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Abstract

In this work, static bending and free vibration analysis of composite plates is per-
formed under Carrera’s Unified Formulation (CUF). With the objective of eliminat-
ing the shear locking phenomena that may occur in the Finite Element Method
(FEM) based-analysis, it is presented a technique that combines the cell-based
smoothed finite element method (CSFEM) and the 4-noded mixed interpolation
of tensorial components approach (MITC4). The smoothing method is used for the
approximation of the bending strains. The mixed interpolation allows the calculation
of the shear transverse stress in a different manner. In several examples, accurate
results are obtained, proving the efficiency of CSFEM-MITC4 methodology.

1 Introduction

Increasingly complex composite structures implies complex and effective means
of analysis. Different approaches can be used in the study of laminated com-
posite strutures [26,20,11,13]. In recent years, two-dimensional (2D) theories
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using higher-order displacement functions had proven to be a true alterna-
tive to the computationally very expensive 3D models. The theories can be
equivalent-single-layer (ESL) or layerwise [30]. For the general description
of 2D formulations for multilayered plates and shells, a Unified Formulation
was derived by Carrera CUF) [7,21,5]. This formulation is a powerful tool to
implement in a single software a large number of 2D models theories, ranging
from ESL models to higher layerwise descriptions. The CUF can be used in
the Finite Element Method (FEM) environment or with meshless methods
[9].

Nevertheless, even with the very useful CUF, there is an important shortcom-
ing of the FEM. For thin structures, the inclusion of both bending and shear
stiffness in a unique rotational degree of freedom cause the locking of the finite
element solution, leading to inaccurate numerical results. This shear locking
phenomena can be alleviated by the use of some techniques: taking optimal
rules of integration [10]; using the assumed strain method [1,32]; using field
redistributed shape functions [22]; using the mixed interpolation of tensorial
components (MITC) technique; incorporating the strain smoothing technique
(SFEM) [24,2,18,17,23,16,25].

Another approach for the elimination of the shear locking phenomena is a
combination of the previous remedies. Therefore, in this work a combination of
the cell-based finite element method (CSFEM) with the 4-noded quadrilateral
mixed interpolation of tensorial components technique (MITC4) and selective
integration rule, is considered in the static bending and free vibration analysis
of laminated composites, under the CUF framework. The main idea is to profit
from each technique best and formulate an efficient and effective methodology
for the free-locking analysis. The displacements are approximated through a
sinusoidal deformation theory, and a complete study of the influence of the
models parameters is performed.

The paper is organized as follows. Section 2 introduces the cell-based smoothed
finite element method. In section 3 is present the shear strain field according
to the 4-noded mixed interpolation tensorial components technique and it is
emphasized the separation between bending and shear contributions for the
stiffness matrix. The fundamental nucleo of the Carrera’s unified formulation
are given in detail. The shear locking phenomena is discussed in section 4.
The present approach is compared with results available in the literature in
section 5, concerning with the static bending and free vibration analysis.
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2 Cell-Based Finite Element Method

In the Cell-Based Finite Element Method (CSFEM) each element is subdi-
vided into smoothing domains, which are subcells where is applied a smooth-
ing technique to the in-plane strains by a divergence estimation via a spatial
averaging of the strain fields. The strain field, ε̃hij is computed by a weighted
average of the standard strain field εhij. At a point xC in an element Ωh, the
smoothed strain field is given by:

ε̃hij =
∫

Ωh

εhij(x)Φ(x− xC) dx (1)

where Φ is a smoothing function and is chosen to be:

Φ =


1
AC

xC ∈ ΩC

0 xC /∈ ΩC

(2)

being AC is the area of the subcell.

The domain integrals are transformed into boundary integrals and so it is
unnecessary to compute the gradient of shape functions to obtain the ele-
ment bending stiffness matrix. For more detailed discussion see the references
[19,17,18,25]

3 MITC4 under Carrera’s Unified Formulation

The transverse shear strains, interpolated according to the 4-noded mixed in-
terpolation of tensorial components (MITC4) technique, assume the following
shear strain field:

{εs} =


{εxz}

{εyz}


=


1
2
(1 + ξ)εNxz + 1

2
(1− ξ)εQxz

1
2
(1 + η)εPyz + 1

2
(1− η)εMyz


(3)

where M ,N ,P and Q are sample points in the element.

