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Abstract—This paper presents an effective solution for the
analysis of long PCB interconnects with the inclusion of uncer-
tainties resulting from different sources of variation, like temper-
ature or fabrication process, on both the structure and loading
conditions. The proposed approach is based on the expansion of
the well-known frequency-domain telegraph equations in terms
of orthogonal polynomials. The method is validated by means
of a systematic comparison with the results of Monte Carlo
simulations, for an application example involving a coupled-
microstrip interconnect on PCB.

Index Terms—Stochastic analysis, Polynomial chaos, Toler-
ance analysis, Uncertainty, Circuit modeling, Circuit simulation,
Transmission lines.

I. INTRODUCTION

Nowadays, the early design phase of complex electronic
equipments requires the assessment of system performance
via simulation and verification tools. This is a fundamental
step for discovering and correcting problems and avoiding very
expensive refabrication. In this assessment, the availability of
partial models for devices and of the uncertainties due to
the fabrication process or operating temperature, unavoidably
impacts on the accuracy of predictions of sensitive effects
like crosstalk or noise margins. Owing to this, methods and
tools for the simulation of a circuit, with the inclusion of
parameters variability effects on its electrical behavior, are
highly desirable.

The typical resource for collecting quantitative information
on the statistical behavior of the circuit response is based on
the well-known Monte Carlo (MC) method that is possibly
combined with techniques for the optimal selection of the
experiments, i.e., the subset of model parameters in the design
space. Such methods, however, are computationally expensive
since they require a large number of simulations, thus limiting
their application to the analysis of complex realistic structures.

In the past few years, an effective solution that overcomes
the previous limitation and that is based on the so-called
polynomial chaos (PC) theory has been proposed [2], [3]. This
methodology allowed a clever solutions of a lumped circuit
with random parameters via the expansion of its modified
nodal analysis (MNA) set of equations in terms of orthogonal
polynomials [4]. Recently, the above technique has been
extended to the modeling of long distributed interconnects de-
scribed by transmission-line equations with uncertain electrical
or geometric parameters of the structure [5], [6].

This paper further demonstrates the feasibility, flexibility
and strength of this methodology by integrating the variability
arising from boundary conditions (i.e., termination networks)
into the stochastic simulation of an interconnect structure.
Variations in the line parameters are thus combined with
variations in source and load conditions. A realistic application
example involving a coupled PCB line affected by both
thermal and process variations concludes the paper.

II. POLYNOMIAL CHAOS PRIMER

This section provides a brief overview of the PC method.
The idea underlying this technique is the spectral expansion
of a stochastic function (intended as a given function of a
random variable) in terms of a truncated series of orthogonal
polynomials. Within this framework, any function H , carrying
the effects of variability, can be approximated by means of the
following truncated series

H(ξ) =

P∑
k=0

Hk · φk(ξ), (1)

where {φk} are suitable orthogonal polynomials expressed
in terms of the random variable ξ. The above expression is
defined by the class of the orthogonal bases, by the number of
terms P (limited to the range 2÷20 for practical applications,
depending also on the number of random variables considered)
and by the expansion coefficients Hk. The choice of the
orthogonal basis relies on the distribution of the random
variables being considered. Temperature variations as well as
the uncertainties arising from fabrication tolerances turn out
to be properly characterized in terms of Gaussian variability.
Therefore, in this case, the most appropiate orthogonal func-
tions for the expansion (1) are the Hermite polynomials, the
first three being φ0 = 1, φ1 = ξ and φ2 = (ξ2 − 1), where ξ
is the standard normal random variable, with zero mean and
unity standard deviation.

The orthogonality property of Hermite polynomials is ex-
pressed by

< φk, φj >=< φk, φk > δkj , (2)

where δkj is the Kronecker delta and < ·, · > denotes the inner
product in the Hilbert space of the variable ξ with Gaussian
weighting function, i.e.,
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 < φk(ξ), φj(ξ) >=

∫ +∞

−∞
φk(ξ)φj(ξ)W (ξ)dξ

W (ξ) = exp(−ξ2/2)/(
√

2π).

(3)

With the above definitions, the expansion coefficients Hk

of (1) are computed via the projection of H onto the orthogo-
nal components φk, i.e., Hk =< H(ξ), φk(ξ) > / < φ2

k(ξ) >.
It is worth noting that relation (1), which is a known nonlinear
function of the random variable ξ, can be used to predict
the probability density function (PDF) of H(ξ) via numerical
simulation or analytical formulae [7].

