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Abstract. We study left-invariant almost Hermitian structures on homogeneous spaces having either

flat Chern connection or flat Ricci-Chern form. Many examples are carefully described and a classifica-

tion is given in low dimensions.

1. introduction

The Chern connection is a classical object in almost Hermitian and almost Kähler geometry. It is
defined as the unique Hermitian connection whose torsion has vanishing (1, 1)-component, and it was
firstly introduced by Ehresmann and Libermann in [12]. In the complex case it coincides with the
connection used by Chern in [7] to compute representatives of characteristic classes (hence the name).
In the nearly Kähler case this connection has parallel and skew-symmetric torsion (see e.g. [14]), while
in the quasi-Kähler (or (1, 2)-symplectic) case it coincides with the so called second canonical Hermitian
connection (see [15]).

Let (M, g, J) be an almost Hermitian manifold and let ∇ be its Chern connection and R the curvature
tensor corresponding to ∇. Let Ric(J) := 1

2 trωR(X,Y, ·, ·) be the Ricci form of the Chern connection,
where ω is the fundamental form associated to (g, J).

Definition 1.1. For the purpose of this article, the almost Hermitian structure (g, J) is called
• Ricci-flat if Ric(J) = 0;
• Chern-flat if R = 0.

The starting point of this paper was the problem of determining all the invariant Ricci-flat and
Chern-flat almost complex structures on the Iwasawa manifold. The latter is a classical example of
a 6-dimensional compact manifold admitting both complex structures and symplectic structures but no
Kähler structure. It is defined as a compact quotient of the complex Heisenberg group and the geometry
of its almost complex structures was thoroughly investigated in [2]. Let (M, g) be the Iwasawa manifold
equipped with the standard metric and denote by Zg the space of left-invariant almost complex structures
compatible with g and a fixed orientation. Then Zg is canonically identified with CP3 and has the four
distinguished points J0, J1, J2 , J3 which correspond to vertices of a tetrahedron [3, p.155] and [21]. We
will show that J0 and J3 are the only Chern-flat structures and that all J ∈ Zg are Ricci-flat.

In [10] the authors proved that the holonomy group of the Chern connection of a quasi-Kähler structure
on a compact manifold M is trivial if and only if M is a 2-step nilmanifold whose associated Lie algebra
satisfies some relations. One of these relations is the following

-- (1.1) [JX, JY ] = −[X,Y ]

for all X,Y in the Lie algebra associated to M . In the present paper we call an invariant almost complex
structure satisfying (1.1) an anti-abelian almost complex structure. One of the goals of this paper is
to show that for a nilmanifold the vanishing of the curvature tensor of the Chern connection implies
that the holonomy group of the Chern connection is trivial, i.e. the induced representation of the first
fundamental group is trivial. Indeed this is a corollary of the following result
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second Theorem 1.2. Let M be manifold whose universal covering is a Lie group G and let π : G→M be the
covering map. Let (g, J) be an almost Hermitian structure on M such that π∗g , π∗J are left-invariant.

(i) If π∗J is anti-abelian then J is Chern-flat.
(ii) If G is nilpotent, then π∗J is anti-abelian if and only if J is Chern-flat.
(iii) There exists a compact solvmanifold (M, g, J) such that J is Chern-flat but π∗J is not anti-abelian.
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cortes Corollary 1.3. Let (M = Γ\G, J, g) be a nilmanifold with a left-invariant almost Hermitian structure.
The following facts are equivalent:

(i) J is anti-abelian;
(ii) the holonomy group of the Chern connection associated to (g, J) is trivial;
(iii) (g, J) is Chern-flat.

The anti-abelian condition (1.1) is “opposite” to the more familiar abelian condition [JX, JY ] = [X,Y ].
Abelian complex structures were introduced in [5] and were intensely studied in [4, 6, 11, 8, 19]. Observe
that J is anti-abelian and integrable if and only if it is bi-invariant, i.e. J [X,Y ] = [JX, Y ]. It follows from
Corollary 1.3 that studying Chern-flat structures on nilmanifolds is equivalent to studying anti-abelian
almost complex structures on nilpotent Lie algebras (nilalgebras).

According to published classifications, there are just 3 isomorphism classes of 4-dimensional nilalgebras
and there are 34 isomorphism classes of 6-dimensional nilpotent Lie algebra [20, 16]. These isomorphism
classes can be described by using an adequate choice of the basis as in [22] (see Table 1).

Let g be a nilpotent Lie algebra of dimension 4 or 6 and let {e1, e2, · · · , en} be a basis as in Table
1. Declaring the vectors ei to be orthonormal determines an invariant Riemannian metric g and an
orientation σ = e1 ∧ · · · ∧ en. We denote by Zg the set of invariant positively-oriented orthogonal almost
complex structures (OACS’s).

For low dimensions we have the following result.

secondmain Theorem 1.4. If a 4-dimensional Lie algebra g admits an anti-abelian almost complex structure J then
g is either an abelian Lie algebra or g is the complexification of a 2-dimensional solvable Lie algebra.

In dimension 6 the nilalgebras admitting an anti-abelian OACS are given by the table

g Structure equations Anti-abelian structures in Zg
g27 0, 0, 0, 0, 13 + 42, 14 + 23 J0 , J3

g28 0, 0, 0, 0, 12, 14 + 23 J ′0 , J
′
3

g29 0, 0, 0, 0, 0, 12 + 34 J ′0 , J
′
3

g34 0, 0, 0, 0, 0, 0 Zg
where J0 , J3 , J

′
0 , J

′
3 are the OACS’s given by the forms

ω0 = e12 + e34 + e56 , ω3 = −e12 − e34 + e56 ,

ω′0 = e13 + e24 + e56 , ω′3 = −e13 − e24 + e56 .

In the above list: g27 and g28 are the unique 6-dimensional irreducible nilalgebras having first
Betti number equal to 4; g27 is the Lie algebra associated to the 3-dimensional complex Heisenberg
group (and to the Iwasawa manifold); g29 is reducible and is the direct sum of R with the Lie algebra
g = (0, 0, 0, 0, 12 + 34) associated to the 5-dimensional real Heisenberg group; g34 is merely the
6-dimensional abelian Lie algebra.

For Ricci-flat almost Hermitian structures, we obtain the following results in dimension 4 and 6.

main4 Theorem 1.5. For 4-dimensional nilagebras we have the table

g Structure equations Ricci-Flat structures AK Ricci-flat structures
R4 0, 0, 0, 0 Zg Zg

h3 ⊕ R 0, 0, 12, 0 Zg Je3 ∈ 〈e1, e2〉
n4 0, 0, 12, 23 J ∈ Zg : Je3 ∈ 〈e1, e3, e4〉 ±(e13 + e24)

where AK means that (g, J) is almost Kähler (i.e. the fundamental form of (g, J) is closed).
Let g be a 6-dimensional nilalgebra having b1 ≥ 4. Then

1. g belongs to the list

(0, 0, 0, 0, 12, 14 + 23) , (0, 0, 0, 0, 12, 34) , (0, 0, 0, 0, 13 + 42, 14 + 23)
(0, 0, 0, 0, 0, 12 + 34) , (0, 0, 0, 0, 12, 13) , (0, 0, 0, 0, 0, 12) , (0, 0, 0, 0, 0, 0),

and any J ∈ Zg is Ricci-flat.
2. g is one of the Lie algebras

(0, 0, 0, 0, 12, 15 + 34) , (0, 0, 0, 0, 12, 15) , (0, 0, 0, 0, 12, 14 + 25)

then J ∈ Zg is Ricci-flat if and only if [Je6, e6] = 0 and one of the following two conditions holds:
i. [e5, Je5] = 0 ;
ii. J〈e5, e6〉 is contained in 〈e1, e2, e3, e4〉 .
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In the above list h3 ⊕ R is the Lie algebra associated to the so called Kodaira-Thurston manifold
(see e.g. [3, 25]). Moreover, we remark that almost Kähler Ricci-flat structures can be seen as special
Hermitian-symplectic structures (see [18, 23, 26]).

