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KAHLER IMMERSIONS OF HOMOGENEOUS KAHLER
MANIFOLDS INTO COMPLEX SPACE FORMS

ANTONIO JOSE DI SCALA, HIDEYUKIT ISHI, ANDREA LOI

ApstTRAcT. In this paper we study the homogeneons Killer manifolds
{h.K.m.) which can be Kihler immersed into Amite or infinite dimen-
sional complex space forms. On the one hand we completely classify the
h K m. which can be Killer immersed into a Hoite or infinite dimen-
siannl complex Euclidean or hyperbolic space. On the other hand, we
extend knewn results about Kahler immersions into the finite dimen-
sional complex projective space to the infinite dimensional setting.

1. INTRODUCTION AND STATEMENTS OF THE MAIN RESULTS

In this paper we address che following problem: classify all homogeneous
Kihler manifolds (h.K.m. for short) which admit Kdhler immersions into a
given finite or infinite dimensional compler space form.

A Kihler immersion [ : (M, g) — (S,gs) from a Kihler manifold (M, g)
into a complex space form (S, gg) is a holomorphic map such that [*gs =g
(Lere g and g denate the Kihler metrics on M and S respectively).

Recall thar there are three rypes, up ro homorheties, of complex space
forms (5. gg) according to che sign of their constant holomorphic sectional
curvarure;

e the complex Euclidean space CY, N < oc, with the flat metrie de
noted by gy. Here © is the complex Hilbert space £2(C) consisting

g ShkE ey S - . ; B P B
of sequences 2;. j =1...,2; € Csuch that 3" /- |&]° < +2¢.

o the complex hyperboliec space CHY, N < so, namely the unit ball
in CY (E?‘;, l24|* < 1) endowed with the hyperbolic metrie gy, of
holemorphue sectional curvarure being —4. whose associated Kihler
form wyy,, is given by:

. N
Yag 2
Whyp = —00 log(1 — Z |2;%). (1]
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KAHLER IMMERSIONS OF HOMOGENEOUS KAHLER
MANIFOLDS INTO COMPLEX SPACE FORMS

ANTONIO JOSE DI SCALA, HIDEYUKI ISHI, ANDREA LOI

ABsTRACT. In this paper we study the homogeneous Kéhler manifolds
(h.K.m.) which can be Kéhler immersed into finite or infinite dimen-
sional complex space forms. On the one hand we completely classify the
h.K.m. which can be Kéahler immersed into a finite or infinite dimen-
sional complex Euclidean or hyperbolic space. On the other hand, we
extend known results about Kéhler immersions into the finite dimen-
sional complex projective space to the infinite dimensional setting.

1. INTRODUCTION AND STATEMENTS OF THE MAIN RESULTS

In this paper we address the following problem: classify all homogeneous
Kahler manifolds (h.K.m. for short) which admit Kahler immersions into a
given finite or infinite dimensional complex space form.

A Kahler immersion f : (M, g) — (S, gs) from a Kéhler manifold (M, g)
into a complex space form (S, gg) is a holomorphic map such that f*gs =g
(here g and gg denote the Kéahler metrics on M and S respectively).

Recall that there are three types, up to homotheties, of complex space
forms (S, gs) according to the sign of their constant holomorphic sectional
curvature:

e the complex Euclidean space CV, N < oo, with the flat metric de-
noted by go. Here C* is the complex Hilbert space £2(C) consisting
of sequences zj,j = 1...,2; € C such that Z;:f |2j|? < +oo0.

e the complex hyperbolic space CHY, N < 0o, namely the unit ball
in CN (Z;V::l |zj|* < 1) endowed with the hyperbolic metric gp,, of
holomorphic sectional curvature being —4, whose associated Kéahler
form wy,, is given by:

; N
Whyp = —58(910g(1 - Z |Zj|2)' (1)

j=1
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2 A. J. DI SCALA, H. ISHI, A. LOI

e the complex projective space CPYN, N < oo, with the Fubini-Study
metric grg of holomorphic sectional curvature being 4. If wpg de-
notes the Kéahler form associated to grg and [Zp,...,Zn] are ho-
mogeneous coordinates on CPV | then in the affine chart Uy =
{Z # 0}, k =0,...,N, wps = 599log(1 + X, .12/ Z?). 1
7 CNTIN\ {0} > (%, ..., 2ZN) — [Zo, ..., Zxn] € CPY is the canon-
ical projection, wgg is also characterized by the relation m*wpg =
50010g(3°75, 1251%).

