
1

A Flexible NoC–based LDPC code decoder
implementation and bandwidth reduction methods

Carlo Condo, Guido Masera, Senior Member IEEE

Abstract—The need for efficient and flexible LDPC (Low
Density parity Check) code decoders is rising due to the growing
number and variety of standards that adopt this kind of error
correcting codes in wireless applications. From the implementa-
tion point of view, the decoding of LDPC codes implies intensive
computation and communication among hardware components.
These processing capabilities are usually obtained by allocating
a sufficient number of processing elements (PEs) and proper
interconnect structures. In this paper, Network on Chip (NoC)
concepts are applied to the design of a fully flexible decoder,
capable to support any LDPC code with no constraints on code
structure. It is shown that NoC based decoders also achieve
relevant throughput values, comparable to those obtained by
several specialized decoders. Moreover, the paper explores the
area and power overhead introduced by the NoC approach.
In particular, two methods are proposed to reduce the traffic
injected in the network during the decoding process, namely
early stopping of iterations and message stopping. These methods
are usually adopted to increase throughput. On the contrary, in
this paper, we leverage iteration and message stopping to cut the
area and power overhead of NoC based decoders. It is shown
that, by reducing the traffic injected in the NoC and the number
of iterations performed by the decoding algorithm, the decoder
can be scaled to lower degrees of parallelism with small losses
in terms of BER (Bit Error Rate) performance. VLSI synthesis
results on a 130 nm technology show up to 50% area and energy
reduction while maintaining an almost constant throughput.

Index Terms—VLSI, LDPC Decoder, NoC, Flexibility, Wireless
communications

I. INTRODUCTION

LDPC codes were first studied by Gallager in [1], and
later rediscovered by MacKay and Neal [2]: the outstanding
performance offered by these codes led to intensive research
in both theory and implementations. LDPC codes are currently
included in several standards such as IEEE 802.11n [3] and
IEEE 802.16e [4]: the need for flexible decoders able to
support multiple codes is rising, and so is the attention of
the research community. Therefore flexible decoders capable
of working for multiple codes are receiving a significant
attention.

Flexibility issues must be tackled on different fronts:
parametrized processing elements (PE) and specialized pro-
grammable processors are valid solutions at the processing
level [5] [6]. On the other side, flexibility must be provided
also at the inter–PE interconnect level. Communication struc-
tures optimized for single codes or classes of codes like
[7] and [8] achieve great efficiency by statically mapping
the communication needs on low–cost structures. This is the
approach commonly used with quasi-cyclic LDPC codes [9],
where the peculiar structure of the parity check matrix (H)
permits the usage of very simple interconnect devices like
barrel–shifters.

Though efficient, this approach limits greatly the achievable
level of flexibility: fully flexible decoders must be able to
work with H matrices very different from one another. The
intrinsically flexible Network on Chip paradigm has been
proposed as a possible structure to interconnect both heteroge-
neous processors (Inter–IP NoCs [10] [11]) and homogeneous
hardware components concurrently executing a single task
(Intra–IP NoCs, [12]). NoC–based LDPC decoders [13] are
composed of a set of (P) PEs connected by means of an NoC,
which can accommodate the specific communication needs of
any LDPC code.

Stemming from a previously proposed flexible and scalable
NoC based decoder [14], in this work improved architectures
are described with the purpose of showing the feasibility
of the NoC approach. A first decoder implementation is
introduced based on a 5 × 5 two dimensional mesh NoC:
synthesis results for this decoder proves that, notwithstanding
its large flexibility, it is capable to reach high throughput; in
particular it is shown that the designed decoder is compliant
with the WiMAX standard throughput requirements.
However the flexibility offered by the NoC approach comes
at a power and area cost. Therefore modified versions of the
original decoder are proposed to limit both area and power
overhead. These new decoding architectures incorporate two
algorithms able to reduce the amount of messages that PEs
exchange across the NoC in the decoding of LDPC codes.
The first algorithm is an already known method to implement
early stopping of decoding iterations [15]: by limiting to the
minimum the number of iterations sequentially performed by
the decoder on a data frame, the global number of messages
across the NoC is decreased with respect to the case of
a decoder that always runs the same number of iterations.
Various methods for early stopping of iterations have been
proposed to save power during the decoding [16] [17] [18]
[19] [20]. In this paper, iteration stopping is adopted to also
reduce the number of PEs and thus the occupied area.

The second key modification applied to the NoC based
decoder is the introduction of a method to dynamically stop the
delivery of single messages across the NoC, when they are not
strictly required. In particular, in the decoding of LDPC codes,
generated inter–PE messages carry a twofold information: the
sign of the message is a binary information on the value of
a bit in the codeword, while the modulus is associated to
the level of reliability of the binary information. Reliabilities
of the codeword bits tend to grow from one iteration to the
other, but this growth occurs at different rates for different bits.
Therefore the proposed method compares each message to be
delivered with a threshold and if the threshold is passed the

2

message is considered as reliable enough and it is not sent. The
reduction in terms of traffic injected by the PEs into the NoC
is exploited to decrease both power and occupied area, leading
to improved NoC based decoders. Provided synthesis results
show that the joint application of the two mentioned methods
achieves relevant advantages with respect to the original NoC
based decoder: occupied area can be reduced up to 43%, while
40% to 57% of dissipated energy is saved.