As a consequence of Theorem 1.5 we have the following

Corollary 1.6. Let (M, g) be the Iwasawa manifold with its standard metric. Then any J ∈ Zg is
Ricci-flat. Moreover J ∈ Zg is Chern-flat if and only if J = J0 or J = J3.

The paper is organized as follows:
In § 2 we recall some basic facts about almost complex structures and the Chern connection. In § 3 we
prove theorems 1.2 and 1.4. In § 4 we study left-invariant Ricci-flat almost Hermitian structures on some
4-dimensional and 6-dimensional nilmanifolds proving Theorem 1.5.

2. Preliminaries
pre

Let M2n be a 2n-dimensional smooth manifold. An almost Hermitian structure on M is a pair (g, J),
where J is an almost complex structure (J ∈ End(TM), J2 = −I) and g is a Riemannian metric such
that g(J ·, J ·) = g(·, ·). Any almost Hermitian structure induces the so-called fundamental form (or
Kähler form) ω(·, ·) = g(J ·, ·). Moreover, the almost complex structure J allows us to decompose the
complexified tangent bundle in

TM ⊗ C = T 1,0 ⊕ T 0,1 ,

where
T 1,0
x = {v ∈ TxM ⊗ C : Jv = i v} ;

T 0,1
x = {v ∈ TxM ⊗ C : Jv = − i v} ;

and, consequently, the vector bundle ΛrCM of complex r-forms on M splits as

ΛrCM =
⊕
p+q=r

Λp,q .

An almost complex structure is called integrable (or a complex structure) if the associated Nijenhuis
tensor

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]
vanishes everywhere. Given an almost Hermitian structure (g, J) we denote by D the Levi-Civita con-
nection of g.

An almost Hermitian structure (g, J) is called
• almost Kähler if dω = 0;
• nearly Kähler if DJ is a skew-symmetric tensor;
• Kähler if NJ = 0 and dω = 0 or, equivalently, if DJ = 0.

Given an almost Hermitian manifold (M2n, g, J) there exists a unique connection ∇ on M satisfying

∇g = ∇J = 0 , Tor(∇)1,1 = 0 ,

where Tor(∇)1,1 denotes the (1, 1)-part of the torsion of ∇. Condition Tor(∇)1,1 = 0 means that
Tor(∇)(Z1, Z2) = 0 for any pair Z1, Z2 of vector fields of type (1, 0). ∇ is usually called the Chern
connection. In terms of the Levi-Civita connection D of g, ∇ is described by the following formula

nablanabla (2.1) g(∇XZ, Y ) =g(DXZ, Y ) +
1
4
g((DJY J + JDY J)X,Z)− 1

4
g((DJZJ + JDZJ)X,Y ) .

Let R be the curvature tensor of ∇. Then it is defined the Ricci form of ∇

Ric(J)(X,Y ) =
n∑
i=1

R(X,Y, Zi, Zi) ,

where {Z1, . . . , Zn} is an arbitrary unitary frame. Ric(J) is a closed 2-form and i
2πRic(J) represents the

first Chern class of J . Moreover, we can locally write Ric(J) = dθ, where θ is the 1-form

θ(X) =
n∑
i=1

g(∇XZi, Zi) ,

{Z1, . . . , Zn} being a locally defined unitary frame (see the appendix at the end of the paper for a proof
of this well-known result). An almost Hermitian structure is called Ricci-flat if Ric(J) vanishes.

In the last part of the paper we study Ricci-flat structures on Lie algebras. Let g be a Lie algebra.
An almost Hermitian structure on g is a pair (g, J), where J is an isomorphism of g such that J2 = −Id
and g is a J-compatible inner product. If we have a Lie group G (or more generally a quotient of a Lie
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group by a lattice), then giving a left-invariant almost Hermitian structure is equivalent to assigning an
almost Hermitian structure on the Lie algebra of G. Hence the study of left-invariant almost Hermitian
structures reduces to the study of almost Hermitian structure on Lie algebras.

Now we describe the notation we will use for Lie algebras:
Let g be a Lie algebra; then g can be described in terms of the so-called structures equations. Indeed, g is
completely determined by the exterior derivatives of an arbitrary coframe and this allows us to describe
g by using a list of numbers. For example, if we write

g = (0, 0, 0, 0, 13 + 42, 14 + 23) ,

we mean that there exists a coframe {e1, . . . , e6} of g satisfying the following equations
de1 = de2 = de3 = de4 = 0 ,
de5 = e13 + e42 ,

de6 = e14 + e23 ,

where ei1...ir := ei1 ∧· · ·∧eir . Notice that different structure equations could define the same Lie algebra.
Moreover, if some structure equations are fixed, then any associated coframe E := {e1, . . . , en}, induces
the metric g =

∑
ei ⊗ ei . If E, E′ are two frames associated to the same structure equations, then the

induced metric are isometric, this means that there exists an isomorphism of Lie algebras L : g→ g such
that L∗(g′) = g. Thus if some structure equations on a Lie algebra g are fixed, then we have a metric g
on g which is unique up to isomorphisms of g.

3. Chern-flat structures

In this section we study left-invariant Chern-flat almost complex structures and we prove Theorem 1.2
and Theorem 1.4.

3.1. Left-invariant flat connections. Let G be a simply-connected Lie group endowed with a left-
invariant flat connection ∇ (i.e. R∇ = 0). Fix a left-invariant frame E := {e1, . . . , en}, where n =
dimR(G), and let X := {X1, . . . , Xn} be a ∇-parallel frame such that ei(e) = Xi(e) for i = 1, . . . , n,
where e denotes the identity of G. Then there exists a map ρ : G→ GL(n), ρ(g) = (ρ(g)ij):

Xg = (X1 · · ·Xn) = (e1 · · · en)

 ρ11(g) · · · ρ1n(g)
...

...
...

ρn1(g) · · · ρnn(g)

 = Eg ρ(g) .

Note that ρ(e) = Id. Let Lh : G→ G be a left multiplication by h ∈ G. Then LhX = (LhX1 · · ·LhXn) is
also a ∇-parallel frame, where (Lh(X))g = dLh(Xh−1g), since ∇ is a left-invariant connection. So there
exists a matrix M(h) ∈ GL(n) such that

LhX = (LhX1 · · ·LhXn) = XM(h) .

On the other side, since (Lh(X))g = dLh(Xh−1g), we have that LhX = Eρ(h−1g). Then we get
LhX = XM(h) = E ρ(g)M(h) = Eρ(h−1g) which implies

ρ(g)M(h) = ρ(h−1g) .

Evaluation at g = e gives M(h) = ρ(h−1) and this shows that ρt is a representation of G, where ρt

denotes the transpose of ρ.

Proposition 3.1. Let G be an n-dimensional simply-connected Lie group. There is a correspondence
between flat left-invariant connections on G and representations of G on Rn.

