) and set up of the

equipment is relatively easy. During the test a loading machine drives to failure a

5-cm-thick semi-circular specimen bending on two support rollers. The specimen

is produced by cutting a slice from the core and then operating a further cut

along a diameter to split the slice in two halves. Then a notch is machined from

the center of the semi-circular specimen (see Figure 2). For water-sensitivity

materials as OPA, cutting is generally performed dry with a cylindrical saw.

Cutting of the slice along the diameter results probably in a loss of material,
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Figure 2: SCB test. A crack developed initially along the plane of the notch, then a further

crack along weak bedding plane propagated giving rise to a multiple-crack failure

therefore the two halves may be not perfectly semi-circular. When required the

basis of the half can be regularized.

Tests on the collected samples were performed in a hydraulic servo-controlled

machine. With the increase of the applied load P a clip gauge extensometer

measured the Crack Mouth Opening Displacement (CMOD) up to the specimen

failure. CMOD is in practice the relative horizontal displacement measured at

the mouth of the notch. Also the vertical displacement (deflection η) at the base

of notch was monitored. Some of the tests were run at a constant deflection

rate (0.4÷0.6µ/s), some at constant CMOD rate (0.03÷0.05µ/s).

As expected the ease to break along the bedding interfered strongly with

the expected crack growth in many tests: cracks appeared to propagate initially

along the plane of the notch and loading, then for the occurrence of weaker bed-

ding planes they diverted giving rise sometimes to complex three-dimensional

crack patterns.
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S. x D H S W a0 b0

B0302 7.57-7.78 82.6 39.6 44.8 296.54 5.7 2.0

B1906 0.15-0.28 79.6 38.2 47.5 280.55 7.1 2.5

B1907 0.15-0.28 79.6 38.3 47.7 276.68 7.3 2.8

B1910 0.40-0.50 79.6 38.3 43.1 256.47 5.0 2.3

B1911 0.50-0.60 79.6 38.4 43.1 253.06 5.3 2.0

B1912 0.85-0.92 79.5 37.6 37.9 212.44 5.5 2.3

B1913 0.92-1.00 79.6 39.4 38.0 226.41 6.0 2.1

B1917 1.30-1.50 79.7 39.1 43.1 257.81 5.6 2.1

B1918 1.70-1.90 79.6 39.3 41.0 243.74 5.8 2.3

Table 1: List of the specimens. Legenda: x[m] distance from the top, D[mm] diameter of the

core, H[mm] semi-circular specimen height, S[mm] thickness, W [g] semi-circular specimen

weight, a0[mm] notch depth, b0notch width. The support span L[mm] is always 62 mm

A series of 23 specimens was tested, only in 9 the crack followed predomi-

nantly the plane of the notch, thus providing the response along that plane. In

the remaining tests crack propagated initially along the plane of the notch but

then diverted soon to follow a bedding plane. In these cases the load-versus-

CMOD plot resulted meaningless and test was disregarded. Data of the 9 best

specimens are reported in Table 1 while the results in terms of CMOD and de-

flection η (CMODp and ηp respectively) at peak load Pp are reported in Table 2.

The values of η may be biased by initial settlement due to high strain occurring

close to the support rollers. The experimental results are presented in Figures

3 and 4 in terms of load against CMOD and load against deflection.

The evaluation of fracture toughness KIc (Mode-I) was performed by the

application of the following relation [14] that fits the results of FEM simulations

by Chong et al. [15]:

KIc =
Pp

DS

√
πa0

[
4.47 + 7.4

a0

D
− 106

(a0

D

)2

+ 433.3
(a0

D

)3
]

(10)

In Table 3 the derived KIc values are reported for the selected specimens.
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S. Pp[N] CMODp[µm] ηp[µm]

B0302 1600 23 370

B1906 1827 14 319

B1907 1400 48 228

B1910 1231 84 236

B1911 1314 15 244

B1912 1573 14 374

B1913 1428 44 272

B1917 1986 20 353

B1918 1069 47 195

Table 2: Results from the selected specimens: S. specimen, Pp, CMODp, ηp load, CMOD and

deflection at peak

S. KIc

B0302 0.27

B1906 0.33

B1907 0.26

B1910 0.21

B1911 0.23

B1912 0.32

B1913 0.30

B1917 0.35

B1918 0.20

Table 3: KIc[MPa
√

m] for the selected specimens

Given the orientation of the bedding with respect to plane of the notch, these

values refer to the Mode-I fracture toughness for cracks opening normal to the

bedding, therefore, conforming with Equation 8, it is the principal maximum

value KIc,1. The mean value and standard deviation are respectively 0.27 and

0.05MPa
√

m.
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Figure 3: CMOD against load P for the selected 9 specimens