The paper structure is organized with Section II sum-
marizing the adopted decoding algorithm, while Section III
describes the NoC approach to LDPC code decoding. Section
IV describes briefly the architecture of the single processing
element, Sections V and VI detail two different methods
for reducing the NoC traffic, with implementation issues and
advantages. Section VII shows results in terms of achievable
throughput, occupied area and power saving; comparison with
state of the art solutions are also given. Conclusions are drawn
in Section VIII.

II. LDPC DECODING

An LDPC code is a linear block code characterized by a
sparse parity check matrix H. Columns (index j) of H are
associated to received bits, while rows (index m) correspond
to parity check constraints (PCC). In the layered decoding
method [21], which provides approximately a ×2 factor in
convergence speed w.r.t the two phase decoding, PCCs are
clustered in layers ([22]) and extrinsic probability values are
updated from one layer to the other.

According to the notation adopted in [22]. L(c) represents
the logarithmic likelihood ratio (LLR) of symbol c (L(c) =
log(P {c = 0} /P {c = 1})). For each H column j, bit LLR
L(qj) is initialized to the corresponding channel–estimated
soft value. Then, for each PCC m in a given layer, the
following operations are executed:

L(qmj) = L(q
(old)
j)−R(old)

mj (1)

Amj =
∑

n∈N(m),n6=j

Ψ(L(qmn)) (2)

smj =
∏

n∈N(m),n6=j

Sign(L(qmn)) (3)

R
(new)
mj = −smjΨ(Amj) (4)

L(q
(new)
j) = L(qmj) +R

(new)
mj (5)

L(q
(old)
j) is the extrinsic information received from the pre-

vious layer: it is updated in (5) and eventually passed to
the following layer. R(old)

mj is used in equation (1); the same
amount is then updated in (4), R(new)

mj , used to compute (5) and
stored to be used again in the following iteration. N(m) is the
set of codeword bits connected to parity constraint m. Finally,
Ψ(·) is a non–linear non–limited function, often substituted by
the normalized min–sum approximation [23]:

A1
mj = minn∈N(m)(|L(qmn)|) (6)

A2
mj = minn∈N(m),n6=t(|L(qmn)|) (7)

where t is the index related to first minimum A1
mj , while A2

mj

is the second minimum. Equation (4) is also changed to

R
(new)
mj =

{
−smj ·A1

mj/α when |L(qmj)| 6= A1
mj

−smj ·A2
mj/α otherwise

(8)

where the normalization factor α is used to limit the approx-
imation performance degradation due to the min–sum non
optimality [23].

III. NOC BASED DECODING

This work focuses on complete flexibility of the decoder
and therefore no assumption is made on the structure of
supported LDPC codes. To achieve such a large flexibility,
the possible use of NoC based interconnect architectures has
already been suggested and partially explored in [24] and
[13]: however, a complete evaluation of the potential of the
NoC based approach in terms of achievable performance and
implementation complexity is not available.

Figure 1 shows the adopted NoC topology, a two–
dimensional toroidal mesh. Each node includes a PE and a
routing element (RE) with five inputs/outputs. The simple
input queuing architecture is implemented with first-in first-out
memory queues (FIFO). Every FIFO is connected to the output
registers by means of a crossbar switch. Since the number of
PCCs in a code is much higher than the number of PEs, several
PCCs will be scheduled on each PE. A control unit (CURE)
generates commands for the RE components, implementing a
given routing strategy. In particular, control bits are necessary
at the cross–bar to implement a given switching of incoming
data, read signals must be applied to the FIFOs, and write
signals are required by output registers. Thus, in general, the
CURE must receive destination addresses for received packets
and implement a certain routing algorithm.

Alternatively, the CURE can be reduced to a simple routing
memory (RM), which statically apply pre–calculated control
signals to the RE. Given a certain code, the inter–processor
communication needs are known a priori, depending on the
structure of the H matrix. To reduce as much as possible
the implementation overhead due to routing information in
the packet header and routing algorithm, the so–called Zero
Overhead NoC (ZONoC) [13] concept can be exploited. For
each supported code the best path followed by all messages
during a decoding iteration is statically derived: a routing
memory in each node stores the necessary controls, avoiding
the routing algorithm implementation and reducing the packet
size and depth of FIFOs.

Static information is derived via simulation on a cycle accu-
rate Python simulation tool. This model receives a description
of the NoC and of the parity constraints mapped on each
PE, and by simulating the behavior of the NoC as PEs inject
messages, produces the routing decisions across a complete
iteration, together with the maximum size of input FIFOs.
These informations can be easily coded into binary control
signals and stored in the routing memory.