Assume now that (g, J) is a left-invariant almost Hermitian structure on G and that∇ is a left-invariant
flat connection such that {

∇g = 0
∇J = 0 .

Let X := (X1 JX1 X2 JX2 · · · Xm JXm), 2m = n, be a ∇-parallel unitary frame and let E :=
(e1 Je1 e2 Je2 · · · em Jem) be the left-invariant unitary frame such that X(e) = E(e). Then the above
map ρ takes values in the unitary group U(m), i.e. ρ : G → U(m) ⊂ GL(n). Let Zk = Xk−iJXk√

2
be

the (1, 0) ∇-parallel section of T 1,0G induced by Xk for k = 1, · · · ,m. Then Z := (Z1 Z2 · · ·Zm) is a
∇-parallel unitary (1, 0)-frame. Similarly, the real left-invariant frame E produces a (1, 0) left-invariant
unitary frame S := ( e1−iJe1√

2
· · · em−iJem√

2
). Then

Z = Sρ(g)
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where ρ(g) ∈ U(m) is a m×m matrix with complex entries.

3.2. Flat left-invariant almost Hermitian structures on nilpotent Lie Groups. We have the
following

main Proposition 3.2. Let (g, J) be a left-invariant almost Hermitian structure on a 2m-dimensional nilpo-
tent simply-connected Lie group G. Then the Chern connection associated to (g, J) is flat if and only if
the almost complex Lie algebra (g, J) is anti-abelian, i.e. [J ·, J ·] = −[·, ·].

Proof. Let ∇ be the Chern connection associated to (g, J) and assume that the curvature of ∇ vanishes.
Then there exists a parallel global unitary (1, 0)-frame Z = (Z1 · · ·Zm) on G. Fix a left-invariant complex
unitary (1, 0)-frame S = (w1 · · ·wm) satisfying S(e) = Z(e). As explained in the previous subsection,
there exists a representation ρt : G→ U(m) satisfying

Z(g) = S(g)ρ(g) .

Since G is nilpotent and U(m) is compact, it follows that ρ(G) is completely reducible and abelian;
hence we can assume, by a change of frames, that ρ(g) is diagonal. Namely, there exist smooth maps
χ1, · · · , χm : G→ U(1) satisfying 

Z1(g) = χ1(g)w1(g),
...
Zm(g) = χm(g)wm(g) .

Now using Tor(∇)1,1 = 0 we get

0 = [Zi, Zj ] = [χiwi, χjwj ] = χi(χj)iwj − χj(χi)jwi + χiχj [wi, wj ] .

So the assumption that ∇ is Chern-flat implies

[wi, wj ] =
(χi)j
χi

wi −
(χj)i
χj

wj .

Since G is nilpotent, there exists an integer k ≥ 0 such that

 0 = [wi, [· · · , [wi, [wi, wj ]] = ( (χj)i

χj
)k[wi, wj ] ,

0 = [wj , [· · · , [wj , [wi, wj ]] = (
(χi)j

χi
)k[wi, wj ]

which implies [wi, wj ] = 0 for 1 ≤ i, j,≤ m. This shows that g is anti-abelian.
On the other side assume that the Lie algebra g of G is anti-abelian and let ∇̃ the unique connection

on G whose parallel vector fields are left-invariant vector fields. Since

[Z,W ] = 0

for any Z ,W ∈ g1,0, then the torsion of ∇̃ has vanishing (1, 1)-component. Clearly, ∇̃g = ∇̃J = 0, hence,
by uniqueness, ∇̃ is the Chern connection. �

anti-flat Remark 3.3. Note that for the “if part” of the above proof we don’t use that G is nilpotent and simply-
connected.

Notice that a Lie algebra g is anti-abelian, i.e. [Jv, Jw] = −[v, w], if and only if for all v

[Jv, v] = 0 .

Indeed, [Jv, Jw] = −[v, w] is equivalent to [Jv,w] = [v, Jw] which is the bilinear form associated by
polarization to the quadratic form [Jv, v]. Moreover, if J is anti-abelian, then it preserves the center of
g. This implies that if a Lie algebra admits an anti-abelian structure, then its center has even dimension.
Observe also that an anti-abelian almost complex structure J on g is integrable if and only if g is complex
Lie algebra, i.e [JX, Y ] = J [X,Y ].
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3.3. Proof of Theorem 1.2. Now are ready to prove Theorem 1.2

Proof. Claim (i) follows from Proposition 3.2 and Remark 3.3. For (ii) let (M, g, J) be an infra-
nilmanifold (i.e. a Riemannian manifold whose universal covering is a nilpotent Lie group ) endowed
with an almost Hermitian structure such that π∗g, π∗J are left-invariant. Assume that the curvature
tensor of the Chern connection associated to (g, J) vanishes. Then the universal covering of M is a
simply-connected nilpotent Lie group N with an almost Hermitian Chern-flat left-invariant structure. So
the claim follows from Proposition 3.2. For (iii) we observe that a flat Kähler torus can be presented as
a compact quotient of a solvable Lie group with a non anti-abelian OACS. Indeed, let s = 〈e1, e2, e3, e4〉
be the solvable Lie algebra whose Lie bracket is given by the relation

[e1, e2] = −e3 [e1, e3] = e2 .

In terms of structure equations we can write s = (0,−13, 12, 0). Here is a representation of s:

e1 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , e2 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 e3 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , e4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

Let S be a Lie group whose Lie algebra is s. Consider on S the left-invariant almost Hermitian structure
defined by (g, J), where J is the almost complex structure determined by the relations

Je1 = e4 , Je2 = e3

and g =
∑4
i=1 e

i ⊗ ei, {e1, . . . , e4} being the dual frame to {e1, . . . , e4}. The only non-zero covariant
derivatives with respect to the Levi-Civita connection are:

De1e2 = −e3 , De1e3 = e2 .

So s splits s = 〈e1, e4〉⊕ 〈e2, e3〉 where the factors are D-parallel distributions. This implies that (S, g, J)
is a flat Kähler manifold and so the Chern connection of (S, g, J) is flat. On the other hand (s, J) is not
anti-abelian since

[Je1, Je2] = [e4, e3] = 0 6= −[e1, e2] = e3 .

The Lie algebra s = 〈e1, e2, e3, e4〉 can be identified with the Lie algebra of the group S := Iso(R2)× S1

where Iso(R2) = SO(2) n R2 is the group of (orientation preserving) isometries of the Euclidean plane
R2. �

Now we are ready to prove Corollary 1.3.

Proof of Corollary 1.3. (i) =⇒ (ii) is a direct consequence of Theorem 1.2, since left-invariant vector
fields on G can be pushed-down to the quotient M = Γ\G.

(ii) =⇒ (iii) it is obvious.
(iii) =⇒ (i) comes from the item (ii) of Theorem 1.2. �

Rcortes Remark 3.4. We do not know if Corollary 1.3 is true when G is not nilpotent, e.g. for solvmanifolds.
Since there exist flat compact Kähler manifolds with non trivial holonomy group (see [9]) it follows
that (iii) → (ii) of Corollary 1.3 does not hold for infra-nilmanifolds, i.e. Riemannian manifolds whose
universal covering is a nilpotent Lie group .

3.4. Proof of Theorem 1.4. Now we are going to prove Theorem 1.4.
Assume that g is 4-dimensional and let gC its complexification. Let J be an anti-abelian structure.