The stiffness matrix K is cleaved in two contributions, bending and shear:
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[K] = [Kb] + [Ks]

[Kb] = < [Bb]
T [Qb][Bb] >; [Ks] =< [Bs]

T [Qs][Bs] >

(4)

with the following notation:

< . . . >=
ns∑
k=1

∫
Vk

(. . .)dVk (5)

The numerical code reflects this separation between bending and shear strains,
under the framework of Carrera’s Unified Formulation (CUF). According to
this formulation , the governing equations that are derived based on the Prin-
ciple of Virtual Displacements, can be written in terms of a few fundamental
nuclei, which are simple matrices representing the basic element from which
the stiffness matrices of the whole structure can be computed. The MITC4
technique is introduced within this procedure, and the corresponding govern-
ing equation is given by:

δLkint = δqkTτi K
kτsijqksj (6)

The explicit expression of the fundamental nucleo Kkτsij is given below. More
details can be found in [6]. Introducing the following notation:

� . . .�Ω =
∫

Ω
. . . dΩ (7)

the fundamental nucleo can be written as:
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Kkτsij
xx =Ck

55NiNNjN �NaNa �Ω Fs,zFτ,z + Ck
55NjQNiN �NbNa �Ω Fs,zFτ,z+

Ck
55NiNNjQ �NaNb �Ω Fs,zFτ,z + Ck

55NiQNjQ �NbNb �Ω Fs,zFτ,z+

Ck
11 �Ni,xNj,x �Ω FsFτ + Ck

16 �Ni,yNj,x �Ω FsFτ+

Ck
16 �Ni,xNj,y �Ω FsFτ + Ck

66 �Ni,yNj,y �Ω FsFτ

Kkτsij
yx =Ck

45NiMNjN �NdNa �Ω Fs,zFτ,z + Ck
45NiPNjN �NcNa �Ω Fs,zFτ,z+

Ck
45NiMNjQ �NdNb �Ω Fs,zFτ,z + Ck

45NiPNjQ �NcNb �Ω Fs,zFτ,z+

Ck
16 �Ni,xNj,x �Ω FsFτ + Ck

12 �Ni,yNj,x �Ω FsFτ+

Ck
66 �Ni,xNj,y �Ω FsFτ + Ck

26 �Ni,yNj,y �Ω FsFτ

Kkτsij
zx =Ck

45Ni,yMNjN �NdNa �Ω Fs,zFτ + Ck
45Ni,yMNjQ �NdNb �Ω Fs,zFτ+

Ck
55Ni,xNNjN �NaNa �Ω Fs,zFτ + Ck

55Ni,xNNjQ �NaNb �Ω Fs,zFτ+

Ck
45Ni,yPNjN �NcNa �Ω Fs,zFτ + Ck

45Ni,yPNjQ �NcNb �Ω Fs,zFτ+

Ck
55Ni,xQNjN �NbNa �Ω Fs,zFτ + Ck

55Ni,xQNjQ �NbNb �Ω Fs,zFτ+

Ck
13 �NiNj,x �Ω FsFτ,z + Ck

36 �NiNj,y �Ω FsFτ,z

Kkτsij
xy =Ck

45NiNNjM �NaNd �Ω Fs,zFτ,z + Ck
45NiQNjM �NbNd �Ω Fs,zFτ,z+

Ck
45NiNNjP �NaNc �Ω Fs,zFτ,z + Ck

45NiQNjP �NbNc �Ω Fs,zFτ,z+

Ck
16 �Ni,xNj,x �Ω FsFτ + Ck

66 �Ni,yNj,x �Ω FsFτ+

Ck
12 �Ni,xNj,y �Ω FsFτ + Ck

26 �Ni,yNj,y �Ω FsFτ
(8)
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Kkτsij
yy =Ck