IV. ARCHITECTURE OF THE PROCESSING ELEMENT

In this section, the general structure of the PE is summa-
rized. Figure 3 shows a simplified block scheme. The PE

3

PE

RE

PE

RE

PE

RE

PE

RE

PE

RE

PE

RE

PE

RE

PE

RE

PE

RE

X-BAR

SWITCH

INPUT

FIFO
OUTPUT

REGISTER

Figure 1. NoC torus mesh topology with detailed routing element

0 0 1 0 0 0 0 0 0 0 1 1 1

L(q7
old)

L(qj) MEMORY
L(q1

old) L(q11
old)

ROW m, 2nd PE

j=1 j=7

1st memory

block

2nd memory

block

nth memory

block

j=11

Figure 2. Example of memory organization for extrinsic values

executes equations (1) to (8) in a pipelined way, in order
to achieve high throughput. Finite precision representation of
data and number of decoding iterations are decided by means
of extensive simulations of the considered LDPC codes.

The data flow begins when previous layer’s extrinsic values
L(q

(old)
j) are received by the PE and stored in L(qj) MEM-

ORY. This is a two–port memory with Npc × Nd locations,
where Npc is the maximum number of PCCs mapped onto the
PE and Nd is the maximum degree of PCCs.

Similarly to RM, also the Write Address Generator memory
(WAG) is initialized with data obtained via off–line simulation.
Its purpose is to generate writing addresses for incoming mes-
sages: since at every PE the sequence of arrival of L(q

(old)
j) is

the same through every iteration, it can be derived statically.
WAG MEMORY contains pointers to L(qj) MEMORY, where
extrinsic values are stored. Fig. 2 shows an example of
L(qj) MEMORY organization with Nd = 3. The memory
is divided into Npc blocks, each one containing 3 consecutive
locations. In the example, the 2nd scheduled PCC receives
three L(q

(old)
j) values from previous layer: these extrinsic

values are sequentially stored in the 2nd block, starting from
offset 3.

The CNT/CMP unit is a counter used to compute the
read addresses for L(qj) MEMORY. It counts Nd successive
locations from an initial offset that points at the first L(qj)
of a parity check. Upon recognizing the last read operation, a
new offset and Nd values are loaded. Rmj MEMORY contains
Rmj amounts and it is sized exactly as L(qj) MEMORY.

The subtraction of L(q
(old)
j) and R(old)

mj is used to compute

the L(qmj) values, and the first and second minimum are
derived by the MINIMUM EXTRACTION unit. A cumulative
XOR keeps track of the overall sign L(qmj).

The output of the COMPARE unit, that implements (8),
is multiplied by 1/α, according to the NMS algorithm to
obtain R

(new)
mj . At the end of the flow, L(qmj) is retrieved

by means of a short FIFO and added to R(new)
mj , obtaining the

new L(q
(new)
mj) (5), which is sent to the NoC via an output

buffer.
The implementation results of a flexible decoder based on

the NoC approach are reported in Section VII: a 5 × 5 NoC
and the described PE architecture are used to design an highly
versatile decoder, which reaches a worst–case throughput of
more than 80 Mbps on WiMAX LDPC codes. It also supports
any structured or unstructured LDPC code, up to the block
size of the largest WiMAX code, including codes adopted in
WiFi. This result actually proves that NoC based decoders are
a feasible solution for multi-standard applications.

V. MESSAGE STOPPING

Two improvements are proposed in this paper to reduce the
amount of messages that have to be exchanged among PEs:
(i) message stopping, that results in a reduction of the traffic
injected into the NoC, and (ii) early stopping of iterations, that
cuts the decoding time. This advantages can be exploited to
reduce dissipated power and occupied area.

A C++/Python fixed point simulation model has been devel-
oped for the whole transmission chain, consisting of encoder,
AWGN (additive white gaussian noise) channel and decoder.
The model allows to statistically study the extrinsic values
exchanged among PEs in the layered decoding of a set of
LDPC codes. In particular, Figure 4 shows how extrinsic
values change from one iteration to another: as expected,
extrinsic values tend to increase with iterations and the number
of messages that carry high reliability values for the cor-
responding bits also increases along the decoding process.
Moreover, divergence from 0 of extrinsics occurs earlier for
higher signal to noise ratios (SNR), while extrinsics tend to
float around the zero at low SNRs, expressing uncertainty
about the bit value.

4

COMPARE

L(q
j

(old)) WA

R
mj

(new) WA

L(q
j
) MEMORY

R
mj

(old)

Min 1

Min 2

OUTPUT
BUFFER

L(q
j

(old))

L(q
j

(old)) RA

R
mj

 MEMORY

L(q
mj

)

MINIMUM
EXTRACTION

WAG MEMORY

L(q
j

(old))
R

mj

(new)

L(q
j

(new))

L(q
mj

) L(q
mj

)

R
mj

(new)

CNT / CMP
RN offset

RN degree

1
αR

mj

(old) RA

FIFO

FIFO

Figure 3. Simplified block scheme for the processing element

0 2 4 6 8 10 12 14
−30

−20

−10

0

10

20

30
Extrinsic values evolution, N=1944 rate=0.75 SNR=2

Iteration number

E
xt

rin
si

c
V

al
ue

0 2 4 6 8 10 12 14
−30

−20

−10

0

10

20

30
Extrinsic values evolution, N=1944 rate=0.75 SNR=2.6

Iteration number

E
xt

rin
si

c
V

al
ue

Figure 4. Extrinsic values evolution for WiFi code (1944, 0.75), with
SNR=2.0 (upper) and SNR=2.6 (lower)