For a more comprehensive and formal discussion of PC
theory, with the extension to multiple variables, the reader is
referred to [2], [3] and references therein.

III. PC APPLICATION TO STOCHASTIC
TRANSMISION-LINE EQUATIONS

For conciseness, the discussion is based on a loaded three-
conductor line, as the coupled microstrip structure shown in
Fig. 1, in presence of a single random parameter possibly
affecting both the line and the termination network. For
notational convenience, the line is assumed lossless. However,
the proposed method is general and can be readily extended to
lossy lines affected by multiple random variables and having
a larger number of conductors [6], [5]. In the following, the
procedure for including the parameters variability effects on
both the transmission-line equation as well as the boundary
conditions is provided.
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Fig. 1. Test structure considered to demonstrate the proposed approach. Top
panel: transmission-line cross-section; bottom panel: simulation test case.

A. Stochastic Frequency-Domain Transmission-Line Model

If the interconnect structure of Fig. 1 is affected by vari-
ations parameterized by the random variable ξ (the typical
examples are the uncertainties on the geometric and material
parameters of the cross-section) the wave propagation along
the line can be described by means of a stochastic version of
the telegraphers equation in the Laplace domain [8]

d

dz

[
V(z, s, ξ)
I(z, s, ξ)

]
= −s

[
0 L(ξ)

C(ξ) 0

] [
V(z, s, ξ)
I(z, s, ξ)

]
. (4)

In the above equation, s is the Laplace variable,
V = [V1(z, s, ξ), V2(z, s, ξ)]T and I= [I1(z, s, ξ), I2(z, s, ξ)]T

are vectors collecting the voltage and current variables along
the multiconductor line (z coordinate) and C(ξ) and L(ξ) are
the p.u.l. capacitance and inductance matrices, depending on
the geometric and material properties of the structure. It should
be noted that the variations, here emphasized by ξ, affect the
p.u.l. parameters thus leading to randomly-varing voltages and
currents.

According to [5], the application of expansion (1) in terms
of Hermite polynomials to the p.u.l parameters and to the un-
known voltage and current variables, as well as the projection
of (4) onto the polynomial basis, yield the following modified
equation:

d

dz

[
Ṽ(z, s)

Ĩ(z, s)

]
= −s

[
0 L̃

C̃ 0

] [
Ṽ(z, s)

Ĩ(z, s)

]
(5)

where vectors Ṽ = [V0,V1,V2, . . . ]
T and Ĩ= [I0, I1, I2, . . . ]

T

collect the different coefficients of the polynomial chaos
expansion for the voltage and current variables. The new p.u.l.
matrix C̃ contains the coefficient of the expansion of the p.u.l.
capacitance in proper positions. For a second-order expansion,
it becomes

C̃ =

 C0 C1 2C2

C1 C0 + 2C2 2C1

C2 C1 C0 + 4C2

 (6)

and similar relation holds for matrix L̃.
It is worth noting that (5) no longer depends on the random

variable ξ, that is eliminated by the projection procedure.
Therefore, (5) is a deterministic equation and plays the role
of the set of equations of a multiconductor transmission line
with a number of conductors that is (P + 1) times larger than
those of the original line and whose unique solution gives the
unknown coefficients for the voltage and current variables. The
increment of the system size is not detrimental for the method,
since for small values of P (as typically occurs in practice),
the additional overhead in handling the augmented equations
is much less than the time required to run a large number of
MC simulations.

B. Boundary Conditions and Simulation

For the deterministic case, the standard procedure for the
solution of a loaded transmission line like the one of Fig. 1
amounts to combining the port electrical relations of the
terminal elements defining the source and load with the
transmission-line equation, and solving the resulting system
(cfr Ch.s 4 and 5 of [8]).