44NiMNjM �NdNd �Ω Fs,zFτ,z + Ck
44NiPNjM �NcNd �Ω Fs,zFτ,z+

Ck
44NiMNjP �NdNc �Ω Fs,zFτ,z + Ck

44NiPNjP �NcNc �Ω Fs,zFτ,z+

Ck
66 �Ni,xNj,x �Ω FsFτ + Ck

26 �Ni,yNj,x �Ω FsFτ+

Ck
26 �Ni,xNj,y �Ω FsFτ + Ck

22 �Ni,yNj,y �Ω FsFτ

Kkτsij
zy =Ck

44Ni,yMNjM �NdNd �Ω Fs,zFτ + Ck
44Ni,yMNjP �NdNc �Ω Fs,zFτ+

Ck
45Ni,xNNjM �NaNd �Ω Fs,zFτ + Ck

45Ni,xNNjP �NaNc �Ω Fs,zFτ+

Ck
44Ni,yPNjM �NcNd �Ω Fs,zFτ + Ck

44Ni,yPNjP �NcNc �Ω Fs,zFτ+

Ck
45Ni,xQNjM �NbNd �Ω Fs,zFτ + Ck

45Ni,xQNjP �NbNc �Ω Fs,zFτ+

Ck
36 �NiNj,x �Ω FsFτ,z + Ck

23 �NiNj,y �Ω FsFτ,z

Kkτsij
xz =Ck

45NiNNj,yM �NaNd �Ω FsFτ,z + Ck
45NiQNj,yM �NbNd �Ω FsFτ,z+

Ck
55NiNNj,xN �NaNa �Ω FsFτ,z + Ck

55NiQNj,xN �NbNa �Ω FsFτ,z+

Ck
45NiNNj,yP �NaNc �Ω FsFτ,z + Ck

45NiQNj,yP �NbNc �Ω FsFτ,z+

Ck
55NiNNj,xQ �NaNb �Ω FsFτ,z + Ck

55NiQNj,xQ �NbNb �Ω FsFτ,z+

Ck
13 �Ni,xNj �Ω Fs,zFτ + Ck

36 �Ni,yNj �Ω Fs,zFτ

Kkτsij
yz =Ck

44NiMNj,yM �NdNd �Ω FsFτ,z + Ck
44NiPNj,yM �NcNd �Ω FsFτ,z+

Ck
45NiMNj,xN �NdNa �Ω FsFτ,z + Ck

45NiPNj,xN �NcNa �Ω FsFτ,z+

Ck
44NiMNj,yP �NdNc �Ω FsFτ,z + Ck

44NiPNj,yP �NcNc �Ω FsFτ,z+

Ck
45NiMNj,xQ �NdNb �Ω FsFτ,z + Ck

45NiPNj,xQ �NcNb �Ω FsFτ,z+

Ck
36 �Ni,xNj �Ω Fs,zFτ + Ck

23 �Ni,yNj �Ω Fs,zFτ

Kkτsij
zz =Ck

44Ni,yMNj,yM �NdNd �Ω FsFτ + Ck
45Ni,xNNj,yM �NaNd �Ω FsFτ+

Ck
44Ni,yPNj,yM �NcNd �Ω FsFτ + Ck

45Ni,xQNj,yM �NbNd �Ω FsFτ+

Ck
45Ni,yMNj,xN �NdNa �Ω FsFτ + Ck

55Ni,xNNj,xN �NaNa �Ω FsFτ+

Ck
45Ni,yPNj,xN �NcNa �Ω FsFτ + Ck

55Ni,xQNj,xN �NbNa �Ω FsFτ+

Ck
44Ni,yMNj,yP �NdNc �Ω FsFτ + Ck

45Ni,xNNj,yP �NaNc �Ω FsFτ+

Ck
44Ni,yPNj,yP �NcNc �Ω FsFτ + Ck

45Ni,xQNj,yP �NbNc �Ω FsFτ+

Ck
45Ni,yMNj,xQ �NdNb �Ω FsFτ + Ck

55Ni,xNNj,xQ �NaNb �Ω FsFτ+

Ck
45Ni,yPNj,xQ �NcNb �Ω FsFτ + Ck

55Ni,xQNj,xQ �NbNb �Ω FsFτ+

Ck
33 �NiNj �Ω Fs,zFτ,z

(9)
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4 Shear locking phenomena

For thin structures, the inclusion of both bending and shear stiffness in a
unique rotational degree of freedom, may cause the locking of the finite ele-
ment, with oscillations in shear and membrane strains. There are some reme-
dies for the locking phenomena: use an optimal rule of integration [10]; use
the assumed strain method [1,32]; use field redistributed shape functions [22].
In this study, three procedures are combined to eliminate the locking: the cell-
based smoothing technique (CSFEM), and the 4-noded mixed interpolation
tensorial component (MITC4) technique that calculates the transverse shear
stresses σxz and σyz in a different manner from other tensorial components.
For the approximation of the bending strains it is considered the CSFEM. In
the case of the shear strains the methodology uses MITC4 approach. If the
thickness-to-side ratio of the structure is bigger than 0.1 a normal integra-
tion scheme (2× 2 Gauss points) is used. It should be noted that the MITC4
technique by itself doesn’t require any kind of selective integration in order to
overcome the shear locking phenomena. In this paper, due to the combination
with CSFEM technique, it was chosen a selective rule of integration providing
some stiffness overestimation to compensate the inclusion of CSFEM tech-
nique, and that led to accurate solutions in less computational time, even
thought some spurious mode appeared.