Rummel et al. [16] measured a KIc,1 value of 0.53 MPa
√

m for OPA. They

used three-point-bending tests with Chevron notched cores on borehole material

and mini-plugs. The axial bending displacement rate was kept constant and

equal to 1µ/s. The discrepancy between the results from Rummel et al. [16]

and the results provided herein may depend on several factors, like specimen

geometry and testing method [17] and scale (see the importance of the scale

effect later on). OPA mechanical response is also strongly conditioned by the

water content and loading rate. With reference to the last factor, Haberfield

and Johnston [18] argued that a negative excess of pore-water pressure in the

crack tip yield zone may occur during a FM test in soft rocks. For a relatively

high loading rate and materials of low diffusivity this excess may not dissipate,

thus a larger apparent fracture toughness may be measured. The SCB tests

are performed at a lower rate than the three-point-bending tests of Rummel et

al [16].
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Figure 4: Deflection η against load P for the selected 9 specimens

5. Setup of NLFM numerical model

As previously mentioned, LEFM is a rather simple model for the inter-

pretation of FM tests in geomaterials. In fact the assumption of a negligible

plastic zone is generally not accepted for geomaterials. Furthermore, the frac-

ture toughness as derived by Eq. 10 is based on the assumption of an isotropic

medium, thus an error is introduced in the assessment. It is therefore suggested

to perform the interpretation of the SCB tests by means of a three-dimensional

numerical NLFM model, in which the anisotropy is explicitly included.

As far as the criterion for crack propagation is concerned, the details are in

what follows. Given a fixed FEM mesh of a NLFM numerical model, the finite

stress computed at a crack tip depends on the mesh itself. In particular, at a

given applied load, the stress increases inversely to the mesh size, therefore there

is a lack of mesh objectivity. However it is demonstrated that the initial (linear

elastic) part of the P -CMOD curve does not depend on the mesh. It is assumed
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herein that this phase finishes when the maximum principal stress (normal to

the notch plane and paralell to bedding) achieves the parallel-to-bedding tensile

strength ft‖s.

Due to the symmetric boundary conditions of the specimen, the load-induced

damage is localized along the notch plane. Within FPZ the residual stresses are

called cohesive stresses and are decreasing functions of displacement discontinu-

ity wn. According to CCM the material outside FPZ behaves linearly, whereas

the non-linear part of the model is confined within FPZ. With reference to Figure

1, in a three-dimensional model FPZ becomes a surface whereas the real crack

tip and the fictitious crack tip become a line. Given the three-dimensionality

of the model, the displacement discontinuity is characterized by the component

wn normal to the notch plane and two tangential components wt1 and wt2. Due

to the symmetry it results wt1 = wt2 = 0 and τ1 = τ2 = 0, where τ1 and τ2 are

the tangential stress respectively parallel to wt1 and wt2.

The damage process at FPZ is characterized by an uniaxial softening law (im-

plemented in the commercial code ABAQUS [19]: σn = σn(wn), which is based

on the exponential relation proposed by [20], specialized herein for anisotropic

materials:

σn
ft‖s

= 1− 1− e
−αwn
wm‖s

1− e−α
(11)

where wm‖s is the critical value for wn for a crack normal to bedding (and

opening displacement parallel to bedding). For wn > wm‖s no stress transfer

occurs and therefore the crack is stress-free.

The softening law is plotted in Figure 5 for α equal to 5 (a typical value for

concrete-like materials). The area under this curve is the energy necessary to

obtain a unit area of stress-free crack surface and corresponds to the Mode-I

fracture energy Gf‖s.

For a transversely isotropic material the elastic properties of the material are

axially-symmetric with respect to the axis normal to the bedding ([21]). Five

constants are independent, elasticity moduli E1 and E3, Poisson coefficients
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Figure 5: Softening law for α=5

E1 = E2 E3 ν12 ν13 = ν23 G13 = G23

GPa GPa - - GPa

10 4 0.33 0.24 1.2

Table 4: Elastic material properties.

ν12 and ν13 and shear modulus G13, being axes 1 and 2 in the bedding plane.

