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A Review of Mathematical Models for the

Formation of Vascular Networks

M. Scianna∗, C.G. Bell†, and L. Preziosi∗

Abstract

Two major mechanisms are involved in the formation of blood vascu-
lature: vasculogenesis and angiogenesis. The former term describes the
formation of a capillary-like network from either a dispersed or a mono-
layered population of endothelial cells, reproducible also in vitro by spe-
cific experimental assays. The latter term describes the sprouting of new
vessels from an existing capillary or post-capillary venule. Similar mecha-
nisms are also involved in the formation of the lymphatic system through
a process generally called lymphangiogenesis. A number of mathematical
approaches have been used to analyse these phenomena. In this article,
we review the different types of models, with special emphasis on their
ability to reproduce different biological systems and to predict measurable
quantities which describe the overall processes. Finally, we highlight the
advantages specific to each of the different modelling approaches.

Keywords: continuous model – mechanical model - hybrid models – cellular Potts model
– vasculogenesis - angiogenesis -lymphangiogenesis

1 Introduction

Blood vessel formation and development is a multiscale process, caused by the
activation of endothelial cells (ECs, the main bricks of the capillary walls) by
biochemical stimuli released both by surrounding cells and by ECs themselves.
The formation of vascular networks involves two different mechanisms: vascu-
logenesis and angiogenesis (for a review, see articles [47, 56, 57]). The former
process refers to the de novo formation of a primitive vascular network, that
emerges from directed and autonomous migration, aggregation and organization
of the endothelial cells. The latter refers instead to the formation of new vessels
from an existing capillary or post-capillary venule. Angiogenic remodelling co-
ordinates with the establishment of blood flow and can occur through sprouting
(i.e. by the formation of new branches from the sides of existing capillaries),
pruning, resizing of the capillary volume and of the thickness of the capillary
wall , or intussusception (i.e. by internal division of the vessel lumen).

∗Dip. Scienze Matematiche, Politecnico di Torino, Corso degli Abruzzi 24, 10129, Torino,
Italy.
†Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, UK.
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In more detail, the process of vasculogenesis starts in the embryo with
the assembly of mesoderm-derived precursors of ECs into polygons with well-
determined topological characteristics [226], dictated by the principal and paradig-
matic function of vasculature: oxygen transport to the tissues. After remod-
elling, these geometrical properties are more or less maintained in the adult
body, where the capillary network, embedded in the tissues and stemmed by
the vascular tree, has the same shape as the minimal unit participating in the
formation of the vascular network in the embryo [67, 116, 140].

Although angiogenesis intervenes at the embryonic stage to remodel the ini-
tial capillary network into a mature and functional vascular bed (comprised of
arteries, capillaries, and veins), its main role is played during adult life, when it
is involved in many physiological processes, for instance, the vascularization of
the ovary and the uterus during the female cycle, of the mammary gland dur-
ing lactation, and of granulation tissue during wound healing. However, when
the equilibrium of its underlying control mechanisms is disrupted, angiogene-
sis becomes pathological, as in the case of chronic inflammatory diseases like
rheumatoid arthritis and psoriasis, vasculopathies like diabetic microangiopa-
thy, degenerative disorders like atherosclerosis and cirrhosis, and tissue injury
occurring in ischemia. Indeed, angiogenic progression is also a pivotal transition
phase in the development of cancer. By providing nutrition and oxygen, it allows
malignant cells to grow and remain viable, and, eventually, to spread metastases
through invasion of the circulatory system [57]. Moreover, it is also important
in determining the translation of metastases from dormant to aggressive status
[56]. The switch to the angiogenic phenotype leads to fast progression, and to
a potentially fatal stage, of the disease and represents an important target for
therapeutic interventions in most types of malignancies [254].

The understanding of angiogenesis and vasculogenesis is of particular im-
portance in cancer therapy, not only for researching anti-angiogenic therapies,
but also for the optimisation of drug delivery to tumour sites. In fact, counter-
intuitively, Jain and co-workers [109, 130, 131] have hypothesized that it is im-
portant to normalise the vascular network through the restoration of a proper
balance of pro-angiogenic and anti-angiogenic factors in order to achieve a bet-
ter delivery of drugs. Normalization of a usually abnormal tumour vasculature
improves perfusion, oxygenation and overall efficacy, and also results in a reduc-
tion of tumour interstitial pressure, a further factor which hampers the delivery
of drugs to the tumour site.

Recently, there has been increasing interest in controlling the formation of
capillary networks in tissue grown in vitro. Thus far, the growth of 3D in vitro
tissues has had limited success due to problems with the diffusion of nutrients
inside the scaffold. Even when the tissue growth has been successful (obtained
by carefully forcing a flow through the scaffold to assist nutrient delivery during
its formation), the absence of an embedded capillary network in the final product
causes great difficulty in achieving a successful outcome once the artificial tissue
has been implanted into the body; the tissue usually becomes necrotic, due to the
lack of a capability to source nutrients. Provision of the scaffold with a ready-
made capillary network, or stimulation of its development in the growing tissue,
would allow larger 3D tissues to be built and more successful implants to be
achieved (see, for instance, [58, 79, 114, 126, 127, 132, 144, 176, 255, 276, 280]).
In particular, Stroock and co-workers [303] developed a micro-fluidic device
embedded in a tissue-like collagen matrix where ECs can grow on the inner
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walls of the micro-channels, thus forming the first capillaries. The 3D matrix
surrounding the vessels and the flow through the channels allowed the cells to
evolve their structure to a physiological one, and even to form new sprouts; this
is very important if the tissue implant grown in vitro is to form connections
with the existing capillary network in the living host tissue.

Experimental studies performed on the vasculogenic system have revealed
the role of many different factors driving the formation of vascular networks,
both in physiological and pathological situations. However innumerable other
processes, acting at different spatio-temporal scales, remain far from being un-
derstood. The complexity of the problem means that it is difficult and expensive
to study using solely laboratory-based biological methods, and the support and
insight gained by using in silico models, which are able to replicate selected
features of the experimental system, is vital.

The aim of this review is to present the various different in silico approaches
used to model the formation of vascular networks, with particular emphasis
on their ability to reproduce experimental systems and to predict measurable
quantities. Specifically, in Section 2 we focus on vasculogenesis, in Section 3 on
angiogenesis and in Section 4 on lymphangiogenesis.

Each section begins with a brief phenomenological description of the underly-
ing biological processes, and proceeds to review the different types of models that
have been developed. Continuum models are considered first; these consist of
systems of partial differential equations, which can stem from reaction-diffusion
or from continuum mechanics conservation laws, when mechanical aspects are
important (see Sections 2.2, 3.2, 4). Then we describe cell-based models, e.g. cel-
lular automata and cellular Potts models (see Sections 2.3, 3.4); these models
are characterized by a stronger focus on the behaviour of single cells and can
be considered as hybrid models, since the concentration fields of the proteins of
interests are still treated by reaction-diffusion equations (eventually discretized
for integration purposes). A similar hybrid characteristic is also typical of other
discrete-continuum models that have been developed for angiogenesis (see Sec-
tion 3.3). For these models, we distinguish between discretized and discrete
models for some cell population still evolving in a continuum environment. In
the former case (see Section 3.3.1), the motion of sprout tip cells is governed
by rules obtained from the discretization of a suitable partial differential equa-
tion. In the latter case (that can be called discrete-in-continuum models, see
Section 3.3.2), the sprout tip cells move as a point mass in the continuum fields.
In both cases, the chemoattractant field, and possibly the substratum, are de-
scribed through continuous concentrations. In the final part of the angiogenesis
section, we discuss models for vessel remodelling and coupling with the outer
environment, e.g. tumour growth (see Sections 3.5 and 3.6).