Similarly, when the problem becomes stochastic, the source
and load equations are expanded and projected to account for
their variabilities as already done above for the transmission-
line equation. It is relevant to remark that the expansion of
terminal equations must be consistent with (5), in order to
easily allow their incorporation. This means that each variable
in the problem must be expanded with respect to all the



random variables, whether they affect the termination network
or the line, or both. For the example of Fig. 1, the Thevenin’s
equivalent port equations at the stochastic terminations become

{
Va(s, ξ) = VS(s, ξ)− ZS(s, ξ)Ia(s, ξ)

Vb(s, ξ) = ZL(s, ξ)Ib(s, ξ),
(7)

with VS(s, ξ) = [E1(s, ξ), 0]T and ZS,L(s, ξ) =
diag([ZS1,L1(s, ξ), ZS2,L2(s, ξ)]). The second-order expan-
sion of the first row of (7) leads to

Va,0φ0(ξ) + Va,1φ1(ξ) + Va,2φ2(ξ) = VS,0φ0(ξ)+

VS,1φ1(ξ) + VS,2φ2(ξ) + (ZS,0φ0(ξ) + ZS,1φ1(ξ)+

ZS,2φ2(ξ))(Ia,0φ0(ξ) + Ia,1φ1(ξ) + Ia,2φ2(ξ)).

(8)

The projection of the previous equation and of its compan-
ion relation arising from the second row of (7) on Hermite
polynomials, leads to the following augmented deterministic
port equations{

Ṽa(s) = ṼS(s)− Z̃S(s)Ĩa(s)

Ṽc(s) = Z̃L(s)Ĩc(s),
(9)

where ṼS(s) collects the expansion coefficients of VS(s),
while Z̃S(s) and Z̃L(s) have a structure similar to (6).

Once the unknown voltages and currents are computed, the
quantitative information on the spreading of circuit responses
can be readily obtained from the analytical expression of the
unknowns. As an example, the frequency-domain solution of
the terminal voltage Vb2, arising form (7) and (5) with P = 2,
is

Vb2(jω) = Vb2,0(jω) +Vb2,1(jω)ξ+Vb2,2(jω)(ξ2−1), (10)

where the first numerical index denotes the conductor and the
second one denotes the expansion term. The above relation
can be used to compute the PDF of the output quantity (e.g.,
the magnitude |Vb2(jω)|) using the rules of random variable
transformations given in [7].

IV. NUMERICAL RESULTS

This section provides an example of application in which the
proposed technique is applied to the analysis of the effects of
thermal and process variations on the response of the intercon-
nect structure of Fig. 1. The coupled microstrip line is realized
on FR4 substrate. The nominal parameters are w = 100µm,
d = 80µm, h = 60µm, tk = 35µm, εr = 4.7 and L = 5 cm.
The series impedances of the Thevenin equivalents and of
the line terminations are ZS,1 = ZS,2 = RS = 25 Ω and
ZL,1 = ZL,2 = 1/(jωCL) (being CL = 10 pF ), respectively.
All these values are referred to a temperature of 50 oC.

According to the vendor information of the substrate and of
standard SMD components, the following thermal coefficients
are considered: αR = 200 ppm/oC, αC = 200 ppm/oC and
αε = 500 ppm/oC for the resistance, capacitance and substrate
permittivity, respectively. The temperature variation ∆T is

modeled as a Gaussian random variable with zero mean and
standard deviation σT = 40 oC; hence, we can express it in
terms of the normalized variable ξ1 as follows

∆T = σT ξ1 ⇒


RS = RS |∆T=0(1 + αRσT ξ1)

CL = CL|∆T=0(1 + αCσT ξ1)

εr = εr|∆T=0(1 + αεσT ξ1)

(11)

Furthermore, an additional statistically-independent varia-
tion, due to the production process, is supposed to affect the
permittivity with a relative standard deviation of σε = 0.032.
Therefore, we can introduce a second random variable ξ2 and
write the following complete expression for the permittivity:

εr = ε̄r(1 + αεσT ξ1 + σεξ2), (12)

where ε̄r denotes the nominal value of permittivity at T =
50 oC.

Figure 2 shows the frequency response of |Hb1| (top panel)
and |Hb2| (bottom panel), having defined Hbj = Vbj/E1. In
both figures, the black thick line represents the response of
the structure for the nominal values of its parameters, while
the thinner black lines indicate the limits of the 3σ bound (σ
being the standard deviation) determined from the results of
the proposed technique. Figure 2 also includes a number of
responses (see the gray lines) obtained via a limited set of
MC simulations. Clearly, the parameter variations lead to a
spread in the transfer functions, that is well predicted by the
estimated 3σ limit in both cases.
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Fig. 2. Magnitudes of |Hb1| (top panel) and |Hb2| (bottom panel). Solid
black thick line: nominal response; solid black thin lines: 3σ limits of the
fourth-order polynomial chaos expansion; gray lines: a sample of responses
obtained by means of the MC method (limited to 100 curves, for graph
readability).