−150 −100 −50 0 50 100 150
0

1

2

3

4

5

6

7

8
x 10

4 Extrinsic values distribution, N=1944, rate=0.75, SNR=2.8

Extrinsic value

N
um

be
r

of
 o

cc
ur

en
ce

s
(1

5
fr

am
es

)

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6

Figure 5. Extrinsic values distribution over 15 frames, WiFi (1944, 0.75),
SNR=2.6

Figure 5 shows the distribution of message values at
different iterations. As expected, the number of uncertain
extrinsics decreases as the decoding proceeds, meaning that
most of errors introduced by the channel are corrected in the
initial iterations; remaining errors after initial iterations are
associated to low absolute values of extrinsics (L(qj)). This

behavior of extrinsics can be exploited to reduce the traffic
injected in the NoC. The basic idea is very simple: once a
given extrinsic has reached a high enough value, it is not
updated anymore in the following iterations. This implies that
extrinsics are saturated to a certain limit and saturated values
are not sent through the NoC. We call this method of traffic
reduction on the NoC “message stopping” (MS).

In order to apply MS, extrinsics must be compared against
a threshold during the decoding process and the value of the
threshold has to be decided by simulation. Several thresholds
have been tried for different codes and the value that guaran-
tees at the same time a high number of stopped extrinsics and
a small effect on BER performance has been selected. The
choice of the threshold, THR, is also affected by decoding
algorithm, finite precision representation of data and SNR.

Table I (column 2) shows the average percentages of
stopped messages (Smsg) for the decoders addressed in Sec-
tion VII. The given percentages have been computed by
considering two NoC based decoders: decoder A does not
support MS and simply executes decoding iterations up to a
given maximum number Itmax; the decoding of a frame is
actually stopped before reaching Itmax only if all PCCs are
verified. Decoder B executes the same algorithm as A, but it
also implements MS, meaning that extrinsics are compared
against THR and when THR is passed they are no more
updated. For both decoders, the global numbers of extrinsics
that are updated in the decoding of a data frame are registered
and averaged across several frames. Table I shows that Smsg

ranges between 19% and 40% for considered codes. these
relevant percentages motivated us to further study the impact
of MS on the decoder implementation.

Figure 6 gives the BER curves for different cases of MS
applied to the (2304 , 1152) WiMAX code. Different SNR
losses (0.1, 0.2 and 0.3 dB) are obtained at the 10−5 BER
crossing point. Percentages in Table I have been obtained for
the 0.3 dB case.

In an NoC based decoder, the time length of a decoding
iteration has three components. The first component depends
on the number of cycles taken to inject messages into the
network: ideally, a PE needs Npc×Nd cycles to generate and
send out all messages corresponding to all assigned PCCs. The
second component comes from the distance between source
and destination PEs in the NoC: the physical delivery of a

5

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3

B
E
R

SNR

LDPC (N = 2304, K = 1152, M = 1152, rate = 0.500)

BER no MS, 10 it
BER 0.1 dB MS, 10 it

BER 0.2 dB MS, 10 it
BER 0.3 dB MS, 10 it

Figure 6. BER curves without and with message stopping

message corresponds to a number of hops depending on the
size of the NoC and on the selected path. The last component
derives from the conflicts that occur at NoC nodes when
multiple messages have to be routed across the same port of
the switch. Intuitively, in a small to medium size NoC decoder
the third contribution to the iteration length tends to dominate,
as sent messages generate several conflicts and spend several
cycles in the FIFOs. In such a case, message stopping is a
very efficient way to improve the throughput: if the injected
number of messages is reduced by a certain percentage, the
corresponding throughput is expected to improve by approxi-
mately the same percentage.
However, in a larger NoC, the iteration length is dominated
by the first and second contributions, thus the actual gain in
throughput tends to be smaller that the percentage reduction
of injected messages.

The cycle–accurate NoC model has been used to simulate
decoding iterations with and without message stopping. The
throughput gain achieved by means of message stopping in
the decoding of several LDPC codes is reported in Table I
(columns 3 and 4). For each code, two NoC based decoders
have been considered: a large decoder with P 2

1 PEs, and a
smaller one with P 2

2 PEs. In both cases, the throughput Tgain
is provided as a percentage increase with respect to the same
decoding executed with no message stopping. It can be seen
from Table I that larger gains, between 10% and 15%, are
obtained for the smaller NoCs

A. Architecture

Additional architecture components are required to support
the MS (Fig. 7). Each extrinsic L(qj) to be injected into the
NoC has to be compared against THR. If |L(qj)| > THR
the message is considered as reliable enough and must not be
sent. To implement such behavior, the Check Block (CB) is
inserted at the output buffer of each PE. The CB performs the
threshold–message comparison: a subtraction generates a sign
bit, which is appended to the message and used as a ”stopped”
flag (F) to inform the destination PE that the current message
is received for the last time.