It is useful to remark that we will focus mainly on results obtained in the
last ten years. The reader can refer to the excellent review articles [8, 11, 128,
151, 163] for further details on previous contributions. In particular, we will
examine in detail some sample models in order to highlight differences between
the modelling approaches. Finally, we will compare the different methods, and
discuss their advantages and disadvantages.
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Figure 1: In vitro vasculogenesis.

2 Vasculogenesis

2.1 The Mechanisms of Vasculogenesis

Since vessel formation and reorganization is of fundamental importance, a large
number of in vitro assays have been proposed to provide a deeper understand-
ing of selected underpinning molecular-scale and cellular-scale events. One of
the most well-known is the tubulogenic experiment, which is the laboratory
counterpart of in vivo vasculogenesis (see Figure 2.1). Tubulogenic assays can
be performed using different experimental set-ups, with different substrata and
different endothelial cell-lines, as reviewed in [277]. Typical substrata include
Matrigel, fibronectin, collagen, fibrin, and semisolid methilcellulose. Typical
endothelial cell-lines include human umbilical vein endothelial cells (HUVEC),
human dermal microvascular endothelial cells (HDMEC), human capillary en-
dothelial cells (HCEC), human marrow microvascular endothelial cells, bovine
aorthic endothelial cells (BAEC), bovine capillary endothelial cells (BCEC),
bovine retin endothelial cells (BREC), rat capillary endothelial cells (RCEC),
embryonic stem cells (ESC), calf pulmonary aortic endothelial cells (CPAEC),
and adrenal capillary endothelial cells (ACEC).

In recent years, an increasing number of tubulogenic assays have been per-
formed with tumour-derived endothelial cell lines (TECs), isolated and cul-
tured from human carcinomas on the basis of membrane markers. This re-
search has been stimulated by experimental investigations demonstrating that
tumour blood vessels differ substantially from their “normal” counterpart. They
are irregular and dilated, and it is impossible to identify distinct venules, ar-
terioles, and capillaries [77, 101]. Moreover, their blood flow and permeability
is altered, and they possess abnormalities in pericytes and in the basement
membrane. As well as exhibiting altered genotype, phenotype, and function,
TECs are often aneuploid, display chromosomal instability, and express pe-
culiar genes [46, 201, 243]. In addition, TECs avoid senescence in vitro and
show enhanced proliferation, motility and over-expression of membrane recep-
tors [23, 44, 45, 46, 112]. Therefore, TECs provide a practical model for study-
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ing the mechanisms of malignant vascularization, and for testing the efficacy of
anti-angiogenic pharmacological therapies and drugs.

In spite of the large variety of laboratory assays mentioned above, they all
have features in common. The selected EC population is initially dispersed
in a physiological solution and then poured on the top of a specific substrate,
which typically favours cell motility and has biochemical characteristics similar
to living tissues. The cells sediment by gravity onto the substrate and then move
along it, subsequently aggregating and forming patterns. The overall process,
which commonly lasts 9-15 hours, consists of the following steps:

1. Cells initially undergo an isotropic motion around their initial position,
maintaining a round shape. Then, it seems that they choose a direction,
which is correlated with the location of areas characterized by higher cellu-
lar densities, and display an independent migration, with a small random
component, until they collide with their nearest neighbours (3-6 hours).
This motile phenotype is called “cell persistence”, and is related to the
inertia of a cell caused by the time taken to rearrange and repolarize its
cytoskeleton to change its direction of migration [98, 231]. It is interesting
that the cells move significantly faster in this phase, and their movement
seems to be of the amoeboid type (see, for instance, [291, 298]).

2. After collision, ECs form attachments with their neighbours and eventu-
ally form a continuous multicellular network, which can be represented
as a collection of nodes connected by capillary chords. At this stage of
the process, the number of sites at which the cells adhere to the substrate
increases, and the ECs acquire an even more elongated shape. The motion
of the cells is now of mesenchymal type, and is much slower due to the
activation of numerous adhesion sites.

3. The network slowly moves as a whole, and undergoes a slow thinning pro-
cess, although the structure remains mostly unaltered. During this sta-
bilization phase, mechanical interactions between cells, and also between
cells and the substrate, become important.

4. Finally, individual cells fold up to form the lumen of the capillary, resulting
in a vascular network, as described in [113, 141].

2.1.1 Activity of chemical morphogens and related intracellular path-
ways

As detailed in the previous section, it seems to be well-established that the
motion of cells in the first phase of patterning is towards regions characterized
by higher cell densities. A natural question to ask is how do the cells feel the
presence of other cells? What is the mechanism underlying intercellular cross-
talk? In this regard, recent research clearly confirms that ECs exchange signals
during vasculogenesis by the release and absorption of specific chemical mor-
phogens (such as vascular endothelial growth factor isoforms (VEGF-A), acidic
and basic fibroblast growth factors (FGFs), epidermal growth factor (EGF),
and transforming growth factor-α and -β (TGF-α and -β), as for instance re-
viewed in [56, 84, 120]). These angiogenic factors, which are known to induce
EC growth, survival, and motility [85, 192], can in fact bind to specific tyrosine

5



kinase receptors on the cell surface and induce chemotactic motion along their
concentration gradient, i.e. towards zones of higher cellular densities.

In order to quantify both the persistent and the chemotactic component
in cell motion, a statistical analysis of the cell trajectories was performed in
[10, 202, 234, 244], by measuring the displacement between successive turns and
the cumulative distance. In particular, Parsa et al. [202] and Serini et al. [244]
measured both the angle between two subsequent displacements relative to the
same trajectory (which gives a measure of the persistence), and the angle be-
tween the cell instantaneous velocity and the VEGF-A concentration gradients
at the same point (which gives a measure of the chemotactic behaviour). They
confirmed persistence of cell locomotion in time, and observed that cellular mi-
gration was indeed in the direction of the gradients of the concentration field.

The autocrine/paracrine growth factors also play a role in determining the
dimensions of the final overall network. In particular, different types of mor-
phogens can lead to different mesh sizes, as observed in [229], where mice lacking
heparin-binding isoforms of VEGF-A form vascular networks with a larger struc-
ture. As discussed below, and proved by different theoretical models [103, 244],
this is related to the fact that the typical size of the network is determined
by the product of the diffusion constant and the half-life of the chemical fac-
tor, which are affected by its molecular weight and therefore specific for each
chemical species. In [115], it is clearly shown how elimination of endogenous
VEGF-A in ECs plated on Matrigel prevents the formation of networks, even
when VEGF-A is added exogenously and homogeneously on the top of the layer
of cells. This confirms the importance of endogenous VEGF in the formation
of capillary networks.

The diffusive chemical morphogens not only stimulate a chemotactic re-
sponse from the ECs, but also activate a series of calcium-dependent cascades.
These cascades regulate the phenotypical behaviour of cells, in particular motil-
ity, which is in turn influenced by cell-to-cell contact. This means that the
morphogens also play an essential role in the stabilization of the capillary net-
work. Molecules of selected growth factors initiate a series of intracellular cas-
cades, which results in the indirect production of second messengers (such as
arachidonic acid (AA) and nitric oxide (NO)). These messengers bind to sites
on the cell plasmamembrane, open cation channels, and allow the influx of ex-
tracellular calcium into the cytosol, as characterized in [87, 88, 89, 177, 182].
This process, also called non-capacitive (or non-store-operated) calcium entry
(NCCE or NSOCE), causes localized and peripheral restricted accumulations
of the calcium ion [271], which regulates important biophysical properties of
vascular cells, such as their elasticity, migratory capacity, and adhesive strength
[31, 180, 183, 184].