Often the knowledge of the standard deviation represents a
limited information, since the quantitative information about
how the values are distributed is missing. Nonetheless, from
the analytical PC model we can also obtain the probability
density function of the system responses. Figures 3 and 4



compare the PDFs of |Hb1| and |Hb2| computed at three
different frequencies by means of the PC technique with
those generated after 40,000 MC simulations. The frequencies
correspond to the dashed vertical lines shown in Fig. 2.

The good agreement between the PDFs obtained from
the PC model and the corresponding set of MC simulations
confirms the potential of the proposed method. It is also clear
from this example that a PC expansion with four terms is
already accurate enough to capture the dominant statistical
information of the system response.
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Fig. 3. Probability density function of |Hb1| computed at three different
frequencies. Of the two distributions, the one marked MC refers to 40,000
MC simulations, while the one marked PC refers to the response obtained via
a fourth-order PC expansion.
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Fig. 4. Probability density function of |Hb2|. Same comments of Fig. 3
apply here.

Finally, Tab. I collects the main figures related to the
efficiency of the proposed PC method vs. conventional MC.
The PC model has an overhead due to the computation of the
Hermite expansions as well as the creation of the augmented
matrix system. Nevertheless, it turns out to be faster by over

three orders of magnitude with respect to the MC computation.
The above comparison confirms the strength of the proposed
method, that allows to generate accurate predictions of the
statistical behavior of a realistic interconnect with a great
efficiency improvement.

TABLE I
CPU TIME REQUIRED BY MC AND THE PROPOSED PC-BASED METHOD

FOR THE SIMULATION OF THE PROPOSED EXAMPLE ON THE WHOLE
FREQUENCY SWEEP.

Method Overhead Simulation time

MC - 2 h 27 min

PC 3.5 sec 3.5 sec

V. CONCLUSIONS

The generation of a stochastic model for a distributed multi-
conducor interconnect and its corresponding loading networks
is addressed in this paper. The proposed model inherently
includes uncertainties that may arise from thermal and pro-
cess variations and is based on the expansion of the system
variables into a sum of a limited number of orthogonal basis
functions, leading to an extended set of multiport equations.

The advocated method, while providing accurate results,
turns out to be more efficient than the classical Monte Carlo
technique in determining the system response sensitivity to
parameters variability.

The strenght of the proposed technique is demonstrated by
means of a coupled microstrip line structure and a frequency-
domain analysis. The speed-up observed in the proposed
example is around 1200×.

REFERENCES

[1] L. R. A. X. de Menezes, A. O. Paredes, H. Abdalla, G. A. Borges, “Mod-
eling Device Manufacturing Uncertainty in Electromagnetic Simulations,”
Digest of the 2008 IEEE MTT-S International Microwave Symposium,
pp. 1385–1388, Jun 15–20, 2008.

[2] R. G. Ghanen, P. D. Spanos, “Stochastic Finite Elements. A Spectral
Approach,” Springer-Verlag, 1991 (Ch. 2).

[3] D. Xiu, G. E. Karniadakis, “The Wiener-Askey Polynomial Chaos for
Stochastic Differential Equations,” SIAM, Journal of Sci. Computation,
Vol. 24, No. 2, pp. 619–622, 2002.

[4] K. Strunz, Q. Su, “Stochastic Formulation of SPICE-Type Electronic Cir-
cuit Simulation with Polynomial Chaos,” ACM Transactions on Modeling
and Computer Simulation, Vol. 18, No. 4, Sep. 2008.

[5] I. S. Stievano, P. Manfredi, F. G. Canavero, “Parameters Variability Effects
on Multiconductor Interconnects via Hermite Polynomial Chaos,” IEEE
Transactions on Components, Packaging and Manufacturing Technology,
2011 (in press).

[6] P. Manfredi, F. G. Canavero, “Polynomial Chaos-Based Tolerance Anal-
ysis of Microwave Planar Guiding Structures,” Digest of the 2011 IEEE
MTT-S International Microwave Symposium, Jun 5–10, 2011.

[7] A. Papoulis, “Probability, Random Variables and Stochastic Processes,”
3rd edition, McGraw-Hill, 1991.

[8] C. R. Paul, “Analysis of Multiconductor Transmission Lines,” Wiley,
1994.