Notation. When we speak about the Kihler manifold CV (resp. CHY or
CPY) without mentioning the Kéhler metric we will always mean C (resp.
CHY or CP") equipped with the metric go (resp. gnyp, 9rs)-

Note that, once that a Kdhler immersion into a complex space form (.5, gg)

is given, then all other Kéhler immersions can be obtained by composing
it with a unitary transformation of (S, gg). This is due to the following
celebrated rigidity theorem due to E. Calabi [Ca53] which will be of constant
use throughout this paper.
Theorem (Calabi’s rigidity theorem) Let f : (M,g9) — (S,9s) and
f (M, g) = (S,g5) be two Kihler immersions into the same complex space
form (S, gs). Then there exists a unitary transformation U of (S,gs) such
that f =U o f .

1.1. Immersions in CY and CH". In the following two theorems we give
a complete solution of our problem when the ambient space is CV or CHY,
N < co. In order to state our result note that the map f, : CH™ — I?(C)
given by:
. (g =1 -

2= (21, -2n) (..., T2{1-~-z{{‘,...) (2)
is a Kihler immersion of CH™ into [*(C), i.e. figo = Gnyp, (see [Cab3]),
where |j| = j1 + -+ jn and j! = 1!+ g,

Theorem 1. Let (M, g) be a n-dimensional h.K.m..

(a) If (M, g) can be Kihler immersed into CN, N < oo, then (M,g) =
C"l;
(b) if (M,g) can be Kihler immersed into £?(C), then (M, g) equals

ck x CHY! x --- x CHy",
1 T

where k+ny+---4n. =n, Aj, 5 =1,...,r are positive real numbers
and (CH;\L; = (CH", Njghyp), 3 =1,...,r (hence CH}* = CH").

Moreover, in case (a) (resp. case (b)) the immersion is given, up to a unitary
transformation of CIV (resp. £2(C)), by the linear inclusion C™ < CN (resp.
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by (fo, f1...., fr), where fo the linear inclusion C* — (2(C) and each Ik
CH"™ — (*(C) is \/)\; times the map (2)).

Theorem 2. Let (M, g) be a n-dimensional h.K.m.. Then if (M, g) can be
Kihler immersed into CHY | N < oo, then (M, g) = CH™ and the immersion

is given, up to o unitary transformation of CHY, by the linear inclusion
CH" — CHY

Remark 1. Since a Kéhler immersion is minimal, an alternative proof of
(1) in Theorem 1 when N < oo follows by the work of A. J. Di Scala [DS02].

Remark 2. Assertion (2) in Theorem 1 is a generalization to arbitrary
h.K.m. of Theorem 3.3 in [DLO7| where the first and the third authors
proved that a bounded symmetric domain which can be Ké&hler immersed
into ¢2(C) is necessarily of rank one. Actually, the method of the present
paper, when applied to bounded symmetric domains, provides us with an
alternative and more elegant proof of this result (cfr. Remark 7 below).

1.2. Immersion in CPY. There exists a large class (cfr. Conjecture 1
below) of h.K.m. which can be Kéhler immersed into CPN. In this paper a
Ké&hler metric g on a complex manifold M will be called projectively induced
if there exists an immersion f : M — CPY, N < oo, such that f*grg = g.
An obvious necessary condition for g to be projectively induced is that its
associated Kéhler form w is integral i.e. it represents the first Chern class
c1(L) in H?(M,Z) of a holomorphic line bundle L — M. Indeed L can be
taken as the pull-back of the hyperplane line bundle on CPYN whose first
Chern class is given by wrg. Notice that if w is an exact form (e.g. when
M is contractible) then w is obviously integral since its second cohomology
class vanishes.

Other (less obvious) conditions are expressed by the following theorem
and its corollary which represent our first result about projectively induced
Kéhler metrics.

Theorem 3. Assume that a h.K.m. (M,g) admits a Kdhler immersion
f:M — CPN, N <oo. Then M is simply-connected and f is injective.

Corollary 3. Let (M,g) be a complete and locally h.K.m.. Assume that
f: (M,g) - CPN, N < oo, is a Kihler immersion. Then (M,g) is a
h.K.m..