2.1.2 Effect of cell density

Several experimental approaches clearly show that, over a defined range of den-
sities of seeded cells (say from 100 to 200 cells mm−2), the resulting network is
characterized by typical inter-capillary distances (i.e. mean diameter of cellular
lacunae) extending from 50 to 300 µm. These dimensions are ideal for optimal
metabolic exchange (determined by the diffusivity of the oxygen): a coarser net
would cause necrosis of the tissues in the central region, whereas a finer net
would be useless (see [67, 116]). Indeed, as observed in vivo in [95], the vascular
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mesh does not develop properly for cell densities outside this range. To clarify
this phenomenon, Serini and co-workers [244] performed specific experiments,
in which they varied the number of seeded cells, and used methods of statistical
mechanics to quantitatively characterize the resulting patterns [103, 68]. They
observed that there is a transition between a phase in which dynamics generates
several disconnected structures (i.e. below a critical value ∼ 100 cells/mm2), to a
phase in which a single connected structure appears. This process is an example
of percolative transition and is studied in detail in [68].

A detailed analysis of the topological parameters characterizing the net-
work (such as average branch length, number of branches, number of nodes,
or capillary-like structure area) was performed in [202]. The same article also
devotes particular attention to the evolution of the shapes of single ECs. They
characterize cell behaviour in five phases dominated by cell aggregation, spread-
ing, elongation, plexus stabilization, and plexus reorganization.

When too many cells are seeded, another transition, called Swiss-cheese tran-
sition, is observed. This is the formation of regions without cells, called lacunae,
in a confluent layer of undifferentiated ECs that do not form a proper network
[191, 244].

2.1.3 Interaction between cells and ECM

The topological properties of the capillary network are strictly regulated also by
the content of matrix proteins in the substrate, which control cell attachment
to the gel surface. Experimental observations have shown that lacunae form
in the zones deprived of ECM molecules [274]. Indeed, in [277], the authors
noticed that the formation of cellular holes was accompanied by a degradation
of fibrin gels in the substrate. They measured the fibrin degradation products
present in the culture medium and found an increase after 10 hours of seed-
ing HUVECs. The same group has also performed some experiments, where
they changed the fibrin concentration in a substratum of 1 mm thickness with
a confluent population of HUVECs (i.e. with a density ≈ 1500 cells/mm2). As
the fibrin concentration was increased from 0.5 mg/mL to 8 mg/mL, the num-
ber of formed lacunae strongly decreased, but without any increase in size. In
particular, a structured capillary mesh, with a typical chord length of 550 ±
50µm, only formed for lower fibrin concentrations. At higher concentrations,
the ensemble of cells persisted as a continuous carpet without any holes. These
results suggested that fibrinolysis leads to cell apoptosis and detachment from
the surface, eventually culminating in the formation of functional lacunae. The
same researchers have repeated the experiments using BRECs. In this case, a
higher fibrin concentration (≈ 8 mg/mL) was necessary to form an organized
capillary network, with a mean chord length of 400µm. This is consistent with
the fact that BRECs have a high fibrinolytic activity. Hence, at lower concen-
trations, the matrix gel is degraded too quickly and the cells were not able to
adhere at all. For this reason, some experiments were performed adding pro-
tease inhibitors (aprotin up to a concentration of 1 µg/mL); this decreased the
degradation and allowed the formation of capillary-like structures. However, if
the fibrin degradation was completely inhibited, the capillary network no longer
formed.

The interaction between cells and the ECM during tubulogenesis has been
the subject of many experiments. In [284, 285, 286], the authors seeded different
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types of cells (BAECs, cells of the murine Leydig cell line TM3, human fibrob-
lasts, human smooth muscle cells, and murine PYS-2 cells) on gelled basement
membrane matrices (BBMs), which were characterized by a constant thickness
of 1 mm and a variable rigidity, and regulated by selected amounts of gelled
native type I collagen. They found that, with 0.6mg/mL collagen, BAEC and
TM3 cells formed capillary networks in 24 hours, whereas, at 2mg/mL collagen,
cells were flattened, spread, and unorganised. In addition, they used a set-up
in which the substratum was distributed in a wedge-shape substratum, with its
thickness increasing from 10 µm to 500 µm over a length of 17 mm, or from
10 µm to 400 µm over a length of 4 mm. The experiments showed that the
length of the chords is positively correlated with the thickness of the substrate.
Probably, on a very thin substrate, a capillary structure would not form at all.

2.2 Continuum models of vasculogenesis

The first mathematical models aimed at describing vasculogenesis were devel-
oped in the eighties by Murray and co-workers [185, 186, 187, 197]; these were
then followed by a series of papers, [161, 162, 188, 189, 190, 191, 274], which
are reviewed in more detail in [11, 163]. These mechanics-based models assume
that the mechanism driving the formation of the vascular network and its mor-
phological characteristics is the pulling action of the ECs on the extracellular
matrix (ECM).

If we denote the density of endothelial cells by ρc, the density of the ECM by
m, and the displacement of the extracellular matrix with respect to its stress-free
configuration by um, then the structure of the model is the following:

∂ρc
∂t

+∇ · Jc = 0 , (2.1)

∂m

∂t
+∇ · (mvm) = 0, (2.2)

∇ · (Tc + Tm) + F = 0 , (2.3)

where vm = dum/dt is the ECM velocity, Jc is the cellular flux, and F is the
force due to the interaction between the ECM and the Petri-dish. Eqs. (2.1)
and (2.2) model conservation of the cell and ECM densities, while Eq. (2.3) is
a force balance for the whole system: the mixture of cells and the ECM. The
term Tc accounts for the forces internal to the system due to cell traction, and
Tm for the viscoelastic response of the ECM.

In [161], a growth term, Γc = γcρc, was included in the right-hand side of
equation (2.1) to describe cell proliferation, but was subsequently neglected in
the stability analysis and in the simulation. In [274], an additional decay term,
∆ = −δmρc(1 − ρc)m, was included in the right-hand side of equation (2.2) to
account for ECM cleavage by the ECs, which is assumed to play a role in the
formation of lacunae.

Motivated by the experimental evidence described in Section 2.1.1, which
shows the importance of chemical cues, especially during the first phase of vascu-
lar development, a different mathematical model was proposed in [12, 103, 244]
based on the following assumptions:
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1. ECs neither duplicate nor die during the process;

2. ECs communicate via the release and absorption of molecules of a soluble
growth factor, which acts as a chemoattractant and can reasonably be
identified with VEGF-A;

3. ECs show persistence in their motion;

4. ECs are slowed down by friction due to interaction with the fixed substra-
tum;

5. Closely packed ECs mechanically respond to avoid overcrowding.

The resulting mathematical model for the density of cells, ρc, their velocity,
vc, and the concentration of chemoattractant, c, is then given by:

∂ρc
∂t

+∇ · (ρcvc) = 0 , (2.4)

∂c

∂t
= D∇2c+ αρc −

c

τ
, (2.5)

ρc

(
∂vc
∂t

+ vc · ∇vc

)
= ∇ · Tc + Fchem + Fcm . (2.6)

Eq. (2.4) describes mass conservation and corresponds to the first assump-
tion.