THR

L(qmj
(new))

PACKET OUT
Sign

PAYLOAD DNI F RO

OUTPUT

BUFFER

Figure 7. Architecture of the Check Block (CB)

Table I
EFFECT OF BANDWIDTH REDUCTION METHODS FOR DIFFERENT LDPC

CODES. MESSAGE STOPPING WITH THRESHOLD THR ON LDPC
DECODER WITH Px PES, AND Smsg STOPPED MESSAGES. Tgain IS THE

THROUGHPUT GAIN OVER THE AVERAGE.

Msg. stopping Early stop
Code THR Smsg P1 Tgain P2 Tgain Tgain

802.16e 16 19% 25 5.2% 9 15.1% 6.2%
(2304, 0.5)
802.16e 17 27% 25 5.5% 9 12.9% 9.2%

(2304, 0.83)
802.16e 14 32% 25 4.2% 9 11.2% 6.2%

(1632, 0.5)
802.16e 16 36% 25 5.6% 9 19.9% 32.8%

(1632, 0.83)
802.16e 10 39% 25 7.9% 9 10.6% 11.3%
(576, 0.5)
802.16e 12 40% 25 6.3% 9 11.5% 43.9%

(576, 0.83)
802.11n 16 21% 16 3.7% 9 6.5% 6,7%

(1944, 0.75)

To support MS a dynamic routing is also required instead
of a static routing. As the stopping of messages cannot be
predicted, the off–line derivation of routing decisions is not
possible. A packet header must be created, containing the
Destination Node Identifier (DNI), which is used by the
routing algorithm executed at each NoC node to properly
deliver incoming messages. The so-called O1Turn routing
method [25] is adopted in this work due to its reduced
complexity. Finally, an additional field is required in the
packet to compensate for the unpredictable arrival order of
messages. This field (RO) contains the address for writing
the corresponding extrinsic in the L(q) memory. The whole
structure of the packet is shown in Fig. 7, where the field
PAYLOAD contains the extrinsic value.

VI. EARLY STOPPING OF ITERATIONS

In the decoding of LDPC codes, the average number of
iterations (ANI) is known to be much lower than Itmax:
for example, the first row in Table II shows that, in the
decoding of WiMAX codes with Itmax = 10, the ANI ranges
between 2.9 and 6.1, depending on the SNR. These results
have been obtained on a 5 × 5 topology by simply stopping
the decoding of a frame as soon as a valid codeword is found.
The introduction of an early stopping (ES) criterion can be
of great benefit to reduce power dissipation and several ES
methods have been proposed in the literature to this purpose.
In this work we apply a recently proposed ES method [15] with
the aim of reducing the occupied area. A lower ANI can be
easily exploited to increase the decoding throughput. However
a 5× 5 NoC based decoder with no ES and no MS (first row

6

 4

 5

 6

 7

 8

 9

 10

 0 0.5 1 1.5 2 2.5

A
v
g
.

i
t
e
r
a
t
i
o
n
s

SNR

LDPC (N = 2304, K = 1152, M = 1152, rate = 0.500)

EARLY STOPPING Avg. it. NMS_8_1, 10 it
Avg. it. NMS_8_1, 10 it

Figure 8. Average iterations curves with and without early stopping

STOP

ESB

TB1

TBP

SMin1

SMinP

SMout1

SMoutP

SB1

SBP

CNT
 SNM

S N

 SWA1

 SWAP

Figure 9. Iteration early stopping block scheme

in Table II) is already compliant with WiMAX standard in
terms of achievable throughput. Therefore we exploit ES to
reduce the degree of parallelism of the decoder, P , and thus
the size of the NoC. In particular we show that a 3× 3 NoC
decoder with ES guarantees the same throughput offered by
the 5× 5 architecture with no ES at the cost of a small BER
performance penalty.

In [15] an early stopping method is described with reference
to WiMAX and WiFi LDPC codes. The proposed method
basically detects iterations that are required to correct parity
bits and skip them. To this purpose, incorrect codewords
are divided into two types. Type I takes into account errors
located either in the information part of the codeword or in the
first z positions of the parity part, where z is the expansion
factor of H. Type II refers to errors located in the last M-z
positions of the codeword, where M is the number of rows
in H. At high SNR values (> 1.7 dB), Type II errors are
much more frequent than Type I. Said si the result of the
ith parity check equation, the syndrome vector s is defined as
s = [s0, s1, ..., sM−2, sM−1]T .

The syndrome accumulation vector (SAV)
a = [a0, a1, ..., az−2, az−1]T is defined so as

ai =

c−1∑
k=0

(si+kz) (9)

and c = M/z. It is shown in [15] that the SAV vector
is entirely composed by even numbers for Type II errors:
in this case, the decoding process can be stopped with no
loss of information. On the contrary, if an odd number is
present in the SAV, then the codeword is of Type I and the
decoding must continue. Even though presented for WiMAX
and WiFi standards, the ES method can easily be extended to
less structured codes.

The effects of this ES criterion have been evaluated by
means of the same C++/Python simulation model used for
the MS method. Performed simulations show that BER per-
formance is weakly affected by the selected ES method. On
the other side, the ANI is greatly reduced, as shown in Figure
8 for the WiMAX (2304, 0.5) code. It can be seen that the
curves corresponding to the decoding with and without ES
criterion are almost overlapped at low SNR, meaning that the
number of Type II codewords is limited in this region. At high
SNRs, the ES method offers a percentage reduction of ANI
close to 20%

A. Architecture

Additional hardware resources are necessary to support the
described ES method (Figure 9): P Transmission Blocks (TB),
one for each PE, and a unique Early Stopping Block (ESB).
The ES processing can be divided in three steps.