5 Numerical examples

Static bending and free vibration analysis of composite laminate plate is per-
formed as follows. The in-plane displacements u, v and the transverse dis-
placement w are expressed by sinusoidal shear deformation theory denoted by
SINUS:

u = uo + zu1 + sin
(
πz

h

)
u2

v = vo + zv1 + sin
(
πz

h

)
v2

w = wo + zw1 + sin
(
πz

h

)
w2 (10)

where uo, vo and wo are translations of a point at the middle-surface of the
plate [33].

In this study a 20 × 20 structured quadrilateral mesh is considered for the
pretended comparison with benchmark results. The present results are denoted
by CSFEM-MITC4. Concerning to the shear strains, the performed integration
rule depends on the thickness-to-side ratio, as mentioned above.
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5.1 Static bending

In this section the static bending analysis is made for cross-ply laminated
plates with three and four layers under following sinusoidal load:

pz = Po sin
(
πx

a

)
sin

(
πy

a

)
(11)

where Po is the amplitude of the mechanical load.

5.1.1 Four layer (0◦/90◦)s square cross-ply laminated plate under sinusoidal
load

A square simply supported laminate plate of thickness-to-side ratio h/a, com-
posed of four equally thick layers oriented at (0◦/90◦)s is considered. The plate
is subjected to a vertical pressure given by eqn:mechload. The material prop-
erties are as follows: E1 = 25E2; G12 = G13 = 0.5E2; G23 = 0.2E2; ν12 =
0.25. In Table 1, we present results for the SINUS theory with the combined
CSFEM-MITC4 approach. We compare the results with higher order plate
theories [28,8], first order theory [29], an exact solution [27], and the standard
(FEM Q4) and smoothed (CS-FEM Q4) 4-noded element with field consistent
approach [22]. It can be seen that the results from the CSFEM-MITC4 formu-
lation show very good agreement with those in the literature and is insensitive
to shear locking with the selective rule of integration.

Method a/h = 4 a/h = 10 a/h = 100

HSDT [28] 1.8937 0.7147 0.4343

FSDT [29] 1.7100 0.6628 0.4337

Elasticity [27] 1.9540 0.7430 0.4347

RBF [8] 1.9783 0.7325 0.4307

FEM Q4 [22] 1.8949 0.7135 0.4302

CS-FEM Q4 (4 subcells) [22] 1.9089 0.7195 0.4304

Present (CSFEM-MITC4) 1.9086 0.7201 0.4304
Table 1
Normalized central deflection w = w(a/2, a/2, 0)100E2h3

Pa4
of a simply supported cross-

ply laminated square plate [0◦/90◦/90◦/0◦], with E1 = 25E2, G12 = G13 = 0.5E2,
G23 = 0.2E2, ν12 =0.25. Quadrilateral mesh with 20 × 20 elements for the present
formulation
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5.1.2 Three layer (0◦/90◦/0◦) square cross ply laminated plate under sinu-
soidal load

A square laminate plate of thickness-to-side ratio h/a, composed of three
equally thick layers oriented at (0◦/90◦/0◦) is considered. It is simply sup-
ported on all edges and subjected to a vertical pressure of the form (11). The
material properties are: E1 =132.38 GPa, E2 = E3 =10.756 GPa, G12 =3.606
GPa, G13 = G23 = 5.6537 GPa, ν12 = ν13 = 0.24, ν23 = 0.49. In Table 2,
we present results for the SINUS theory with the present CSFEM-MITC4
approach. The results from the present approach are compared with an ana-
lytical solution [3,4], results from MITC4 formulation [6], and results from the
standard (FEM Q4) and smoothed (CS-FEM Q4) 4-noded element with field
consistent approach [22]. The numerical results from the present formulation
are precise and agree with the existing solutions, being insensitive to shear
locking, as the plate gets thinner.

w a/h

10 50 100 500 1000

Analytical (ESL-2) [3,4] 0.9249 0.7767 0.7720 0.7705 0.7704

MITC4 [6] 0.9195 0.7713 0.7666 0.7650 0.7650

FEM Q4 [22] 0.9152 0.7700 0.7651 0.7636 0.7635

CS-FEM Q4 (4 subcells) [22] 0.9235 0.7703 0.7655 0.7639 0.7639

Present (CSFEM-MITC4) 0.9238 0.7704 0.7655 0.7639 0.7639
Table 2
Transverse displacement w = w(a/2, a/2, h/2) at the center of a multilayered plate
[0◦/90◦/0◦] with E1 = 132.38 GPa, E2 = E3 = 10.756 GPa, G12 = 3.606 GPa,
G13 = G23 = 5.6537 GPa, ν12 = ν13 = 0.24, ν23 = 0.49. Quadrilateral mesh with 20
× 20 elements for the present formulation

5.2 Free vibration - cross-ply laminated plates

Consider a simply supported square plate of the cross-ply lamination (0◦/90◦)s

where all layers are assumed to be of the same thickness, density and made
up of the same linear elastic material. The following material properties are
considered for each layer

E1

E2

= 10,20,30, or 40; G12 = G13 = 0.6E2;

G3 = 0.5E2; ν12 = 0.25.