Eq. (2.5) is a reaction-diffusion (RD) equation for the chemical factor, which
is produced at a rate α and degrades with a half life τ . The diffusion coefficient,
D, can be estimated from available data for molecular radii [178, 288] by using
the Stokes–Einstein relationD = kBT/ (6πηrH), where kB is the Boltzmann con-
stant, T the temperature, η the solvent viscosity, and rH the hydrodynamic ra-
dius of the molecule [213]. In the case of VEGF-A, this gives D ∼ 10−7 cm2 s−1.
The half life of VEGF-A was measured in [244] using a radioactive tracer, giving
a value of τ = 64± 7 min.

Equation (2.6) assumes that the governing equation for cell motion can be
obtained on the basis of a suitable force balance. Although the second term in
the left-hand side of the momentum equation is reminiscent of an inertial term
(which is negligible in most biological phenomena), it should be interpreted as a
term which models cell persistence, i.e. the resistance of cells to changes in their
direction. The terms on the right-hand side represent the possible causes of a
change in cell directional motion. These include the fundamental chemotactic
body force:

Fchem = ρcβ(c)∇c , (2.7)

where β(c) measures the intensity of the cell response, which can include satu-
ration effects, e.g.

β(c) =
β

1 + sc
, or β(c) = β

(
1− c

c0

)
+

. (2.8)

Here

f+ =

{
f if f > 0 ;
0 otherwise ;

(2.9)
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is the positive part of f and the parameters s and c0 regulate the saturation of
the chemotactic response. The linear dependence of the force on ρc corresponds
to the assumption that each cell experiences a similar chemotactic action, so
that the momentum balance in integral form depends on the number of cells in
the control volume and the related local equation on the local density. The drag
force Fcm = −ερcvc was taken to be proportional to the velocity with respect to
the substratum (assumed rigid in (2.6)), and proportional to the cell density for
the same reasons as above. Possible generalizations of the cell-ECM interaction
force could include the mechanisms of integrin attachment and detachment, as
recently done in [214].

Finally, the partial stress tensor, Tc, measures the response of the ensem-
ble of cells to deformations. Several constitutive equations can be formulated,
but unfortunately very little experimental data is available on the mechanical
characteristics of cell populations in similar environmental conditions. It can
be argued that because the cytosol is a watery solution containing many long
proteins contained in a viscoelastic membrane, the ensemble of cells might be-
have as a viscoelastic material. However, even if one wants to consider such an
effect, the characteristic times of the viscoelastic behaviour are much smaller
than those related to cell motion (minutes with respect to hours), so that vis-
coelasticity probably plays a secondary role in the process of vascular network
formation. On the other hand, plasticity should probably be taken into account
to describe the breaking of cell-to-cell adhesion bonds [13, 214].

In the absence of experimental evidence, the simplest constitutive equation
possible,

Tc = −p(ρc)I , (2.10)

is considered in [12, 103, 244]; this choice of stress tensor corresponds to mod-
elling the cells as an inviscid fluid. This assumption implies, for instance, that
the ensemble of cells cannot sustain shear, which, of course, is not true.

Equation (2.6) then reduces to:

∂vc
∂t

+ vc · ∇vc = − 1

ρc
∇p(ρc) + β(c)∇c− εvc . (2.11)

The model, (2.4), (2.5) and (2.11), can be linked to classical models in par-
ticular instances. For example, if both the pressure and the persistence terms
are neglected in (2.11) then the cells will immediately adjust to the limit veloc-
ity, and this leads to classical chemotactic models (see, for instance, [121, 198]),
for which blow-up in finite time is possible. If the pressure term is retained, one
has instead the model studied in [139], in which the blow-up of the solution is
prevented by imposing suitable conditions on the pressure term, e.g. convexity.
Using a Chapman-Eskog expansion, Filbet et al. [86] deduced the above model
(2.4–2.6) as a hydrodynamic limit of a kinetic velocity-jump process.

The main feature of the model can be understood most simply by neglect-
ing pressure, and assuming for the moment that diffusion is a faster process
than pattern formation, so that the time derivative in the diffusion equation,
(2.5), can be neglected as a first approximation. Then, if we solve formally the
quasi-stationary diffusion equation for c and substitute the solution into the
persistence equation, (2.6), we can write (for p = ε = 0):

∂vc
∂t

+ vc · ∇vc =
αβ

D
∇

[(
1

`2
−∇2

)−1

ρc

]
. (2.12)
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Figure 2: Network structure obtained with the vasculogenesis continuous model
(2.4, 2.5, 2.11).

The appearance in the dynamical equations of the characteristic length,

` :=
√
Dτ , (2.13)

suggests that the dynamics could favour patterns characterised by this length-
scale. Indeed, if we rewrite the right-hand side of (2.12) in Fourier space as

αβ

D

ik

k2 + `−2
ρck ,

we observe that the operator ik/
(
k2 + `−2

)
acts as a filter, which selects the

Fourier components of ρc having wavenumbers of order 1/` and damps the com-
ponents with higher and smaller wavenumbers. Experimental measurements of
the parameters gives ` ∼ 100µm, which is in good agreement with experimental
data.

It appears, then, that the process of network formation is initially driven by
the following mechanism. Density inhomogeneities are translated in a landscape
of concentration of VEGF-A, where details with scale smaller than ` fade away.
The cells move by chemotaxis toward the ridges of the concentration landscape,
enhancing even further the relevant scale, and eventually this produces a net-
work structure characterised by a length-scale of order `. In this way, the model
provides a direct link between the range of intercellular interactions and the
dimensions of the network structure, which is a physiologically relevant feature
of real vascular networks. The results of a simulation are shown in Figure 2. As
expected, a change in the diffusion of the chemical factors leads to a change in
the typical size of the network, in agreement with the observation that larger
effective diffusivities lead to vascular networks with a larger mesh [229].

A detailed analysis of the dependence of the topological characteristics of the
network structure on the density of seeded cells has been performed in [103, 244].
They observed the percolative and Swiss-cheese transitions described in Section
2.1.2, with fractal dimensions consistent with the experimental measurements.
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2.2.1 Exogenous control of vasculogenesis

A generalization of the models in the previous section to include multiple species
of chemical factors, characterized by different physical properties and biological
actions (e.g. attraction and repulsion), has been considered in [142]. Inter-
est in this type of model is motivated by the possibility of using exogenous
chemoattractants and chemorepellents to stimulate the formation of vascular
networks for tissue engineering purposes. These exogenous chemoattractants
and chemorepellents are impregnated into suitable gel structures, which form
the substrate onto which the ECs are subsequently placed.

Denoting the concentrations of exogenous chemoattractant and chemorepel-
lent by ca and cr respectively, the model in [142] can be written as:

∂ρc
∂t

+∇ · (ρcvc) = 0 , (2.14)

∂vc
∂t

+ vc · ∇vc = − 1

ρc
∇p(ρc)− εvc

+ β(c)∇c+ βa(ca)∇ca − βr(cr)∇cr , (2.15)

D∇2c− c

τ
+ αρc = 0 , (2.16)

Da∇2ca −
ca
τa

+ πa(t)Ha(x) = 0 , (2.17)

Dr∇2cr −
cr
τr

+ πr(t)Hr(x) = 0 , (2.18)

where the time derivatives of the concentrations have been neglected since the
characteristic diffusion time-scales are much smaller than the one characterizing
cell motion. The functions Ha and Hr define where the exogenous chemicals
are physically placed, while their release is determined by πa and πr. For the
sake of simplicity, it is assumed that πa and πr are constant, which assumption
is valid if the release time is much larger than the time of formation of the
network, i.e. of the order of ten hours. Of course in some particular cases it may
be possible to integrate analytically (2.17) and/or (2.18), so that the resulting
solution can be directly substituted in (2.15).