1) In step 1, si are computed for each PCC i (i =
0, 1, . . . ,M − 1) and delivered from PEs to ESB. The
computation is locally performed by the TB of each PE:
this simply requires XOR–ing the sign bits of extrinsic
values in PCCs. The delivery requires one dedicated
connection from every PE to the ESB. At receiving,
the si are sequentially stored in the P input memories
SMinh, h = 1, . . . , P .

2) In step 2, si are reordered by means of a shuffling
network (SN) to enable the SAV calculation (9). The
whole set S = {si|i = 0, 1, . . . ,M − 1} of syndromes
stored in SMin memories is actually partitioned into
P sub–sets: S =

⋃P
h=1 S

h
in, where Sh

in contains all
si evaluated from PCCs mapped to the hth PE. The
shuffling network generates a new partitioning of S,
where si are divided according to the SAV vector:
S =

⋃z−1
h=0 S

h
out, where sub–set Sh

out includes all si
evaluated from PCCs belonging to SAV element h.
After shuffling, syndromes are stored in the P output
memories SMouth (h = 1, . . . , P).

3) In step 3, aj elements of SAV a (j = 0, 1, . . . , z − 1)
are computed in parallel by P xor gates and P SAV
blocks (SB). Since usually z > P , each SB computes in
sequence multiple items of a. A final OR gate generates
the binary output STOP, which is the final decision on
stopping.

The TBs operate concurrently with each decoding iteration
and do not introduce latency. On the contrary, the ESB pro-
cessing introduces additional cycles of latency: M/P cycles
are necessary to move si syndromes from SMI to SMO
memories; the same number of cycles are required to read P si
syndromes at the time from SMO memories and evaluate the

7

Table II
LDPC ARCHITECTURES COMPARISON: CMOS TECHNOLOGY PROCESS (TP), AREA OCCUPATION (A), NORMALIZED AREA OCCUPATION FOR 65NM

TECHNOLOGY (An), CLOCK FREQUENCY (fclk), PRECISION BITS (b), AVERAGE ENERGY PER FRAME DECODING (Ef), MAXIMUM (Itmax) AND
AVERAGE (ANI) NUMBER OF ITERATIONS, MINIMUM THROUGHPUT (T) AND SNR TO ACHIEVE BER=10−5 (SNR)

Decoder TP A An fclk b Ef Itmax ANI Code T SNR
[nm] [mm2] [mm2] [MHz] [bits] [µJ] length - rate [Mb/s] [dB]

1.14 10 2.9 576 - 0.5 71 2.9

5× 5 NoC No MS
No ES

130 4.72 1.18 300 8 4.98 10 4.9 1632 - 0.5 78 2.4

8.28 10 6.1 2304 - 0.5 82 2.2
0.93 10 2.9 576 - 0.5 70 2.9

5× 5 NoC No MS
ES

130 5.49 1.37 300 8 4.44 10 4.9 1632 - 0.5 76 2.4

7.59 10 6.1 2304 - 0.5 81 2.2
0.56 10 2.9 576 - 0.5 70 3.1

6× 3 NoC MS
ES

130 4.20 1.05 300 8 3.26 10 4.9 1632 - 0.5 72 2.6

5.32 10 6.1 2304 - 0.5 74 2.4
0.68 10 2.9 576 - 0.5 61 3.0

4× 4 NoC MS
ES

130 3.61 0.90 300 8 3.57 10 4.9 1632 - 0.5 67 2.5

6.69 10 6.1 2304 - 0.5 64 2.3
0.49 10 2.9 576 - 0.5 74 3.2

3× 3 NoC MS
ES

130 2.68 0.67 300 8 2.84 10 4.9 1632 - 0.5 71 2.7

4.81 10 6.1 2304 - 0.5 72 2.5
[6] 65 0.62 0.62 400 N/A 20 N/A WiMAX 27.7 N/A

[26] 180 3.39 0.442 100 N/A 10 N/A WiMAX 68 N/A
[27] 65 1.337 1.337 400 6 20 N/A WiMAX 48 (min) N/A
[13] 130 3.7 0.93 300 6 10 N/A 2304 - 0.5 56 N/A
[28] 90 0.679 0.354 400 7 12 6.64 2304 - 05 66.7 2.15
[7] 90 6.22 3.24 300 6 20 N/A WiMAX 212 (max) 2.2 (min)

final decision (STOP). The whole latency, 2M/P , corresponds
to several cycles, depending on code length and NoC size,
however it can be easily accomodated within a decoding
iteration. For example, the 5 × 5 NoC based decoder with
no MS and no ES in Table II needs 421 cycles to complete
a single iteration when decoding the (2304,1152) WiMAX
code; for this example, M = 1152 and P = 25, thus the
additional latency to implement ES is 92 cycles, equal to 22%
of the length of one iteration. For the same example code, the
overhead due to the ESB latency can be evaluated in Fig. 8,
where the third curve shows the effective ANI obtained with
the implemented ES method: at 2.2 dB, ES method should
ideally reduce the ANI from 6 to 4.8; the ESB latency causes
a delay in the stopping decision and this changes the ANI
to 5.2, which is still a relevant advantage with respect to the
original value.
The results in terms of throughput gain can be seen in the last
column of Table I for several codes. The given percentages
also take in account the ESB latency.