When the dimension of the ambient space is finite, i.e. (S,gg) = CPY,
N < 00, M is forced to be compact and a proof of Theorem 3 is well-known
by the work of M. Takeuchi |[TA78|. In this case he also provides a complete
classification of all compact h.K.m. which can be K&hler immersed into
CPN by making use of the representation theory of semisimple Lie groups.
Viceversa, it is not hard to see that if a compact Kahler manifold can be
Kihler immersed into CP> then it can also be Kéhler immersed into CPYN
with N < oco.
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We believe that, up to homotheties, any simply-connected h.K.m. such
that its associated Kéhler form is integral can be Kéhler immersed into CP™,
with N < oco. This is expressed by the following conjecture.

Conjecture 1: Let (M, g) be a simply-connected h.K.m. such that its asso-
ciated Kihler form w is integral. Then there exists \g € RT such that \og is
projectively induced.

The integrality of w in the conjecture is important since there exist simply-
connected h.K.m. (M, w) such that A\w is not integral for any A € RT (take,
for example, (M, g) = (CP!, grs) x (CP',v/2grs)). Observe also that there
exist simply-connected (even contractible) h.K.m. (M, g) such that w is an
integral form but g is not projectively induced. In order to describe such an
example we recall the following result (see Theorem 2 in [LZ09]).

Theorem A. Let gp be the Bergman metric of an irreducible Hermitian
symmetric space of noncompact type 2. Then Agp is projectively induced
if and only Ay belongs to W () \ {0}, where v denotes the genus of Q2 and
W (Q) its Wallach set.

It turns out (see Corollary 4.4 p. 27 in [AR95] and references therein)
that W () consists only of real numbers and depends on two of the domain’s
invariants, denoted by a (strictly positive natural number) and r (the rank
of Q). More precisely we have

a _a a a
w(©) = {o, 225, (r—1)§}u((r—1)§, ). 3)
The set Wy = {0, 5,25, ..., (r— 1)%} and the interval W, = ((r — 1)g, 0)

are called respectively the discrete and continuous part of the Wallach set
of the domain 2. Observe that when r = 1, namely 2 is the complex
hyperbolic space CH", then gg = (n 4 1)gnyp. In this case (and only in this
case) Wq = {0} and We = (0,00). If rank(©2) = r > 2 and 0 < A < 3 it
follows by Theorem A that Agp is not projectively induced and its associated
Kahler form Awp is integral (since € is contractible). This provides us with
the desired example.

Notice also that from Theorem A it follows that the only irreducible
bounded symmetric domain where Agp is projectively induced for all A > 0
is the complex hyperbolic space. In the following theorem, which represents
our last result, we generalize this fact to any homogeneous bounded domain
(h.b.d. for short). This will be a key ingredient in the proof of Theorem 1.

Theorem 4. Let (2, g) be a n-dimensional h.b.d.. The metric g is projec-
tively induced for all X > 0 if and only if

(Q,g):(C‘H;fl1 x oo x CHYT, (4)
where n1 + -~ +n, = n, \j, j = 1,...,7 are positive real numbers and
CHQJ] = (CH7Z1, /\jghyp)» j=1...,r.
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The paper contains another section dedicated to the proofs of our main
results.

Aknowledgments: The second and third author would like to thank Po-
litecnico of Torino for the wonderful hospitality in their research stays in
January 2010.

2. PROOF OF THE MAIN RESULTS

The basic ingredient for the proof of our results is the following solution
due to J. Dorfmeister and K. Nakajima [DN88] of the fundamental conjecture
on h.K.m..

Theorem FC A h.K.m. (M,g) is the total space of a holomorphic fiber
bundle over a h.b.d. Q in which the fiber F = £ x C is (with the induced
Kabhler metric) the Kahler product of a flat homogeneous Kdahler manifold €
and a compact simply-connected homogeneous Kéhler manifold C.

In order to prove Theorem 1 recall that complete connected totally ge-
odesic submanifolds of R™ are affine subspaces p + W, where p € R" and
W C R™ is a vector subspace. We need the following result from [ADO03].

Lemma 4. Let G be a connected Lie subgroup of isometries of the Euclidean
space R™. Let G.p =p+V and G.q = q+W be two totally geodesic G-orbits.
ThenV =W, i.e. G.p and G.q are parallel affine subspaces of R™.

We also need the following lemmata. The first one due to Bochner (see
Theorem 14 in [Bo47]|) shows that if a Kéhler manifolds can be Kahler im-
mersed into a finite or infinite complex flat space then it can be Kéhler
immersed into the infinite dimensional complex projective space. The sec-
ond one due to the first and the third authors of the present paper (see
Lemma 3.1 in [DLO7]) is a splitting result for maps into complex Euclidean
spaces.