Then split gC = g1,0
C ⊕g0,1

C as usual and note that the anti-abelian condition is equivalent to [g1,0
C , g0,1

C ] = 0.
Let Z1, Z2 be a base of g1,0

C and assume [Z1, Z2] = aZ1 + bZ2 + cZ1 + dZ2 6= 0. Then from the Jacobi
identity we get {

0 = [[Z1, Z2], Z1] = d[Z2, Z1]
0 = [[Z1, Z2], Z2] = c[Z1, Z2] .

So d = c = 0 and then g1,0
C is a Lie algebra, i.e [g1,0

C , g1,0
C ] ⊂ g1,0

C . Now is clear that g is the
complexification of the 2-dimensional solvable Lie algebra.

For the dimension 6 case we need the classification of of 6-dimensional nilpotent Lie algebras showed
in table 1.

A first obstruction to the existence of an anti-abelian almost complex structure on a Lie algebra is
given to the dimension of its center; namely,
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Table 1. Six dimensional nilpotent Lie algebrastable

Structure equations Dimension of the center
g1 = (0, 0, 12, 13, 14 + 23, 34 + 52) 1
g2 = (0, 0, 12, 13, 14, 34 + 52) 1
g3 = (0, 0, 12, 13, 14, 15) 1
g4 = (0, 0, 12, 13, 14, 23 + 15) 1
g5 = (0, 0, 0, 12, 14, 24) 1
g6 = (0, 0, 12, 13, 23, 14 + 25) 1
g7 = (0, 0, 12, 13, 23, 14− 25) 1
g8 = (0, 0, 12, 13, 14 + 23, 24 + 15) 1
g9 = (0, 0, 0, 12, 14, 15 + 23) 1
g10 = (0, 0, 0, 12, 14− 23, 15 + 34) 1
g11 = (0, 0, 0, 12, 23, 14 + 35) 1
g12 = (0, 0, 0, 12, 23, 14− 35) 1
g13 = (0, 0, 0, 12, 13, 14 + 35), 1
g14 = (0, 0, 0, 12, 14, 15 + 23 + 24) 1
g15 = (0, 0, 0, 0, 12, 15 + 34) 1
g16 = (0, 0, 0, 12, 13 + 42, 14 + 23) 2
g17 = (0, 0, 0, 12, 14, 13 + 42) 2
g18 = (0, 0, 0, 12, 13 + 14, 24) 2
g19 = (0, 0, 0, 12, 13, 14) 2
g20 = (0, 0, 12, 13, 23, 14) 2
g21 = (0, 0, 0, 12, 14, 15) 2
g22 = (0, 0, 0, 12, 13, 14 + 23) 2
g23 = (0, 0, 0, 12, 13, 24) 2
g24 = (0, 0, 0, 12, 14, 15 + 24) 2
g25 = (0, 0, 0, 0, 12, 14 + 23) 2
g26 = (0, 0, 0, 0, 12, 34) 2
g27 = (0, 0, 0, 0, 13 + 42, 14 + 23) 2
g28 = (0, 0, 0, 0, 12, 14 + 25) 2
g29 = (0, 0, 0, 0, 0, 12 + 34) 2
g30 = (0, 0, 0, 12, 13, 23) 3
g31 = (0, 0, 0, 0, 12, 13) 3
g32 = (0, 0, 0, 0, 12, 15) 3
g33 = (0, 0, 0, 0, 0, 12) 4
g34 = (0, 0, 0, 0, 0, 0) 6

Lemma 3.5. Let g be a 6-dimensional nilpotent Lie algebra admitting an anti-abelian structure, then the
dimension of the center of g is equal to 0, 2 or 6.

Proof. Assume that there exists an anti-abelian almost complex structure J on g. Since the center z of g
is J-invariant it is even-dimensional. It remains to prove that the dimension of the center of g cannot be
equal to 4. Since J preserves z, there exists a J-invariant complement W = 〈w1, w2〉 of z in g. We can
write

J(w1) = Aw1 +Bw2 , J(w2) = A′w1 +B′w2 .

Now
[Jw1, w1] = 0 =⇒ B = 0

which is a contradiction. �

Corollary 3.6. The Lie algebras {gi}i=1,...14, g30, g31, g32, g33, do not admit any anti-abelian almost
complex structure.

Before the next result, we need an easy technical lemma:

tec Lemma 3.7. Let (V, J) be a complex vector space and let W ⊆ V be a J-invariant subspace. Let
v ∈ V \W such that Jv ∈ 〈v〉 ⊕W . Then v = 0.
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Proof. Assume Jv = a v + w, for some w ∈W . Then

−v = J2v = a Jv + Jw = a2 v + w + Jw .

This readily implies v = 0, as required. �

Lemma 3.8. Let g be a 6-dimensional nilpotent Lie algebra with the center of dimension 2. Assume
that there exists v ∈ g such that, if V := 〈v〉, then dim[V, g] = 3. Then g does not admit any anti-abelian
structure.

Proof. Let J be an anti-abelian structure. Using [Jv, v] = 0, we immediately get that Jv ∈ 〈v〉⊕ z. Since
J preserves z, Lemma 3.7 gives a contradiction. �

Corollary 3.9. The Lie algebras g16 , g17 , g19 , g20 , g21 , g22 , g24 do not admit anti-abelian almost complex
structures.

It remains to prove that g18, g23, g25 and g26 don’t have anti-abelian almost complex structures. Here
we work case by case.

Lemma 3.10. The Lie algebra g18 = (0, 0, 0, 12, 13 + 14, 24) does not admit any anti-abelian almost
complex structure.

Proof. Assume that there exists an anti-abelian almost complex structure J on g23. We can write

Je1 = Ae1 +Be2 + Ce3 +De4 + Ee5 + Fe6 ,

Je2 = A′e1 +B′e2 + C ′e3 +D′e4 + E′e5 + F ′e6 .

Then
[Je1, e1] = 0 =⇒ Je1 = Ae1 + Ce3 − Ce4 + Ee5 + Fe6 ,

[Je2, e2] = 0 =⇒ Je2 = B′e2 + C ′e3 + E′e5 + F ′e6 .

Moreover,
[Je1, Je2] = −AB′e4 − CB′e6 −AC ′e5 .

Hence [Je1, Je2] = −[e1, e2] implies 
AB′ = 1
CB′ = 0
AC ′ = 0 .

Applying Lemma 3.7, we get that the above system simplesA = B′ = 0, AB′ = 0, which is a contradiction.
�

Lemma 3.11. The Lie algebra g23 = (0, 0, 0, 12, 13, 24) does not admit any anti-abelian almost complex
structure.

Proof. Assume that there exists an anti-abelian almost complex structure J on g23. We can write

Je1 = Ae1 +Be2 + Ce3 +De4 + Ee5 + Fe6 ,

Je2 = A′e1 +B′e2 + C ′e3 +D′e4 + E′e5 + F ′e6 .

Then
[Je1, e1] = 0 =⇒ Je1 = Ae1 +De4 + Ee5 + Fe6 ,

[Je2, e2] = 0 =⇒ Je2 = B′e2 + C ′e3 + E′e5 + F ′e6 .

Moreover,
[Je1, Je2] = −AB′e4 +DB′e6 −AC ′e5 .

Hence [Je1, Je2] = −[e1, e2] implies 
AB′ = 1
DB′ = 0
AC ′ = 0 .