The ESB contains four types of memories:

1) P SMin memories receive the M syndromes, therefore
each of them has size M/P × 1.

2) P SMout memories receive the reordered syndromes
(size M/P × 1).

3) SNM memory contains controls for the shuffling net-
work. For each syndrome to be moved from SMini to
SMoutj , SNM must enable the right path between ports
i and j. As the network has P input and output ports,
P · dlog2P e control bits are required. M/P syndromes
are received at each input port. thus the total size for

SNM is M · dlog2P e bits.
4) Finally, P SWA memories are allocated to store write

addresses for SMout components. For each of them,
M/P words are needed and every word contains
dlog2(M/P)e address bits, plus one additional bit
to be used as write command for SMout memories.
The total size of a SWA memory is therefore M ·
(1 + dlog2(M/P)e) bits.

The content of SNM and SWA memories depends on
the specific scheduling of PCCs on decoder PEs. The
global amout of memory can be expressed as M ·
(3 + dlog2(M/P)e+ dlog2(P)e). For example, the ESB
memory required to support WiMAX codes on a 4 × 4 NoC
based decoder, is obtained with P = 16 and M = 1152 and
is equal to 16K bits.

VII. ACHIEVED RESULTS

The first row in Table II refers to a 25-PEs NoC sized to
support all WiMAX LDPC codes. The decoder is fully flexible
and able to support any other LDPC code with size lower
than the largest WiMAX code. However, in this paper, we
limit presented results to the case of WiMAX codes; obtained
performance on other LDPC codes are available in [14]. Even
if the decoder does not include MS and ES methods, the
number of iterations allowed and the degree of parallelism of
the NoC guarantee a throughput of at least 70 Mbits/s for all
code lengths and rates in WiMAX standard. Comparing this
decoder with implementations reported in the last row of the
Table, it can be seen that the worst–case throughput is quite
high, while larger area is required due to the high degree of

8

flexibility provided by the NoC approach. This overhead can
be significantly reduced by introducing ES and MS methods.

Row 2 in Table II is related to a 5× 5 NoC based decoder
implementing the ES method as described in Section VI.
Comparing this implementation with the decoder in the first
row, which has the same size but does not supports ES, it can
be seen that the worst–case throughput is not dramatically
changed, while occupied area increases by almost 20%, due
to the additional hardware components required to support
ES. The only advantage provided by ES is related to the
average energy dissipated to decode a data frame , Ef , which
is reduced by roughly 20%.
In row 3, results are given for an 18 PEs NoC (6×3) supporting
both ES and MS. The potential offered by MS method is
exploited to reduce the number of PEs, so saving both area
(-11%) and energy (-37%). The throughput still reaches 70
Mbps for the WiMAX codes, while a 0.2 dB penalty is paid
in terms of BER performance.
Two further solutions are explored with decoders in rows 4 and
5. The 4× 4 NoC based decoder in row 4 provides reduction
of 24% on area and 19% to 40% on Ef , with minor penalties
in terms of throughput (15%) and BER performance (0.1 dB).
The 3 × 3 case achieves the lowest occupied area, which is
comparable with the best implementations reported in the last
row of the Table, and the lowest Ef . Moreover the throughput
is compliant with WiMAX standard. The BER penalty in this
case if 0.3 dB.

VIII. CONCLUSIONS

The design of a fully flexible NoC based LDPC decoder
is presented, together with two complementary methods for
reducing the traffic injected into the network. These methods
provide relevant area and power saving.

The first proposed decoder implementation offers an un-
paralleled degree of flexibility and throughput higher than 70
Mbps on WiMAX codes. A penalty in terms of additional area
and power is paid for this decoder with respect to state of the
art dedicated or partially flexible decoders. The other presented
NoC based decoders exploit early stopping of iterations and
message stopping to scale the whole NoC to lower degrees of
parallelism: the scaled architectures still achieve high enough
worst–case throughput at a much lower area and power cost.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Information Theory, IRE
Transactions on, vol. 8, no. 1, pp. 21 –28, 1962.

[2] D. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” in Information Theory. 1997. Proceedings., 1997 IEEE Interna-
tional Symposium on, 1997.

[3] J. Lorincz and D. Begusic, “Physical layer analysis of emerging IEEE
802.11n WLAN standard,” in Advanced Communication Technology,
2006. ICACT 2006. The 8th International Conference, vol. 1, 2006, pp.
6 pp. –194.

[4] M. Khan and S. Ghauri, “The WiMAX 802.16e physical layer model,”
in Wireless, Mobile and Multimedia Networks, 2008. IET International
Conference on, 2008, pp. 117 –120.