Lemma 5. Assume that a Kdihler manifold (M, g) can be Kdhler immersed
into CN, N < oo. Then there exists a Kdihler immersion of (M,g) into
CP=.

Lemma 6. Let f : M x M’ — CV, N < oo, be a Kdihler immersion
from a product M x M’ of two Kdihler manifolds. Then f is a product,
i.e. f(p,q) = (fi(p), fo(q)) where fi : M — CNt and fo : M’ — CN2 are
Kdhler immersions with N1 + No = N.

We are now in the position to prove Theorem 1 which, as we have already
pointed out in the introduction, will be proved assuming the validity of
Theorem 4.

Proof of Theorem 1. Assume that there exists a Kéhler immersion f :
M — CV. By Theorem FC and by the fact that a h.b.d. is contractible
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we get that M = CF x Q as a complex manifold since, by the maximum
principle, the fiber F cannot contain a compact manifold. Let M = G/K
be the homogeneous realization of M (so the metric g is G-invariant). It
follows again by Theorem FC that there exists L C G such that the L-orbits
are the fibers of the fibration 7 : M = G/K — Q = G/L. Let F,, F,
be the fibers over p,q € €. We claim that f(F,) and f(F,) are parallel
affine subspaces of CV. Indeed, by Calabi’s rigidity f(F,) and f(F,) are
affine subspaces of CV since both F, and Fj are flat Kéhler manifolds of C".
Moreover, Calabi rigidity theorem implies the existence of a morphism of
groups p : G — Isoc(CN) = U(CN) x CN such that f(g-z) = p(g)f(z) for
all g € G,z € M. Let W), be the affine subspace generated by f(F},) and
f(Fy). Since both f(F,) and f(F;) are p(L)-invariant it follows that W), , is
also p(L)-invariant. Indeed, for any g € L the isometry p(g) is an affine map
and so must preserve the affine space generated by f(F),) and f(F,). Observe
that W), 4 is a finite dimensional complex Euclidean space, p(L) acts on W), 4
and f(Fp,) and f(Fy) are two complex totally geodesic orbits in W), ;. Then,
by Lemma 4, we get that f(F},) and f(Fy) are parallel affine subspaces of
Wp,q and hence of CN. Since p,q € Q are two arbitrary points it follows
that f(M) is a Kihler product. Thus M = C* x Q is a Kihler product
of homogeneous Kéhler manifolds. Using again the fact M can be Kéhler
immersed into CV it follows that the h.b.d. Q can be Kéhler immersed into
CN. If one denotes by ¢ this immersion and by g the homogeneous Kéhler
metric of ©, it follows that the map v/A¢ is a Kahler immersion of (2, Agq)
into CN. Therefore, by Lemma 5, Agq is projectively induced for all A > 0
and Theorem 4 yields

(M,g) =C" x CH}! x --- x CHY",

where k+nq1+4---+n, =nand A\j, j = 1,...,r are positive real numbers. If
the dimension N of the ambient space C¥ is finite then M = C™ since there
cannot exist a Kéhler immersion of (CH™, \jgp,,) into CN, N < oc (see
[Ca53]) and this proves (a). The last part of Theorem 1 is a consequence of
Calabi’s rigidity theorem together with Lemma 6. [J

Remark 7. As we have already pointed, Theorem 4, which is an important
step in the proof of the Theorem 1, is a straightforward consequence of The-
orem A above when the h.K.m. is a bounded symmetric domain. Therefore
the last part of Theorem 1 provides an alternative proof of Theorem 3.3 in
[DLO7] without the use of Calabi’s diastasis function (cfr. Remark 2).

In order to prove Theorem 2 we need the following lemma.

Lemma 8. If a Kdihler manifold (M, g) can be Kihler immersed into CHY
N < oo, then it can also be Kihler immersed into £2(C).

Proof. Let f be the Kihler immersion of (M,g) into CHV. If N < oo
then the map f,, o f : (M,g) — £*(C), where f, is given by (2), is a Kéhler



KAHLER IMMERSIONS OF HOMOGENEOUS KAHLER MANIFOLDS INTO... 7

immersion. If N = oo, it follows by (1) in the introduction that ® = —log(1—
Py 9;]?) = Do (2255 |9;1>)*/k is a Kihler potential for the metric g,
i.e. %85@ = w, where w is the Kéhler form associated to the metric g
and the ¢;’s are the components of f. Hence ® = 3772, |hj|? for suitable
holomorphic functions hj, j =1,2,... on M and themap h = (..., hj,...):
(M, g) — £2(C) is the desired Kithler immersion. O

Proof of Theorem 2. If a h.K.m. (M,g) can be Kéhler immersed into
CHN, N < o, then, by Lemma 8 it can also be Kéhler immersed into
¢%(C). By Theorem 1, (M, g) is then a Kihler product of complex space
forms, namely

(M,g) =C" x CH}! x --- x CHY".