Applying again Lemma 3.7, we get A = B′ = 0, AB′ = 0, which is a contradiction. �

Lemma 3.12. The Lie algebra g25 = (0, 0, 0, 0, 12, 14 + 23) does not admit any anti-abelian almost
complex structure.
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Proof. Assume that there exists an anti-abelian almost complex structure J on g24. We can write

Je1 = Ae1 +Be2 + Ce3 +De4 + Ee5 + Fe6 ,

Je2 = A′e1 +B′e2 + C ′e3 +D′e4 + E′e5 + F ′e6 .

Then
[Je1, e1] = 0 =⇒ Je1 = Ae1 + Ce3 + Ee5 + Fe6 ,

[Je2, e2] = 0 =⇒ Je2 = B′e2 +D′e4 + E′e5 + F ′e6 .

Moreover,
[Je1, Je2] = −AB′e5 + CB′e6 −AD′e6 .

Hence [Je1, Je2] = −[e1, e2] implies {
AB′ = 0 ,
CB′ −AD′ = 1 .

Hence it has to be A = 0 or B = 0. Assume A = 0, then

Je1 = Ce3 + Ee5 + Fe6 ,

Je2 =
1
C
e2 +D′e4 + E′e5 + F ′e6 .

Using J2 = −Id, we get

Je3 = − 1
C
e3 + v , v ∈ z .

Hence

[Je2, Je3] = [
1
C
e2 +D′e4,−

1
C
e3] =

1
C2

e6 .

Since [e2, e3] = −[Je2, Je3] and [e2, e3] = −e6, we get a contradiction.
Assume now B′ = 0. Then

Je1 = Ae1 + Ce3 + Ee5 + Fe6 ,

Je2 = − 1
A
e4 + E′e5 + F ′e6 .

Using J2 = −Id, we get
Je4 = Ae2 + w , w ∈ z .

Then
[Je1, Je4] = [Ae1 + Ce3, Ae2] = −A2e5 + CAe6

and [Je1, Je4] = −[e1, e4] implies A = 0 which is a contradiction, again. �

Lemma 3.13. The Lie algebra g26 = (0, 0, 0, 0, 12, 34) does not admit any anti-abelian almost complex
structure.

Proof. The idea of the proof is to show that the matrix of an anti-abelian complex structure J must have
a real eigenvalue which is a contradiction.
Let J be a anti-abelian complex structure. Since J preserves the center z = 〈e5, e6〉 we have

J11 J12 J13 J14 0 0
J21 J22 J23 J24 0 0
J31 J32 J33 J34 0 0
J41 J42 J43 J44 0 0
J51 J52 J53 J54 J55 J56

J61 J62 J63 J64 J65 J66

 .

Condition [Je1, e1] = 0 implies J21 = 0. Analogously the other conditions [Jei, ei] = 0 implies

J12 = J43 = J34 = 0 .

Hence J reduces to 
J11 0 J13 J14 0 0
0 J22 J23 J24 0 0
J31 J32 J33 0 0 0
J41 J42 0 J44 0 0
J51 J52 J53 J54 J55 J56

J61 J62 J63 J64 J65 J66

 .
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Now, relations

[Je1, e3] = J41e6 ,

[e1, Je3] = −J23e5 ,

[Je1, e4] = −J31e6 ,

[e1, Je4] = −J24e5

imply
J31 = J41 = 0 .

Since J2 = −Id it turns out that J2
11 = −1, which is a contradiction. �

3.4.1. Anti-abelian structure in Zg. Now we end the proof of Theorem 1.4 classifying the anti-abelian
structures in Zg. We start form the Lie algebra g27 = (0, 0, 0, 0, 13+42, 14+23) associated to the Iwasawa
manifold.

Lemma 3.14. The only Chern-flat almost complex structures in Zg(g27) are the structure J0 and J3

having as fundamental forms

ω0 = e12 + e34 + e56 , ω3 = −e12 − e34 + e56 ,

respectively.

Proof. Let J in Zg(g27) be a Chern-flat structure. Then Theorem 1.2 implies that (g, J) must be anti-
abelian, i.e. [Jv,w] = [v, Jw] for all v, w ∈ g. In particular J preserves the center z = 〈e5, e6〉 of g and
its orthogonal complement zt = 〈e1, e2, e3, e4〉. Then Je5 = ±e6. Now

Je1 = ae1 + be2 + ce3 + de4

and since
[Je1, e1] = 0

we get
0 = [Je1, e1] = a[e1, e1] + b[e2, e1] + c[e3, e1] + d[e4, e1] = −ce5 + de6 .

Then c = d = 0 and we get Je1 = ±e2. In a similar way we get from [Je3, e3] = 0 that Je3 = ±e4. Let
now ε1, ε3, ε5 ∈ {1,−1} be such that 

Je1 = ε1e2 ,

Je3 = ε3e4 ,

Je5 = ε5e6

and the product ε1ε3ε5 = 1. Now
[Je1, e3] = [e1, Je3]

and we get
[Je1, e3] = ε1[e2, e3] = ε1e6 = [e1, Je3] = ε3[e1, e4] = ε3e6

which implies ε1 = ε3 and ε5 = 1. This show that J is either J0 or J3. �

Analogously we have that following lemma whose proof is omitted

Lemma 3.15. The only Chern-flat almost complex structures in Zg(g28) and in Zg(g29) are the structure
J ′0 and J ′3 having as fundamental forms

ω′0 = e13 + e24 + e56 , ω′3 = −e13 − e24 + e56 .

4. Ricci-flat structures

In this section we prove Theorem 1.5.
Let (M, g, J) be an almost Hermitian manifold, D be the Levi-Civita connection of g and ∇ be the

Chern connection. We recall the definition of the Ricci form:

Ric(J)(X,Y ) =
1
2

trωR(X,Y, ·, ·) =
n∑
i=1

R(X,Y, Zi, Zi) ,

where {Z1, . . . , Zn} is an arbitrary unitary frame on M . Using equation (2.1), we obtain

thetatheta (4.1)

θ(X) =
n∑
i=1

{
g(DXZi, Zi)−

1
2
g(DZiX + iDZiJX,Zi) +

1
2
g(DZi

X − iDZi
JX,Zi)

}

=
n∑
i=1

{
g(DXZi, Zi)− g(DZiX

0,1, Zi) + g(DZi
X1,0, Zi)

}
,
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or, in terms of brackets,

theta2theta2 (4.2) θ(X) =
n∑
i=1

{
g([X0,1, Zi], Zi)− g([X1,0, Zi], Zi)

}
= 2 i

n∑
i=1

Im
{
g([X0,1, Zi], Zi)

}
(see the appendix at the end of the paper for a proof of this last formula). Now we consider the homoge-
nous case. Let M = Γ\G be a quotient of a simply-connected Lie group G by a lattice Γ and let g be a
fixed left-invariant metric on M . We denote by Zg the space of left-invariant almost complex structures
on M compatible to g and a fixed orientation. In this section we study the problem of classifying Ricci-flat
almost complex structures in Zg. This problem is purely algebraic and can be directly studied on the
Lie algebra g associated to G. So g can be regarded as a metric on g and Zg can be viewed as the space
of almost complex structures on g compatible to g and a fixed orientation. Note that for any J in Zg,
Ric(J) = dθ, where θ is the 1-form on g globally defined as in (4.2). So J ∈ ker d is Ricci-flat if and only
if θ has no component on ker d.

The metric g induces the so-called musical isomorphims

\ : g→ g∗ , [ : g∗ → g ,

where \(X)(Y ) = g(X,Y ) and [ = \−1. If A is a fixed subspace of g∗, we denote by A[ the vector space
of g corresponding to A by [. Finally, we denote by z the center of g. Moreover, for every X ∈ g, we
denote by Xt its orthogonal complement.