In the same way as before, the new RD equations (2.17) and (2.18) are
characterised by two more natural length-scales, `a =

√
Daτa and `r =

√
Drτr,

related to the ranges of action of the exogenous chemoattractant and chemore-
pellent, respectively. Within these ranges, the effect of the exogenous chemical
factors strongly influence the structure of the network. However, outside these
ranges endogenous chemotaxis governs the formation of a more isotropic net-
work. An example is shown in Figure 3, where a thin stripe of chemorepellent
has been placed down the middle of the figure.

Generally speaking, it was found that chemorepellents are more effective in
driving the formation of vascular networks than chemoattractants. From a mor-
phological point of view, chemoattractants induce the formation of capillaries
within their range of action, and these capilliaries tend to run perpendicularly
to the source of chemoattractant; on the other hand, chemorepellents induce the
formation of capillaries which tend to run parallel to the source of chemorepel-
lent, and are situated at a distance from the source of the order of magnitude
of the range of action, as shown in Figure 3.
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Figure 3: Vasculogenesis simulation in presence of a thin stripe of chemorepel-
lent obtained by the model (2.14–(2.18).

2.2.2 Substratum interactions

From the phenomenological description given in Section 2.1, it is clear that in
the second phase of vascular network formation, the mechanical interaction of
the cells with the substratum and its mechanical properties themselves become
important. Since these features cannot be described by the model (3.4, 3.5,
3.11) proposed above, Tosin et al. [273] extended it to include these mechanical
processes. They still assumed only endogenous chemotaxis, although the gen-
eralization to exogenous chemical factors is straightforward. Although inertial
effects can be certainly neglected, inclusion of the non-rigidity of the substratum
into the model requires an extra force balance equation that can be written as:

∇ · Tm − Fcm + Fext = 0 . (2.19)

Here, Fext is the anchoring force of the substratum to the Petri dish, which can
be taken to be proportional to the displacement um of the substratum:

Fext = − s

h
um , (2.20)

where h is the substratum thickness.
The other interaction force, Fcm, due to cell-ECM interaction is the one

present in the persistence equation (2.6), but with the opposite sign here as
it is an internal force between the two constituents. However, in this case,
the deformability of the substratum requires the definition of this force to take
into account the relative motion of the cells with respect to the ECM. In this
respect, Tosin et al. [273] assumed that it includes both an elastic and a viscous
contribution. During the ameboid motion, the interaction force acting on the
cells is of viscous type. This implies a weak interaction between the cells and
the substratum (characterised by a quick removal of bonds and formation of
new bonds), and a corresponding weak deformation of the substratum, so that
the interaction force is modelled as:

Fvisc = −ερc(vc − vm) , (2.21)
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where vm = dum/dt.
The elastic contribution takes into account the fact that, after some time,

cells attach themselves to the substratum and form stronger focal adhesion
bonds. One can then assume that, if the cell anchors in um and then moves to
uc, then the elastic force is proportional to um − uc. This change of behaviour
characterises the transition between the phase dominated by chemotaxis and
that dominated by mechanics. In other words, this force is absent in the initial
ameboid motion and starts when the motion becomes of mesenchymal type,
i.e. when cells start attaching more strongly to the adhesion molecules of the
substratum. In [273], it was assumed that there exists a characteristic time, tth,
needed to anchor to the adhesion sites on the substratum; this characterises the
transition between a purely ameboid phase and a mesenchymal phase, so that:

Felast = −κρc (uc − um)H(t− tth) , (2.22)

where κ is the anchoring rigidity and H is the Heaviside function.
Another interesting hypothesis is that the ameboid motion stops whenever

cells come into contact, so that the strongly reduced velocity permits a better
link with the adhesion molecules of the substratum. This phenomenon could be
included in the previous model by assuming that

Felast = −κ(ρc)ρc (uc − um) ,

and taking κ(ρc) to vanish below a given value ρth of cell density, e.g. κ(ρc) =
κH(ρc− ρth). This mechanism is consistent with the one involving intercellular
calcium dynamics described in Section 2.3.

Tosin et al. [273] also included a further modification to the model, which is
consistent with the above-cited calcium dynamics. Since the release of endoge-
nous VEGF is assumed to decrease as a consequence of cell-to-cell contact (in
agreement with the activation of inhibiting calcium-related pathways described
in Section 2.1.1 and modelled in Section 2.3), they assumed that the production
of VEGF is density-dependent, so that:

α(ρc) =
α̂cρc

1 + ηρ2
c

.

To conclude, since the terms (2.21) and (2.22) must be found with the op-
posite sign in the persistence equation for the cells, but the term in (2.20) must
not (because it does not act on the cells), the final model can be written as:

∂ρc
∂t

+∇ · (ρcvc) = 0 ,

∂c

∂t
= D∇2c+

α̂cρc
1 + ηρ2

c

− c

τ
,

∂vc
∂t

+ vc · ∇vc = − 1

ρc
∇p(ρc) + β(c)∇c

− ε(vc − vm)− κ(ρc) (uc − um) ,

− E

2(1 + ν)
∇2um −

E

2(1− ν)
∇(∇ · um)

+ ε(vc − vm) + κ(ρc) (uc − um)− s

h
um = 0 .
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Figure 4: Vasculogenesis simulation by the model (2.23) in presence of a stiff
substratum.

The effect of mechanical stretching obtained in the simulation is comparable
to what is observed in vitro, namely that, by pulling on the extracellular matrix,
the cells deform the substratum. However, if the substratum is too rigid or if
cell adhesion is too strong, then it is very hard for the cells to form a chord.
In the limit of very stiff substrata, then the morphogenic process leads to the
formation of lacunae rather than chords, as shown in Figure 4. The mechanical
interactions seem also to play an important role in guaranteeing the stability of
the network.

2.3 Cellular Potts Models of Vasculogenesis

Due to the spatial scales involved, cell-based models are particularly suited to
capture and describe mechanisms and dynamics at the cellular level. In ad-
dition, they allow more flexibility to include sub-cellular phenomena of inter-
est (e.g. adhesion mechanisms and activation of protein pathways). One such
methodology is the cellular Potts model (CPM), which has been widely applied
to study vasculogenesis. This is a lattice-based Monte Carlo technique, which
follows an energy minimization philosophy [106, 107, 108, 111, 164].

In order to model vasculogenic assays CPMs use bi-dimensional lattices
(i.e. regular numerical repeated graphs). Each grid site x ∈ Ω ⊂ R2 is labelled
by an integer number, σ(x). Using the typical terminology adopted in CPM
models, a neighbour of site x is identified by x′, while its overall neighbourhood
is identified by:

Ω
′

x = {x′ ∈ Ω : x′ is a neighbour of x} .

Sub-domains of contiguous sites with identical spin σ form discrete objects,
which are characterized by an object type, τ(σ).

In classical CPMs of tubulogenesis, each object identified by its spin σ rep-
resents an entire and undifferentiated cell of type τ = C. The experimental
matrix substrate (e.g. Matrigel), on which the EC population resides, is com-
monly modelled as a generalized object σ = 0 of type τ = M , and is assumed
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to be static, passive and homogeneously distributed throughout the simulation
domain, forming no large-scale structures. Connections (links) between neigh-
bouring lattice sites of unlike index σ(x) 6= σ(x′) represent cell membranes.