Then the conclusion follows from the fact that C* cannot be Kéhler immersed
into CHY for all N < oo (see [Ca53]), from Calabi’s rigidity theorem and
from Theorem 2.11 in [AD03| which shows that there are not Kéhler immer-
sions from a product M x M’ of Kahler manifolds into CHY, N < oo, (the
proof in [ADO3] is given for N < oo but it extends without any substantial
change to the infinite dimensional case). O

Proof of Theorem 3. Theorem FC and the fact that a h.b.d. is contractible
imply that M is a complex product 2 x F, where F = £ x C is a Kéahler
product of a flat Kéhler manifold & Kéhler embedded into (M,g) and a
simply-connected h.K.m. C. We claim that £ is simply-connected and hence
M = Q x € x C is simply-connected. In order to prove our claim notice that
£ is the Kahler product C* x Ty x --- x Ty, where T; are flat complex tori.
So one needs to show that each T} reduces to a point. If, by a contradiction,
the dimension of one of this tori, say T}, is not zero, then by composing the
Kihler immersion of T}, in (M, g) with the immersion f : M — CPY we
would get a Kihler immersion of T}, into CPY in contrast with a well-known
result of Calabi [Cab3] (see also Lemma 2.2 in [TA78]). In order to prove
that f is injective we first observe that, by Calabi’s rigidity theorem, f(M)
is still a h.K.m.. Then, by the first part of the theorem, f(M) c CPY is
simply-connected. Moreover, since M is complete and f: M — f(M) is a
local isometry, it is a covering map (see, e.g., Lemma 3.3 p. 150 in [DC92|)
and hence injective.l]

Proof of Corollary 3. Let 7 : M — M be the universal covering map.
Then (M,g) is a h.K.m. and, by Theorem 3, f o : M — CP" is injec-
tive. Therefore 7 is injective, and since it is a covering map, it defines a
holomorphic isometry between (M, §) and (M, g). O

Proof of Theorem 4. First we find a global potential of the homogeneous
Kéhler metric g on the domain Q following Dorfmeister [D85]. By [D85,
Theorem 2 (c)|, there exists a split solvable Lie subgroup S C Aut(€,g)
acting simply transitively on the domain €. Taking a reference point zg € €Q,
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we have a diffeomorphism S 3 s s- 2y € €, and by the differentiation, we
get the linear isomorphism s := Lie(S) 3 X — X - 29 € T,,Q2 = C". Then
the evaluation of the Kéhler form w on T3, € is given by w(X - 25, Y - 29) =
B([X,Y]) (X,Y € s) with a certain lincar form 8 € s*. Let j : s — s
be the linear map defined in such a way that (jX) -z = v—1(X - 2)
for X € s. We have Rg(X - 20, Y - 20) = B([jX,Y]) for X,Y € s, and
the right-hand side defines a positive inner product on s. Let a be the
orthogonal complement of [s, 5] in § with respect to the inner product. Then
a is a commutative Cartan subalgebra of s. Define v € a* by v(C) :=
—46(jC) (C € a), and we extended v to s = a & [s, s] by the zero-extension.
Keeping the diffeomorphism between S and €2 in mind, we define a positive
smooth function ¥ on 2 by

U((exp X) - z9) = e ") (X €3s).

From the argument in [D85, pp. 302-304], we see that
w= %Gélog v, (5)

It is known that there exists a unique kernel function U0 xOQ— Csuch
that (1) ¥(z,z) = ¥(z) for z € Q and (2) ¥(z,w) is holomorphic in z and
anti-holomorphic in w (cf. [I99, Proposition 4.6]). Let us observe that the
metric g is projectively induced if and only if W is a reproducing kernel of a
Hilbert space of holomorphic functions on €. Indeed, if f: Q — CPN (N <
o0) is a Kéhler immersion with f(z) = [¢o(2) : Y1(2) : ---] (z € Q) its
homogeneous coordinate expression, then we have w = %’35 log Z;VZO |1/)j|2.
Comparing (5) with it, we see that there exists a holomorphic function ¢
on € for which ¥ = |e?|? Z;-V:O |4;|?. By analytic continuation, we obtain
U(z,w) = e?Pedw) Z;'V:o (2)Yj(w) for z,w € Q. For any z1,...,2, € Q
and ¢1,...,¢y € C, we have

m m N
Z cpCq¥ (2p, 2q) = Z Cpéqe¢(zp)e¢(zQ) ij(zp)wj(zq)
p,g=1 p,q=1 j=0
N m
= Z | Z epe? )y () > 0.
7j=0 p=1