Table 4 reports the assumed values, that are recommended by [21] and allow a

good fitting of the experimental results in the initial part of P -CMOD diagram.
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Figure 6: Boundary conditions applied to the solid model

Figure 7: Boundary conditions applied to the solid model

Figures 6 and 7 show two axonometric views of the specimen model, respec-

tively with indication of applied loads and boundary conditions from up and

from below. The non-linear phenomena are localized along the two vertical sur-
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Figure 8: Finite element mesh

faces lying on the notch plane. The notch width b0 is assumed negligible and

is not visible in the previous figures. The maximum dip vector of the bedding

planes is inclined 45◦ respect to the borehole axis and lies in the plane of the

notch. Figure 8 shows the finite element mesh as generated by the commercial

code ABAQUS. It consists of type-C3D4 four-nodes three-dimensional elements.

A rigid displacement downward is applied to the upper part of the specimen, as

shown in Figure 6.

ft‖s Gf‖s wm‖s

MPa N/m mm

2 38 0.1

Table 5: Fracture properties of planes normal to the bedding.
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Figure 9: Load per unit specimen thickness vs Crack Mouth Opening Displacement plot per

unit specimen thickness; upper curve a0=5.4 mm, middle curve a0=6.0 mm, lower curve

a0=7.3 mm

6. Numerical results

The NLFM model described above was utilized to assess first the combi-

nation of parameters giving the numerical response that fits better the experi-

mental observations. These parameters are Gf‖s, ft‖s and wm‖s. However, after

fixing α in the softening law of Eq.11, only two of three parameters are inde-

pendent. In the numerical tests, a reference value for ft‖s was assumed equal to

2 MPa, that is recommended by Bock [21]. The baseline values for parameters

are reported in Table 5. The corresponding P -CMOD curves comprises of the

experimental results of Figure 3 is presented in Figure 13).

The sensitivity of the response to the parameters was evaluated by perform-

ing four model runs by combining perturbations of +-25% to ft‖s and wm‖s.

Figure 10 shows the results for a0 = 6 mm.

In order to evaluate the sensitivity of the response to notch depth a0, three
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Figure 10: Sensitivity of load vs CMOD diagram on ft and wm (a0=6 mm); (a) a circle

indicates both parameters increased of 25%; (b) a triangle indicates ft increased and wm

decreased; (c) a rhombus indicates ft decreased and wm increased; (d) a square indicates

both parameters decreased of 25%;

models (diameter D=80 mm, thickness s=39 mm, support distance L=62 mm)

were set up accordingly to minimum (5.3 mm), most probable (6 mm) and

maximum (7.3 mm) values of a0 values of the selected specimens by using the

parameters of Table 5. Figure 9 shows the vertical load per unit specimen

thickness P/S plotted against CMOD for all cases.

It is worth noting that, given the anisotropy, CMOD is not uniform along

the specimen thickness. Figure 14 represents the applied load P plotted against

CMOD evaluated at the extremities of the notch, while Figure 13 represents

CMOD evaluated at the specimen center, conforming to the experimental setup.

Due to the negligible value of the tangential stress acting on the coordinate

planes, the normal stress on the bedding plane σns can be assumed as the mean

value between σyy and σzz (tractions are assumed as positive). Figure 11 shows
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Figure 11: Normal stress at a fixed location (x = 0, y = 0.022 m, z = 0.02 m) for notch depth

7.3 mm; upper curve σx, curve in the middle σy , lower curve σz

that σns is larger than 1 MPa (estimate of ft⊥s from Bock [21]), therefore a

second damage mechanism can be activated. The hypothesis that the energy

dissipation occurs just on the crack surface along the notch should be removed.

In order to characterize the energy dissipated on the volume of OPA around the

crack tip, a more complex crack growth mechanism should be considered.

As previously mentioned, the use of KIc for OPA is misleading because KIc

depends on specimen size. To demonstrate this assertion, a numerical investi-

gation on the effect of size-scale is given in what follows. It is physically difficult

to increase the specimen size while keeping constant all the geometrical ratios.

Instead, in the context of a numerical analysis, this operation is relatively easy.

In fact, the crack model includes an intrinsic length, which is assumed as a

material constant, independent on the specimen size. Thus, the finite element

mesh around the fictitious crack tip can be kept constant whereas the model size

grows. This condition is applied to the models used to obtain P -CMOD curves
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Figure 12: Apparent KIc as a function of specimen size

of Figure 13 and 14 (core diameter D = 80 mm and 160 mm, respectively).