As in all applications of CPMs, the EC culture gradually and iteratively
evolves to reduce a pattern effective energy, described by a Hamiltonian, H. The
functional H contains a variable number of terms, consisting of cell attributes
(e.g. volume, surface), true energies (e.g. cell-cell adhesions), and terms mimick-
ing energies (e.g. response to external chemical stimuli). Its local gradient is the
“force” acting on any point of the simulation domain. The energy minimization
core algorithm is a modified Metropolis method for Monte Carlo dynamics. It is
able to capture the natural exploratory behaviour of biological individuals, via
thermal membrane fluctuations and biased extensions and retractions of their
membranes, with a preference for displacements which reduce the local effective
energy of the configuration. To mimic cytoskeletally-driven pseudopod exten-
sions and retractions, a lattice site, xsource, is selected at random and assigns its
state (σ(xsource)) to one of its unlike neighbours, xtarget ∈ Ω

′

xsource , which has
also been randomly selected. The Hamiltonian of the system is computed before
and after the proposed update, and the change is accepted with a Boltzmann
probability function:

P (σ(xsource)→ σ(xtarget)) =

{
e−∆H/T ∆H > 0 ;
1 ∆H ≤ 0 ,

(2.23)

where ∆H = Hafter spin flip −Hbefore spin flip is the net energy difference, and
T is an effective Boltzmann temperature which is constant for the whole system
in classic CPMs, representing the idea of a generic and homogeneous “culture
motility” [170, 171, 172, 173, 174, 236]. A total of n proposed updates, where n
is the number of sites of the domain Ω, constitutes a Monte Carlo Step (MCS),
which is the basic iteration and the unit of time used in the model.

As a more detailed illustration, let us consider the Hamiltonian functional
used by the authors in reference [173]; this contains three terms, which control
the shape of the ECs, their homotypic (i.e. cell-to-cell) and heterotypic (i.e. cell-
ECM) adhesive interactions, and their chemotactic response:

H = Hadhesion +Hshape +Hchemical. (2.24)

The first term, Hadhesion, phenomenologically implements the general ex-
tension of Steinberg’s differential adhesion hypothesis (DAH) [111, 250, 251]:

Hadhesion =
∑

x∈Ω,x′∈Ω′
x

Jτ(σ(x)),τ(σ(x′))(1− δσ(x),σ(x′)), (2.25)

where x, x′ represent two neighbouring lattice sites, δx,y is the Kronecker delta,
and the J ’s are cell-cell (JC,C) or cell-matrix (JC,M ) binding energies per unit
area. They are assumed to be constant in time and homogeneous in space.

The next term, Hshape, imposes a geometrical constraint on ECs. It is
written in the following elastic-like form, which increases as the cells deviate
from a designated target area Aσ, under the hypothesis that cells do not grow
or divide during patterning:
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Hshape = Harea = λareaC

∑
σ

(aσ −AC)2. (2.26)

Here aσ is the current area of cell σ, and λareaC is an energy penalty (a Potts
coefficient), which represents the cells’ resistance to compression.

The final term, Hchemical, describes the biased walk of ECs up gradients of
VEGF. The authors in [233] assume that the velocity of the drift depends both
on the gradient strength and on the absolute concentration of the chemical, so
that the resulting effective-energy change at each copy attempt reads:

∆Hchemical = −(1− δσ(xsource),0)µch
[

c(xtarget)

1 + s c(xtarget)
− c(xsource)

1 + s c(xsource)

]
.

(2.27)
The chemotaxis coefficient is given by µch = µchC,M � 0 at cell-ECM interfaces,

and µch = µchC,C = 0 at cell-cell interfaces, respectively. This ensures that
chemotactic extensions occur only at cell-ECM interfaces, and reflects the VE-
cadherins suppression of pseudopods (contact-inhibition of chemotaxis). Finally,
the factor (1−δσ(xsource),0) (where 0 represents the extracellular medium) is used
to implement a pseudopod-extension-only chemotaxis, where only extending
pseudopods at the cell-ECM interface respond to the chemoattractant.

Chemoattractant diffusion and degradation is described macroscopically, us-
ing an RD equation analogous to Eq. (2.5) in the models presented above
[103, 244]:

∂c

∂t
= D∇2c+ α(1− δσ(x),0)− 1

τ
δσ(x),0c(x, t) . (2.28)

Here α is the secretion rate from inside the cells, tau the half life in the ECM
(i.e. due to proteolytic enzymes or by binding to ECM components), and D
the diffusion constant in the ECM. The co-presence of a continuum description
for the chemical factors and a lattice-based description for the cell behaviour
gives a hybrid characteristic to all CPMs proposed in the literature to describe
vasculogenesis and angiogenesis.

Although the value for D in (2.28) is taken to be smaller than that set
for VEGF-A165 in [103], and as a result steeper gradients are formed in the
concentration, capillary formation is still observed.

This very interesting hybrid model demonstrates that the definition of a
single set of cell behaviours, i.e. contact-inhibited chemotaxis to an autocrine-
secreted chemoattractant, can consistently reproduce the formation of a capil-
lary network, which is in good agreement with the related in vitro experiments,
performed with cultures of mouse allantois. The simulations performed also
indicate that the pattern emerges over a wide range of cell-cell adhesions and
that it is widely independent of cell shape. Moreover, the authors successfully
apply the same model to reproduce capillary sprouting from an initially round
island of ECs, suggesting common underlying driving mechanisms. In partic-
ular, their results show that no sprouting occurs at too low cell motilities T if
the pseudopods respond to the chemoattractant only during extension, and it
is necessary to implement an extension-retraction chemotaxis (i.e. by dropping
the related factor in Eq. (2.27)). In contrast, for higher motilities, vascular
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branching develops with both mechanisms, the process being slower in the case
of extension-only chemotaxis.

In [173] the authors also investigate how sprouting depends on the chemotac-
tic strength, µC,M . In particular, they find a critical value separating sprouting
from non-sprouting clusters. At intermediate values of the parameter, most
vascular cords are two cells wide, while at high values the cords become longer
and thinner (i.e. only one cell wide). For even higher chemotactic responses, the
cells intercalate, moving to the peaks of the chemical gradient. Finally, in order
to compare with the model in [103], the authors perform simulations varying
the diffusion length of the chemoattractant. In agreement with the continuum
approach, they observed that longer diffusion lengths produce thicker cords with
larger inter-cord spaces. At the extremes, the clusters do not sprout well when
the VEGF diffusion length approaches the EC-cluster diameter, whereas they
dissociate if the diffusion length is shorter than the diameter of single cells.