Thus the matrix (U(2p, 24))pq € Mat(m,C) is always a positive Hermitian
matrix. Therefore ¥ is a reproducing kernel of a Hilbert space (see [Ar50,
p. 344]).

On the other hand, if ¥ is a reproducing kernel of a Hilbert space H C
O(Q), then by taking an orthonormal basis {z/zj}é\]:o of H, we have a Kahler
immersion f : M 3 z ~ [th(2) : ¥1(2) : ---] € CPY because we have
U(z) = U(z,2) = Z;'V:o |v;(2)[%. Note that there exists no point a €
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such that 9;(a) = 0 for all 1 < j < N since ¥(z) = Z;V:o [v;(2)]? is always
positive.

The condition for ¥ to be a reproducing kernel is described in [I99]. In
order to apply the results, we need a fine description of the Lie algebra s with
Jj due to Piatetskii-Shapiro [PS69|. Indeed, it is shown in [PS69, Chapter 2
that the correspondence between the h.b.d. © and the structure of (s, j) is
one-to-one up to natural equivalence. For a linear form a on the Cartan alge-
bra a, we denote by s, the root subspace { X € s; [C, X] = o(C)X (VC € a) }
of 5. The number r := dima is nothing but the rank of €. Thanks to
[PS69, Chapter 2, Section 3|, there exists a basis {a,...,a,} of a* such
that s = 5(0) @ s(1/2) @ s(1) with

D D
5(0)20@ Z S(q—ag)/2 5(1/2)= Z Say, /2>

1<k<I<r 1<k<r
® ®
5(1) = Z Say, D Z S(oq+ag)/2-
1<k<r 1<k<I<r
If {Aq,..., A} is the basis of a dual to {a, ..., @, }, then 5o, = RjA;. Thus
Sa;, (k=1,...,7) is always one dimensional, whereas other root spaces s, /
and §(q,+q,)/2 may be {0}. Since {a1,...,a;} is a basis of a*, the linear
form € a* is written as v = Y}, yxa with unique 71, ...,7, € R. Since

JAL € Sq,, we have
Ve = V(Ap) = —4B(jAr) = —4B([Ar, jAk]) = 4B([7 Ak. Ax])
and the last term equals 4g(Ag - 20, Ag - 20). Thus we get 75 > 0.

For € = (e1,...,6) € {0,1}", put qr(e) := > padimsy, )2 (K =
1,...,7). Define

X(e) ::{(g1 o) €CT; ok > qr(e)/2 (ekzl)}

or = qr(€)/2 (ex =0)

and X := [ |.cg13» X(¢). By [199, Theorem 4.8], U is a reproducing kernel
if and only if v := (y1,...,7,) belongs to X. We denote by W (g) the set of
A > 0 for which \g is projectively induced. Since the metric Ag corresponds
to the parameter Ay, we see that Ag is projectively induced if and only if
Ay € X. Namely we obtain

W(g)={A>0; \yeX},

and the right-hand side is considered in [110]. Put g = > ;- dims(q,_qa,)/2
for k=1,...,r. Then [I10, Theorem 15| tells us that

W(g)U{O}C{;Zc;k:zl,...,r}u(co,—l—oo),

where ¢p := max 2‘%; k= 1,...,7°}
Now assume that Ag is projectively induced for all A > 0. Then we have
co = 0, so that dim sy, _q,)/2 =0 for all 1 <k <1 <r. In this case, we see



10

A. J. DI SCALA, H. ISHI, A. LOI

that s is a direct sum of ideals ;. := jsa, © 54, /2@ 5a, (K =1,...,7), which
correspond to the hyperbolic spaces CH™ with ny, = 1+(dim,, /2)/2 ([PS69,
pp. 52-53]). Therefore the Lie algebra s corresponds to the direct product
CH™ x --- x CH™, which is biholomorphic to €2 because the homogeneous
domain © also corresponds to s. Hence (4) holds and Theorem 4 is verified.
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