The subscripts 1 and 2 denote the directions normal and the transverse to the
fiber direction in a lamina, which may be oriented at an angle to the plate

9
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axes. The ply angle of each layer is measure from the global x−axis to the
fiber direction. The thickness-to-side ratio is h/a = 0.2.

Method Mesh subcell(s) E1/E2

10 20 30 40
Liew [15] 8.2924 9.5613 10.3200 10.8490
Reddy, Khdeir [14] 8.2982 9.5671 10.3260 10.8540
FSDT [9] 21×21 8.2982 9.5671 10.3258 10.8540
HSDT [9] (ν23 = 0.18) 21×21 8.2999 9.5411 10.2687 10.7652
FEM Q4 [22] 20×20 8.3651 9.5801 10.2980 10.7894
CS-FEM Q4 [22] 20×20 4 8.3639 9.5790 10.2970 10.7883
Present (CSFEM-MITC4) 20×20 4 8.3775 9.5857 10.3001 10.7892

Table 3
Normalized fundamental frequency Ω = ωa2/h

√
ρ/E2 of a simply supported cross-

ply laminated square plate (0◦/90◦)s with h/a = 0.2, E1
E2

= 10, 20, 30 or 40, G12 =
G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25.

Table 3 lists the fundamental frequency for different ratio of Young’s mod-
ulus, E1/E2. The results from the present CSFEM-MITC4 formulation are
compared with the meshfree results of Liew et al. [15], the results based on
higher order theory [14], the results based on FSDT and higher order theo-
ries with radial basis functions [9] and the results using the standard (FEM
Q4) and smoothed (CS-FEM Q4) 4-noded element with field consistent ap-
proach [22]. It can be observed that the present numerical procedure provides
accurate results and similar to those in the literature.
Method a/h

2 4 10 20 50 100
FSDT [34] 5.4998 9.3949 15.1426 17.6596 18.6742 18.8362
Model-1 (12dofs) [12] 5.4033 9.2870 15.1048 17.6470 18.6720 18.8357
Model-2 (9dofs) [12] 5.3929 9.2710 15.0949 17.6434 18.6713 18.8355
HSDT [28] 5.5065 9.3235 15.1073 17.6457 18.6718 18.8356
HSDT [31] 6.0017 10.2032 15.9405 17.9938 18.7381 18.8526
FEM Q4 [22] 5.4029 9.3005 15.1790 17.7578 18.7993 18.9657
CS-FEM Q4 (4 subcells) [22] 5.4026 9.2998 15.1766 17.7540 18.7947 18.9611
Present (CSFEM-MITC4) 5.3986 9.2975 15.1674 17.7471 18.7895 18.9561

Table 4
Variation of fundamental frequencies, Ω = ωa2/h

√
ρ/E2 with a/h for a sim-

ply supported square laminated plate [0◦/90◦/90◦/0◦], with E1/E2 = 40, G12 =
G13 =0.6E2, G23 =0.5E2, ν12 = ν13 = ν23 = 0.25. Quadrilateral mesh with 20 × 20
elements for the present formulation

In Table 4 is exhibited the effect of the thickness-to-side ratio of a simply
supported cross-ply laminated square plate on the fundamental frequency, for
Young’s modulus E1/E2 = 40. The results from the present CSFEM-MITC4
formulation are compared with the results based on first order theory [34],
analytical solutions [12], results from higher order theories [28,31], and results
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using the standard (FEM Q4) and smoothed (CS-FEM Q4) 4-noded element
with field consistent approach [22]. It can be seen that the present results
are in a good agreement with the results available in the literature and they
are accurate even for thin plates, which proves that the present methodology
serves its propose of eliminating the shear locking.

6 Conclusion

In this work a technique that combines the cell-based smoothed finite element
method (CSFEM) and the 4-noded mixed interpolation of tensorial compo-
nents approach (MITC4) was presented for the static bending and free vi-
bration analysis of composite plates and performed under Carrera’s Unified
Formulation (CUF). Throughout a set of benchmark examples it proved to be
an efficient methodology, providing accurate results due the elimination of the
shear locking phenomena. The CSFEM-MITC4 procedure has the potential
to be successful in future works on the analysis of multilayered structures.
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