It was observed that CPU time grows quickly with size. Therefore, in order

to enlarge the size range up to 2560 mm for D, the initial value of thickness (6

mm) was kept for all the simulations. Especially for largest D values, this action

would cause large out-of-plane displacements u3 along z. These displacements

would not occur if the thickness were scaled with size, therefore, the boundary

condition u3 = 0 was applied along the intersection curve between the external

specimen surface and plane z = 0.

Due to the anisotropic behavior, a small reduction of the peak load is expe-

rienced under this condition. For example, in the case of D equal to 80 mm and

a0=6 mm, the peak load in Figure 9 is 32.43 N/mm while the corresponding

peak load, utilized in Eq. 10 to obtain KIc in Figure 12 is 31.38 N/mm. Sim-

ilarly, for D=160 mm (a0=12 mm) the peak load in Figure 14 is 55.91 N/mm

and the corresponding peak load for KIc is 50.61 N/mm.

The non-linear process is carried out by using the Newton-Raphson method.
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Figure 13: Load vs CMOD plot, core diameter D=80 mm (black line) superposed to the

experimental results

Since this is an evolutionary quasi-static analysis, the unit of conventional (fic-

titious) time is assumed as the time necessary to obtain u2/D = 0.06/80 at

loading points.

In order to limit the maximum value of out-of-balance nodal forces, time

increment is automatically reduced during the analysis. As expected when the

CCM is used, lack of convergence increases with size. With reference toD = 0.08

m, a mean value of conventional time increment equal to 0.0076 was enough to

obtain a maximum out-of-balance nodal force equal to 0.0017 N. With reference

to D=2.56 m, it was necessary to reduce the mean value of time increment to

5 × 10−4, in order to obtain a maximum out-of-balance nodal force equal to

0.0041 N.
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Figure 14: Maximum and minimum value of CMOD for 160 mm core diameter

7. Conclusion

In this report the results of an experimental campaign on Opalinus Clay FM

parameters are illustrated. By means of a numerical model the FM parameters

for cracks normal to the bedding were inferred in the context of NLFM. The

number of performed tests is still not sufficient for a complete characterization of

OPA, therefore described results and related interpretation must be considered

preliminary. However some conclusion can follow.

As discussed previously, the theory of elasticity predicts an infinite stress at

the notch tip. Therefore the damage starts to grow at this location, indepen-

dently on the random distribution of defects. This is the reason why the use

of a notch leads to a reduction of the scatter in the experimental peak loads.

Dealing with an anisotropic material and initiating the crack perpendicularly to

the bedding plane, the benefits in using a notch are effective only in relation to

the first damage mechanism, when the crack grows in the notch plane. However,
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as long as the fracture process zone extends, the benefits are minimized. In fact

a large number of bedding planes are candidate to host a second damage mecha-

nism, therefore the random distribution of defects returns to play a central role.

As a consequence a large scatter of the peak load shows consequently.

In view of a more detailed understanding of the crack growth occurring in

Opalinus Clay and argillites, it is worthwhile to further investigate, through

statistical consistent tools, the two damage mechanisms that may occur at the

different scales: failure along planes normal to the bedding and failure along

the bedding planes. The interaction between the two mechanisms can give rise

to peculiar arrangement of the excavation-induced fractures. Given the scatter

that is presumable to experience with further tests, it is recommended to utilize

the SCB test method. The reason is twofold:

• in a SCB the crack is relatively forced to follow the plane of the notch,

whereas in a conventional beam test for example the crack can easily

originate also from other points as a consequence of the mineralogical

heterogeneity, typical of these geomaterials;

• given the same amount of material the number of tests that can be per-

formed is larger than in other tests, and a more robust statistics about

the FM parameters can be obtained.

Consideration of heterogeneities as related to the frequency of layers of dif-

ferent mineralogical content would assist in the interpretation of the results. An-

other issue that can be addressed is the dependence of FM response on loading

rate. Anyway, it is worthwhile to mention that the equipment that is available

at IGAG-CNR allows applying load at very slow rate, thus not biased by the

occurrence of a pore pressure excess. Finally, as evident from Eq. 9 for fracture

toughness, the direction of propagation may depend on both the directional

strength and elastic coefficients. In view of a micromechanical model of EDZ a

criterion for OPA similar to Eq. 9 should be identified.
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