In [172], the same group starts from the experimental observation that ECs
dramatically change shape in the second phase of vasculogenesis after cell ag-
gregation. In response to growth factors, intracellular-store-based calcium entry
remodels the actin cytoskeleton of ECs, and changes their shape from rounded
to elongated and bipolar [81] (see also the description in [202]). Such a cell-
polarized shape is essential for blood-vessel development. In fact, it causes
anisotropic cell migration, which produces rapid inter-cellular connections re-
sulting in a fine network, and a sideways movement, which is fundamental for
pattern coarsening and stabilization. Therefore, they add an energetic con-
straint on cell-length to the Hamiltonian (2.24):

Hlength = λlengthC

∑
σ

(lσ − Lσ)2, (2.29)

where lσ is the length of cell along its longest axis, Lσ its target length, and
λlengthC the relative Potts coefficient. In particular, the length of a cell is de-
rived from the largest eigenvalue of the inertia tensor, with the assumption
that the cell is approximately an ellipse. However, since the length constraint
may cause a cell to split into disconnected patches, the authors also introduce
a connectivity constraint, which reflects the physical continuity and cohesion
of the cell. The rest of this model is analogous to that previously presented,
except that, in this case, the authors no longer consider a saturation behaviour
of the cell chemical response (i.e. they impose s = 0 in Eq. (2.27)), and they
implement an increased extensibility chemotactive response, without contact
inhibition (i.e. µch = µchC,M = µchC,C � 0 in the same equation (2.27)). Inter-
estingly, although these assumptions are slightly different, a standard vasculo-
genesis process is consistently reproduced, with a final structure resembling a
capillary plexus, where cords of cells enclose lacunae of homogeneous dimen-
sions. In this article, the authors also analyse the kinetics of the patterning,
finding that the number of branch points and lacunae initially drops quickly,
with non-exponential dynamics, and then slowly stabilizes, resulting in the typ-
ical equilibrium size of the network. Some simulations then show that reducing
the target cell length below a critical value (or dropping the length constraint)
inhibits the formation of the network. Interestingly, by varying the number of
simulated cells, these authors find both a percolative and a Swiss-cheese transi-
tion analogous to [103].
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A more detailed CPM was developed in [138] to reproduce an in vivo vas-
culogenic process during embryonic development, where endothelial precursor
cells of mesodermal origin, known as angioblasts, assemble into a character-
istic network pattern. In particular, the authors assume that VEGF is not
autocrinally produced by the angioblasts, but by the ECM. The EC precursors
instead secrete non-diffusive matrix components, able to bind and immobilize
the signalling agent in close proximity to the cell. The authors propose the
following system of differential equations for the concentrations of free soluble
(cf ) and bound (cb) VEGF, and for ECM molecules (m):

∂cf
∂t

= D∇2cf + γf − κcfm−
cf
τ
,

∂cb
∂t

= κcfm,

∂m

∂t
= γmδσ(x),0 − δcfm.

(2.30)

Here γf ithe constant rate of VEGF production, γm is the production rate of
ECM molecules by cells, and κcfm is a second-order mass action term with
effective kinetic rate κ.

The system Hamiltonian used in such a model is the same as in Eq. (2.24).
It takes into account geometrical constraints for the angioblasts; homotypic and
heterotypic interactions; and the chemical response, which distinguishes between
chemotactic cues created by both bound and soluble VEGF:

∆Hchemical = −µchb (cb(xtarget)− cb(xsource))− µchf (cf (xtarget)− cf (xsource)).
(2.31)

In particular, the ECM-bound VEGF is assumed to provide stronger chemical
signalling than its freely diffusing forms, as observed in [66, 229], by setting
µchb > µchf .

As demonstrated by a morphometric analysis, this model is able to produce
polygonal cellular patterns that accurately resemble the in vivo early vascular
bed in quail embryos, recorded by confocal microscopy. The simulated networks
show a high degree of similarity with respect to a broad spectrum of morpholog-
ical descriptors, including lacunae number/sizes/shapes, network and interface
lengths, cord widths, degree distribution and fractal properties. As observed
by the authors themselves, fine-grained spatial cues for chemotactic cell migra-
tion can be generated without postulating unrealistically low VEGF diffusion
rates [172, 173]. Furthermore, the stability of the network structures increases
over time, instead of collapsing after a transient time, as in previous models
[103, 172]. Another interesting feature of this work is that cell elongation does
not need to be postulated a priori, as in [172], as the angioblasts polarize as a
natural consequence of chemotaxis towards matrix-bound VEGF. Moreover, a
set of simulations reveals two time-scales characterizing the pattern dynamics:
in the early stages, a fully connected network forms, whereas, over longer time-
scales, it increases in the overall surface area, ensuring an efficient distribution
of nutrients and waste removal.

All of the CPMs described above have neglected the evolution of intracel-
lular dynamics that underlie cell phenotypic behaviour. In [238] an extension
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of CPMs in this direction takes into account specific agonist-induced calcium-
dependent pathways that are important to describe the final stabilization phase
of the vasculogenic process. In this approach the modelling environment is char-
acterized by a constant flux of information from finer to coarser levels, i.e. the
kinetics of the molecular sub-cellular networks strongly determine cell meso-
scopic properties and behaviour.

Instead of “normal” ECs, the model specifically describes tumour-derived
endothelial cells (TECs) with their related parameters and protein cascades.
Referring to [239, 240] for more details, each cell is defined as a compartmen-
talized unit η, composed of two subregions which, in turn, are standard CPM
objects σ: the cell nucleus, a central more or less round cluster, of type τ = N ,
and the surrounding cytosol of type τ = C. This is obviously a more realistic
representation, which allows a more detailed reproduction of cell morphological
changes during capillary formation. The TEC population as usual resides in a
homogeneous matrix, a generalized substrate σ = 0 of type τ = M .

The Hamiltonian of the system is set to be:

H = Hadhesion +Hshape +Hchemotaxis +Hpersistence. (2.32)

The term Hadhesion = Hint
adhesion +Hext

adhesion is similar to the one in Eq. (2.25),
but contains different contributions to describe the generalized contact between
subunits belonging to the same cell, or the effective adhesion between mem-
branes of different cells:

Hadhesion =
∑
x∈Ω

x′∈Ω′
x

[
J intC,Nδη(σ(x)),η(σ(x′))(1− δη(σ(x)),η(σ(x′)))

+JextC,C(1− δσ(x),σ(x′))(1− δη(σ(x)),η(σ(x′)))
]
. (2.33)

Here J intC,N ∈ R− is a constant high tension which prevents the cells from

fragmenting, whereas JextC,C represents the local adhesive strength between cells
η(σ(x)) and η(σ(x′)), whose value will be discussed below.

The geometrical attributes of cell subunits are modelled by:

Hshape = Harea +Hperimeter

=
∑
η,σ

[
λareaη,σ

(
aη,σ −Aτ(σ)

aη,σ

)2

+ λperη,σ

(
pη,σ − Pτ(σ)

pη,σ

)2
]
,(2.34)

where aη,σ and pη,σ are the actual dimensions of the compartments, and Aτ(σ)

and Pτ(σ) their target values, which correspond to the typical dimensions of the
nucleus and the cytosol of a TEC in a quiescent state. With respect to the
standard formulation (2.26), the form of (2.34) allows finite energetic contribu-
tions, as well as a blow-up in the case of aη,σ, pη,σ → 0, which means that an
infinite energy is needed to shrink a cell to a point. The parameters λareaη,σ and
λperη,σ are energy penalties referring to the mechanical moduli of the cell com-
partments. Assuming that TECs do not grow during patterning, λareaη,σ is kept
high for any η and for σ such that τ(σ) = C,N . Moreover, the rigidity of the
nucleus is implemented by a high λperη,σ for any η and for σ such that τ(σ) = N .
Finally, the elasticity of the cytosolic region, evaluated by λperη,σ for any η and
for σ : τ(σ) = C, is enhanced by calcium ions, which facilitate cytoskeletal
reorganization, as stated below in Eq. (2.38).
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The term, Hchemotaxis, implements an extension-only chemotactic term sim-
ilar to the one present in [173]:

∆Hchemotaxis = µchη [Q(xtarget)−Q(xsource)] , (2.35)

where xsource is a cytosolic site of cell η, and xtarget is one of its neighbouring
medium sites. The quantity, Q(x, t), evaluates the local extracellular level of
VEGF (see Eq. (2.39)) sensed by the moving cell membrane site, and is given
by:

Q(x, t) =
∑

x′∈Ω′
x

c(x′, t) ,

where x ∈ {xsource,xtarget} and x′ is a medium first-nearest neighbour of x.
The local chemical response of cell η is measured by µchη , which is set to null at
cell-cell interfaces to describe a contact-inhibited chemotaxis.