4.1. Some general results. Now we prove some general result. First of all we consider the following

Proposition 4.1. For any J ∈ Zg, we have that z ∩ Jz ⊆ ker θ.

Proof. If X ∈ z ∩ Jz, then X1,0 and X1,0 belongs to z⊗ C and formula (4.2) implies the statement. �

The proposition above has the following easy-prove consequence

Corollary 4.2. Let J ∈ Zg and assume that
[
(ker d)[

]t
is contained in z ∩ Jz, then Ric(J) = 0.

The following two results give a description of Zg when [(ker d)[]t ⊆ z.

prpar Proposition 4.3. Assume that dim(ker d)t = 1 and [(ker d)[]t ⊆ z. Then any J ∈ Zg is Ricci-flat.

Proof. Let e1 be a fixed unitary generator of (ker d)t and let J ∈ Zg. Then we can write the fundamental
form of J as

ω =
n∑
k=1

e2k−1 ∧ e2k ,

where {e2, . . . , e2n} is a suitable frame of ker d. Let Zk := 1√
2
(e2k−1− i e2k); then we can write [e0,1

1 , Zj ] =
iλje1, for some λj ∈ R. Notice that

[e0,1
1 , Z1] =

1
2
√

2
[e1 − i e2, e1 + i e2] = 0 ,

i.e. λ1 = 0, and
[g, g] = 〈e1〉 .

Moreover

θ(e1) = 2 i
n∑
i=1

Im
{
g([e0,1

1 , Zi], Zi)
}

= i
n∑
i=2

Im {g(λie1, Zi)} = 0 .

Hence θ has no components on (ker d)t. Consequently dθ = 0, which is equivalent to Ric(J) = 0. �

prepa Proposition 4.4. Let (M = Γ\G, g) be a nilmanifold equipped with a left-invariant metric. Assume that
dim(ker d)t = 2 and [(ker d)[]t = z. Then any J ∈ Zg is Ricci-flat.

Proof. Let {e1, e2} be a fixed oriented orthonormal frame of (ker d)t and let J ∈ Zg. Then the funda-
mental form ω associated to J can be written as

omegaomega (4.3) ω = e1 ∧ (ae2 + bf1) + (af1 − be2) ∧ f2 +
n∑
i=2

f2i−1 ∧ f2i ,

where {f1, . . . , f2n} is a suitable frame of (ker d)t and a2 + b2 = 1 (see [3]). Notice that
1. z = 〈e1, e2〉 ;
2. [fi, fj ] ∈ z ;
3. J(e1) = ae2 + bf1 , J(e2) = −ae1 − bf2 ;
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4. [g, g] = 〈e1, e2〉 .
Let {Z1, . . . , Zn} be the unitary frame

Z1 =
1√
2

(e1 − i Je1) , Zj =
1√
2

(f2j−1 + i f2j) , j = 2, . . . , n .

Then

θ(e1) = 2 i
n∑
i=1

Im
{
g([e0,1

1 , Zi], Zi)
}

= 2 i Im
{
g([e0,1

1 , Z1], Z1) + g([e0,1
1 , Z2], Z2)

}
= 2 i Im

{
g([e0,1

1 , Z2], Z2)
}

= i Im {g([i bf1,− i f2],−be2)} = 0

and

θ(e2) = 2 i
n∑
i=1

Im
{
g([e0,1

2 , Zi], Zi)
}

= 2 i Im
{
g([e0,1

2 , Z1], Z1) + g([e0,1
2 , Z2], Z2)

}
=

1
2

i Im
{
b2g([f1, f2], e1)

}
= 0

imply that θ is closed and that J is Ricci-flat, as required. �

4.2. The 4-dimensional case. In this section we take into account 4-dimensional Lie algebras and we
prove the first part of Theorem 1.5.

Let (g, [·, ·], g) be a 4-dimensional Lie algebra with a fixed metric and an orientation. In order to prove
Theorem 1.5, we have to parameterize almost complex structure in Zg. This can be done as follows:
Let V be a fixed 2-dimensional subspace of g∗ and let {e3, e4} be an oriented orthonormal frame of V ;
then the fundamental form of an arbitrary J ∈ Zg can be written in terms of {e3, e4} as

omega4omega4 (4.4) ω = e3 ∧ (ae4 + bf1) + (be4 − af1) ∧ f2 ,

where {f1, f2} is a suitable frame of the orthogonal complement of V . Let {f1, f2, f3, f4} be the dual
basis to {f1, f2, e3, e4}; the the two vectors

Z4Z4 (4.5) Z1 =
1√
2

(e3 − i(ae4 + bf1)) , Z2 =
1√
2

(be4 − af1 − i f2)

defines an unitary frame with respect to (g, J).

Here we write down the 4-dimensional Lie algebras which will take into account:
• R4 = (0, 0, 0, 0) ;
• h3(R)⊕ R = (0, 0, 12, 0) ;
• n4 = (0, 0, 12, 23) ;
• aff(R)⊕ R2 = (12, 0, 0, 0) ;
• sol3 ⊕ R = (0, 0, 13,−14) .

4.2.1. Ricci-flat structure on R4. This case is trivial: any J ∈ Zg is almost Kähler and Chern flat.

4.2.2. Ricci-flat structure on h3(R) ⊕ R. This is the Lie algebra associated to the Kodaira-Thurston
manifold (see [24, 1] for a detailed description). In this case we have ker d = 〈e1, e2, e4〉 and (ker d)t = 〈e3〉.
Moreover the center of g is spanned by e3, e4 and [(ker d)[]t ⊆ z. Hence Proposition 4.3 implies the
following

K-T Proposition 4.5. Any J ∈ Zg(h3(R)⊕ R) is Ricci-flat.

We remark that from [25] it follows that the standard symplectic structure on h3(R)⊕R is Ricci-flat.
4dim3step

4.2.3. Ricci-flat almost complex structures on n4. We recall the h3(R) ⊕ R and n4 are the unique 4-
dimensional non-abelian nilalgebras admitting almost Kähler structures (see [13]). n4 has the following
properties:

ξ = 〈e4〉 ; [g, g] = 〈e3, e4〉 .

prop4dim3step Proposition 4.6. An almost complex structure J ∈ Zg(n4) is Ricci-flat if and only if Je3 ∈ 〈e1, e3, e4〉.

Proof. Let J ∈ Zg(n4), V = 〈e3, e4〉 and {f1, f2} be an oriented orthonormal frame of V t = 〈e1, e2〉.
Then using (4.4) and (4.5), we have

θ(e3) == − i
1
2
b g([e3, f2], e4)
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and

θ(e4) ==
1
2

i a2bg([e3, f1], e4)− 1
2
a2b i g([e3, f1], e4) = 0 .

So

Ric(J) = − i
1
2
b g([e3, f2], e4) e23

and J is Ricci-flat if and only if
bg([e3, f2], e4) = 0 .

This last equation is satisfied if and only if [e3, Je3] = 0 or, equivlently, if Je3 ∈ 〈e1, e3, e4〉. �

4.2.4. Ricci-flat almost complex structures on aff(R)⊕R2. Now we consider the case of aff(R)⊕R2. It is
well known that the simply-connected Lie group G associated to this algebra does not admit a compact
quotient. Notice that in this case

ker d = 〈e2, e3, e4〉 , (ker d)t = 〈e1〉 , z = 〈e3, e4〉 , [g, g] = 〈e1〉 .