[5] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible
LDPC decoder,” Circuits and Systems II: Express Briefs, IEEE Trans-
actions on, vol. 54, no. 6, pp. 542 –546, 2007.

[6] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A reconfigurable ASIP for
convolutional, turbo, and LDPC code decoding,” in Turbo Codes and
Related Topics, 2008 5th International Symposium on, 2008, pp. 84 –89.

[7] C.-H. Liu, C.-C. Lin, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee,
Y.-S. Hsu, and S.-J. Jou, “Design of a multimode QC-LDPC decoder
based on shift-routing network,” Circuits and Systems II: Express Briefs,
IEEE Transactions on, vol. 56, no. 9, pp. 734 –738, 2009.

[8] X. Chen, S. Lin, and V. Akella, “QSN:a simple circular-shift network
for reconfigurable quasi-cyclic LDPC decoders,” Circuits and Systems
II: Express Briefs, IEEE Transactions on, vol. 57, no. 10, pp. 782 –786,
2010.

[9] M. Fossorier, “Quasicyclic low-density parity-check codes from circu-
lant permutation matrices,” Information Theory, IEEE Transactions on,
vol. 50, no. 8, pp. 1788 – 1793, 2004.

[10] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
Computer, vol. 35, no. 1, pp. 70 –78, Jan. 2002.

[11] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal network on
chip: concepts, architectures, and implementations,” Design Test of
Computers, IEEE, vol. 22, no. 5, pp. 414 – 421, 2005.

[12] L. Benini, “Application specific NoC design,” in Design, Automation
and Test in Europe, 2006. DATE ’06. Proceedings, vol. 1, 2006, pp. 1
–5.

[13] F. Vacca, G. Masera, H. Moussa, A. Baghdadi, and M. Jezequel,
“Flexible architectures for LDPC decoders based on network on chip
paradigm,” in Digital System Design, Architectures, Methods and Tools,
2009. DSD ’09. 12th Euromicro Conference on, 2009, pp. 582 –589.

[14] C. Condo and G. Masera, “Omitted for blind review,” IEEE Trans. VLSI
Syst., submitted for publication, available on arxiv.org.

[15] Z. Chen, X. Zhao, X. Peng, D. Zhou, and S. Goto, “An early stopping
criterion for decoding ldpc codes in wimax and wifi standards,” in
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International
Symposium on, 30 2010-june 2 2010, pp. 473 –476.

[16] G. Gilikiotis and V. Paliouras, “A low–power termination criterion for
iterative LDPC code decoders,” Signal Processing Systems Design and
Implementation, 2005. IEEE workshop on, 2005.

[17] Y. Sun and J. R. Cavallaro, “High throughput VLSI architecture for
soft-output MIMO detection based on a greedy graph algorithm,” in
Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI’09,
New York, USA, Mar. 2009, pp. 445 – 450.

[18] W. Wang and G. Choi, “Minimum–energy ldpc decoder for real–time
mobile application,” Design, Automation & Test in Europe Conference
& Exhibition, 2007. DATE ’07, 2007.

[19] ——, “Speculative energy scheduling for ldpc decoding,” Quality Elec-
tronic Design, 2007. ISQED ’07. 8th International Symposium on, 2007.

[20] W. Wang, G. Choi, and K. Gunnam, “Low–power vlsi design of
ldpc decoder using dvfs for awgn channels,” VLSI Design, 2009 22nd
International Conference on, 2009.

[21] F. Guilloud, E. Boutillon, J. Tousch, and J.-L. Danger, “Generic de-
scription and synthesis of LDPC decoders,” Communications, IEEE
Transactions on, vol. 55, no. 11, pp. 2084 –2091, 2007.

[22] D. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in Signal Processing Systems, 2004. SIPS
2004. IEEE Workshop on, 2004, pp. 107 – 112.

[23] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
Communications, IEEE Transactions on, vol. 47, no. 5, pp. 673 –680,
May 1999.

[24] T. Theocharides, G. Link, N. Vijaykrishnan, and M. Irwin, “Implement-
ing LDPC decoding on network-on-chip,” in VLSI Design, 2005. 18th
International Conference on, 2005, pp. 134 – 137.

[25] D. Seo, A. Ali, W.-T. Lim, and N. Rafique, “Near-optimal worst-case
throughput routing for two-dimensional mesh networks,” in Computer
Architecture, 2005. ISCA ’05. Proceedings. 32nd International Sympo-
sium on, june 2005, pp. 432 – 443.

[26] T.-C. Kuo and A. Willson, “A flexible decoder IC for WiMAX QC-
LDPC codes,” in Custom Integrated Circuits Conference, 2008. CICC
2008. IEEE, 2008, pp. 527 –530.

[27] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn,
N. L’Insalata, F. Rossi, M. Rovini, and L. Fanucci, “Low complexity
LDPC code decoders for next generation standards,” in Design, Au-
tomation Test in Europe Conference Exhibition, 2007. DATE ’07, 2007,
pp. 1 –6.

[28] Y.-L. Wang, Y.-L. Ueng, C.-L. Peng, and C.-J. Yang, “Processing-task
arrangement for a low-complexity full-mode WiMAX LDPC codec,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, 2010.