Moreover, the fundamental form of an arbitrary J ∈ Zg can be written as

omegaJomegaJ (4.6) ω = e1 ∧ (ae2 + bf1) + (be2 − af1) ∧ f2 ,

where {f1, f2} is a suitable frame of 〈e3, e4〉. We have the following

Proposition 4.7. Let J ∈ Zg(aff(R)⊕ R2). Then J is Ricci-flat if and only if J〈e1, e2〉 ⊆ 〈e3, e4〉

Proof. Let J ∈ Zg with associated fundamental form given by (4.6). Then we have

θ(e1) =
1
2

i Im
{
g([e1 + i(ae2 + bf1), e1 − i(ae2 + bf1)], e1 + i(ae2 + bf1))

+ g([e1 + i(ae2 + bf1), (be2 − af1)− i f2], (be2 − af1) + i f2)
}

=
1
2

i Im
{
g([e1 + i ae2, e1 − i ae2], e1)

}
= − i a g([e1, e2], e1) = i a .

Hence
Ric(J) = i a e12

and J is Ricci-flat if and only if a = 0. Such a condition is equivalent to require

ω = e1 ∧ f1 + e2 ∧ f2 .

�

4.2.5. The case of sol3⊕R. Now we consider the case of the 4-dimensional solvable Lie algebra sol3⊕R =
(0, 0, 13,−14). We have the following relations

ξ = 〈e2〉 , [g, g] = 〈e3, e4〉 ,

Proposition 4.8. An almost complex structure J in Zg(sol3 ⊕R) is Ricci-flat if and only if Je3 = ±e4.

Proof. Let J ∈ Zg(sol3 ⊕ R) be arbitrary. Then the fundamental form of J can be written as

ω = e3 ∧ (ae4 + bf1) + (be4 − af1) ∧ f2 ,

where {f1, f2} is a suitable frame of 〈e1, e2〉. Moreover a direct computation gives

θ(e3) =− i b g([e3, f1], e3) +
1
2

i b g([f1, e4], e4)

and

θ(e4) =− i bg([f2, e3], e3)− 3
2

i b g([f2, e4], e4) .

So J is Ricci-flat if and only if{
2b g([f1, e3], e3) + b g([f1, e4], e4) = 0 ,
2bg([f2, e3], e3) + 3b g([f2, e4], e4) = 0 ,

and these equations can be solved if and only if b = 0. �
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4.2.6. Ricci-flat almost Kähler structures in the previous examples. It is interesting to understand in the
above examples the Ricci-flat almost Kähler structures.

• In the case of the Kodaira-Thurston manifold we have de1 = de2 = 0, df1, df4 ∈ 〈e1, e2〉. A direct
computation gives that in this case J is almost Kähler and Ricci-flat if and only of Je3 ∈ 〈e1, e2〉

• In the second example g = (0, 0, 12, 34) the unique Ricci-flat almost Kähler structures in Zg are
the ones with associated fundamental form ω′+ = e13 + e24, ω′− = e13 − e24

• Also in the case g = (12, 0, 0, 0) there are no almost Kähler Ricci-flat structures in Zg.
• In the the case g = (0, 0, 13,−14) the unique almost Kähler Ricci-flat structures in Zg are
ω+ = e12 + e34 and ω− = −e12 − e34.

4.3. The 6-dimensional case. Let (g, g) be a 6-dimensional Lie algebra with a fixed metric and an
orientation. Let {e1, . . . , e6} be an oriented orthonormal basis of g. Then the fundamental form of an
arbitrary J ∈ Zg can be written as

omegaomega (4.7) ω = e5 ∧ (ae6 + bf1) + (af1 − be6) ∧ f2 + f34 ,

where a2 + b2 = 1 and {f1, f2, f4, f4} is a suitable frame of 〈e1, e2, e3, e4〉\. Then in this case the three
vectors

Z1 =
1√
2

(e5 − i(ae6 + bf1)) , Z2 =
1√
2

(af1 − be6 − i f2) , Z3 =
1√
2

(f3 − i f4)

define an unitary frame.
The aim of this subsection is to study Zg on 6-dimensional nilpotent Lie algebras having b1 ≥ 4. It is

well known that 6-dimensional nilpotent Lie algebras having b1 ≥ 4 are classified by the following list

(0, 0, 0, 0, 12, 15 + 34) , (0, 0, 0, 0, 12, 15) , (0, 0, 0, 0, 12, 14 + 25) ,
(0, 0, 0, 0, 12, 14 + 23) , (0, 0, 0, 0, 12, 34) , (0, 0, 0, 0, 13 + 42, 14 + 23) ,
(0, 0, 0, 0, 0, 12 + 34) , (0, 0, 0, 0, 12, 13) , (0, 0, 0, 0, 0, 12) , (0, 0, 0, 0, 0, 0) .

4.3.1. Two cases where Proposition 4.3 can be applied. First of all we consider the following Lie algebras:
(0, 0, 0, 0, 0, 12), (0, 0, 0, 0, 0, 12 + 34). This two algebras are associated to the groups

R3 ×H3(R) , R1 ×H5(R) ,

where Hn(R) is the n-dimensional Heisenberg group. In this two cases Proposition 4.3 can be applied
and any J ∈ Zg is Ricci flat.

4.3.2. Some cases where Proposition 4.4 can be applied. Proposition 4.4 can be applied to the following
Lie algebras:

(0, 0, 0, 0, 12, 13) , (0, 0, 0, 0, 12, 14 + 23) , (0, 0, 0, 0, 12, 34) , (0, 0, 0, 0, 13 + 42, 14 + 23) .

So in these cases any J ∈ Zg is Ricci-flat.
The Ricci-flatness of the standard complex structure of (0, 0, 0, 0, 13 + 42, 14 + 23) can be also deduced

using Theorem 4 of [17].

4.3.3. The final cases. It remains to consider the following three cases:

(0, 0, 0, 0, 12, 15 + 34) , (0, 0, 0, 0, 12, 14 + 25) , (0, 0, 0, 0, 12, 15) .

We have the following

Proposition 4.9. In the above cases an almost complex structure J ∈ Zg is Ricci-flat of and only if
[e5, Je6] = 0 and one of the following two conditions is satisfied

1. [e5, Je5] = 0 ;
2. J〈e5, e6〉 is contained in 〈e1, e2, e3, e4〉 .

Proof. Let J ∈ Zg. Then the we can write the fundamental form of J as

ω = e5 ∧ (ae6 + bf1) + (af1 − be6) ∧ f2 + f34 ,

where {f1, f2, f3, f4} is a suitable frame of 〈e1, e2, e3, e4〉. A direct computation gives

θ(e5) =− 1
2

i b g([e5, f2], e6)

and
θ(e6) =− i ab2g([e5, f1], e6) .

Hence
Ric(J) = −1

2
i b g([e5, f2], e6) de5 − i ab2g([e5, f1], e6) de6 .
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Since de5, de6 are linear independent, Ric(J) = 0 if and only if one of the following conditions holds:
• b = 0 ;
• a = 0, [e5, f2] = 0 ;
• [e5, f2] = [e5, f1] = 0 .

Now,
[e5, Je5] = b [e5, f1] , [e5, Je6] = −b [e5, f2]

and a = 0 is equivalent to require J〈e5, e6〉 ⊆ 〈e1, e2, e3, e3〉 . �

4.3.4. 6-dimensional Ricci-flat almost Kähler structures. It is interesting to understand in the above
examples the Ricci-flat almost Kähler structures in Zg. Here as usual we write the fundamental form of
J ∈ Zg as

ω = e5 ∧ (ae6 + bf1) + (af1 − be6) ∧ f2 + f34 .

Then in each case, we have

g Almost Kähler Ricci-flat structures in Zg
0, 0, 0, 0, 12, 15 + 34 Ø
0, 0, 0, 0, 12, 15 Ø
0, 0, 0, 0, 12, 14 + 25 Ø
0, 0, 0, 0, 12, 14 + 23 Ø
0, 0, 0, 0, 12, 34 〈e16, e26, e56, e35, e45〉tZg

0, 0, 0, 0, 13 + 42, 14 + 23 e6 ∧ f1 − e5 ∧ f2 + f34 : de6 ∧ f1 = de5 ∧ f2

0, 0, 0, 0, 0, 12 + 34 Ø
0, 0, 0, 0, 12, 13 e6 ∧ f1 − e5 ∧ f2 + f34 : e13 ∧ f1 = e12 ∧ f2

0, 0, 0, 0, 0, 12 〈e36, e46, e56〉tZg

0, 0, 0, 0, 0, 0 Zg

4.4. Generalizations to higher dimensions. Using Proposition 4.3, we have the following result which
generalizes the cases of the h3(R)⊕ R and h3(C) = (0, 0, 0, 0, 13 + 42, 14 + 23).

Proposition 4.10. Let g = hn(R)⊕ R be the 2n-dimensional Lie algebra

(0, . . . , 0, 12 + 34 + · · ·+ (2n− 2)(2n− 1), 0)

obtained as the product of the Lie algebra associated to the 2n− 1-dimensional Heisenberg group Hn(R)
times R. Then, we with respect to the standard metric g, any J ∈ Zg is Ricci-flat.

Moreover, we have the following result which generalizes the case of the Iwasawa manifold.

Proposition 4.11. Let (hn(C), g) be the Lie algebra associated to the complex n-dimensional Heisenberg
group with the standard metric and the standard orientation. Then any J ∈ Zg is Ricci-flat.

5. Appendix

5.1. The Ricci form of a complex connection. Let (Mn, J) be an almost complex manifold. A
connection ∇ on M is called complex if ∇J = 0. Let ∇ be a complex connection and let R be its
curvature tensor. Since ∇J = 0, ∇ induces a connection ∇T on the canonical bundle T = Λn,0J M . Let σ
be a local section of T. Since T has rank one, there exists a complex 1-form θ such that

∇T
Xσ = θ(X)σ ,

for every complex vector field X.
Let RT(X,Y ) be the curvature of ∇T. Namely,

RT(X,Y )σ := ∇T
X∇T

Y σ −∇T
Y∇T

Xσ −∇T
[X,Y ]σ ,

where σ is a local section. Then a simple computation gives

RT(X,Y )σ = dθ(X,Y ) σ .

Let {Z1, Z2, · · · , Zn} be a local (1,0)-frame of TM ⊗ C and let {ζ1, . . . , ζn} be the associated coframe.
Then

∇T
X(ζ1 ∧ ζ2 ∧ · · · ∧ ζn) = ∇Xζ1 ∧ ζ2 ∧ · · · ∧ ζn + · · ·+ ζ1 ∧ ζ2 ∧ · · · ∧ ∇Xζn

and then
∇T
Y∇T

Xσ = ∇Y∇Xζ1 ∧ ζ2 ∧ · · · ∧ ζn + · · ·+ ζ1 ∧ ζ2 ∧ · · · ∧ ∇X∇Y ζn
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Thus, taking into that we may assume [X,Y ] = 0 because R and RT are tensors and that some terms of
the above sum simplify, we get

RT
X,Y σ = R(X,Y )ζ1 ∧ ζ2 ∧ · · · ∧ ζn + · · ·+ ζ1 ∧ ζ2 ∧ · · · ∧ R(X,Y )ζn .

Taking into account that R(X,Y ) is an endomorphism of T 1,0, we get

RT(X,Y )σ = tr(R(X,Y ))σ

and then
tr(R(X,Y )) = dθ(X,Y ) .

Hence if g is a J-Hermitian metric (not necessarily ∇g = 0) and {Z1, . . . , Zn} is an unitary frame, then
we get

n∑
j=1

g(RX,Y Zk, Zk) = dθ(X,Y ) .

5.1.1. A direct consequence. Let now (M,J, g) be a almost Hermitian manifold and let ∇ be a Hermitian
connection (∇g = ∇J = 0). Let us compute dθ(X,Y ) directly. Keep in mind that we can assume
[X,Y ] = 0, since dθ is a tensor. Then

dθ(X,Y ) = Xθ(Y )− Y θ(X)

=
n∑
r=1

Y g(∇XZr, Zr)−Xg(∇Y Zr, Zr)

=
n∑
r=1

g(∇Y∇XZr, Zr) + g(∇XZr,∇Y Zr)− g(∇Y Zr,∇XZr)− g(∇X∇Y Zr, Zr)

=
n∑
r=1

g(RX,Y Zr, Zr)) +
n∑
r=1

g(∇XZr,∇Y Zr)− g(∇Y Zr,∇XZr)

and we get the following

Proposition 5.1. Let (M,J, g) be an almost Hermitian manifold and let ∇ be an almost Hermitian
connection i.e. ∇g = ∇J = 0. Then if {Z1, . . . , Zr} is a local unitary frame, then

n∑
r=1

g(∇XZr,∇Y Zr) =
n∑
r=1

g(∇Y Zr,∇XZr) .

5.2. Proof of formula (4.2). Now we show how to prove formula (4.2) starting from (2.1). The starting
point is

θ(X) =
n∑
i=1

{
g(DXZi, Zi)− g(DZiX

0,1, Zi) + g(DZi
X1,0, Zi)

}
where {Zi} is a local unitary frame. Then using the Koszul formula

2g(DXY,Z) = Xg(Y, Z) + Zg(X,Y )− Y g(Z,X) + g([X,Y ], Z) + g([Z,X], Y )− g([Y,Z], X)

we have
2g(DXZr, Zr) =Xg(Zr, Zr) + Zrg(X,Zr)− Zrg(Zr, X) + g([X,Zr], Zr) + g([Zr, X], Zr)

− g([Zr, Zr], X)

=Zrg(X,Zr)− Zrg(Zr, X) + g([X,Zr], Zr) + g([Zr, X], Zr)− g([Zr, Zr], X) .

Analogously

2g(DZrX
0,1, Zr) =Zrg(Zr, X0,1) + g([Zr, X0,1], Zr) + g([Zr, Zr], X0,1)− g([X0,1, Zr], Zr) .

and

2g(DZr
X1,0, Zr) =Zrg(Zr, X1,0) + g([Zr, X1,0], Zr) + g([Zr, Zr], X1,0)− g([X1,0, Zr], Zr) .

Hence a direct computation yields

2θ(X) =2
n∑
r=1

{
g(DXZr, Zr)− g(DZr

X0,1, Zr) + g(DZr
X1,0, Zi)

}
=

n∑
r=1

{
g([2X0,1, Zr], Zr)− g([2X1,0, Zr], Zr)

}
= 4 i

n∑
r=1

{=m g([X0,1, Zr], Zr)} ,
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i.e.

θ(X) = 2 i
n∑
r=1

{=m g([X0,1, Zr], Zr)} ,

as required.
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