Finally, Hpersistence explicitly models the persistent motion characteristic of
vascular cells:

Hpersistence =
∑
η

µpersη |vη(t)− vη(t−∆t)|2, (2.36)

where vη is the instantaneous velocity of the center of mass of cell η, and ∆t = 1
MCS. The coefficient µpersη controls the cell persistence time and is given by:

µpersη = µpers,0

(
lη
L0
− 1

)
, (2.37)

where lη(t) is the current measure of the long axis of cell η (measured as in
[172]), and L0 is the initial cell diameter. Relation (2.37) describes the fact
that, after analogous chemical stimulations, elongated vascular cells have been
observed to have a longer persistent movement than round cells [125].

In [237], a more realistic interface between the microscopic intracellular level
and the mesoscopic phenomenological cell scale is achieved by the use of a nested
modelling philosophy, where the biophysical properties of the ECs vary as a
function of their molecular state, and in particular of their internal calcium
level, Ca. Specifically,

JextC,C = J0 exp
(
−jC̃a(x, t)C̃a(x′, t)

)
,

µchη = µch0 C̃a(x, t) ,

λperη,C = λper0 e−kC̃aη(t) ,

(2.38)

where

C̃a(x, t) =
1

Ca0
Ca(x, t)− 1 , and C̃aη(t) =

1

aη(t)Ca0

∑
x∈η

Ca(x, t)− 1 .

These relations mimic the biological fact that the local concentration of cal-
cium ions enhances the avidity of both the local cadherins (either with quanti-
tative changes in their expression or with the activation of the already exposed
molecules) and of VEGF surface receptors (whose activity mediates the cell
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Figure 5: Temporal evolution of the network structure obtained using the cel-
lular Potts model for TEC vasculogenesis (t = 0, 4, 8, 12h. Scale bar=50 µm).

chemotactic force). Moreover, the overall intracellular level of the ion promotes
continuous and dramatic actin-myosin interactions, resulting in increments in
cell elasticity, i.e. in quick changes of cell morphology. Also the motility coeffi-
cient T in (2.23) is taken to be an increasing function of the normalized calcium

level in the cell C̃aη(t).
The constitutive laws summarized in (2.38) represent a step forward with

respect to the classical CPMs presented so far. In fact,

• Each vascular cell-type features distinct biophysical properties, which are
inherited from its internal molecular state;

• The adhesiveness and the chemotactic strength are no longer homoge-
neous over the entire cell membrane, but vary locally, revealing the role
of microscopic inhomogeneities;

• Cell mesoscopic characteristics are no longer constant over time, but con-
stantly adapt during the process, as a consequence of continuous internal
and external stimuli.

The agonist-induced intracellular pathways are modelled by a system of RD
equations, based on the following set of assumptions:

1. VEGF is autocrinally released by TECs, and diffuses and degrades through-
out the extracellular environment;
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2. Single molecules of morphogen are sequestered by the cells (via their sur-
face tyrosine kinase receptors), and initiate a sequence of reactions culmi-
nating in the production of arachidonic acid (AA) and nitric oxide (NO)
in the sub plasmamembrane regions [136, 177, 179, 271];

3. NO production is also triggered within the cell cytosol by AA itself;

4. NO and AA open related and independent calcium channels in the cell
plasmamembrane, leading to extracellular calcium entry [87, 88, 177, 179,
271, 289];

5. Calcium ions, which also enhance the intracellular production rate of both
AA and NO [179], are reversibly buffered to proteins such as calmodulin
or to mitochondria [27, 31, 137], and then extruded back from the cell by
plasmamembrane calcium ATPase and Ca2+-Na+ exchangers [110, 124,
278].

Then, the extracellular evolution of VEGF (always denoted by c) is con-
trolled by:

∂c

∂t
= D∇2c− c

τ
−B(c) + S , (2.39)

where S = S(x, t) describes the autocrine secretion of the growth factor from
cells’ membrane at a constant rate. VEGF binding and uptake by tumour-
derived ECs is defined by the function B(c), which is proportional to the local
concentration of the ion and is limited to a maximum rate related to the number
of membrane receptors.

For each cell η, the current local levels of AA and NO (i.e. at site x :
τ(σ(x)) = C,N) are defined, respectively, as a(x, t) and n(x, t), and are con-
trolled by the following RD equations [181, 238, 237]:

∂a

∂t
= Da∇2a− a

τa
+ γaR(B(c)) + γ̃aCa , (2.40)

∂n

∂t
= Dn∇2n− n

τn
+ γnR(B(c)) + γ̃n

Ca

sn + Ca

a

sa + a
. (2.41)

The third terms in Eqs. (2.40) and (2.41) describe the production rates of
AA and NO at the cells’ membrane, which are proportional to the quantity of
sequestrated VEGF molecules (i.e. B is defined as in (2.39)). The last term
in Eq. (2.40) implements the calcium-dependent feedback mechanism in AA
bio-synthesis, while the analogous term in Eq. (2.41) accounts for the double
regulation of NO production (both AA- and Ca-mediated).

For each cell η, the intracellular concentration of calcium is controlled by
the following RD problem:

∂Ca

∂t
= KbuffDca∇2Ca, in η;

n · ∇Ca = kCa(Ca− Ĉa)+
kaa

qa + a
+

knn

qn + n
, at the boundary of η,

(2.42)
where the scaling factor Kbuff < 1 models the activity of intracellular endoge-
nous buffers, which decreases the intracellular diffusion of calcium.
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Figure 6: Dependence of the CPM model for TEC vasculogenesis on the density
of seeded cells (n = 50, 150, 200, 300, 400, 500. Scale bar=50 µm).

As shown in Figure 5, the resulting model is able to describe a TEC tubulo-
genic assay, with a number of parameters which are under control and biologi-
cally significant. Indeed, it indicates a close dependence of the topology of the
structure on cell density, similar to that observed in [103, 172] for normal ECs
(see Figure 6).

The effect of activation/inactivation of calcium dynamics is depicted in Fig-
ure 7. In particular, calcium-related networks are up-regulated during the mi-
gration phase and switch off upon reaching confluence, leading to a decrease in
motility.

The connection of the cell-based models with the sub-cellular chemical ma-
chinery allows virtual testing of specific and biologically reasonable anti-angiogenic

Figure 7: Temporal evolution of calcium within ECs involved in tubule forma-
tion.
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Figure 8: Potential anti-angiogenic therapies. Each line represents a possible
strategy to inhibit VEGF-induced tubulogenesis. The related modified param-
eters are displayed in the second column. The third column gives an idea of
the efficiency of the proposed solutions: +++ means a reduction in total tubule
length with respect to the physiological value larger than 66%, ++ in the range
50% – 66%, and + in the range 33% – 50%. The last column reports the relative
average values (mean over 10 simulations, error bars show standard deviation).

strategies, which produce an abnormal capillary-like bed. As reviewed in Fig-
ure 8, the proposed model confirms the efficiency of current therapies, which
focus on the abrogation of VEGF activity or on interference with the calcium
machinery, and can suggest novel and interesting cancer therapies, e.g. blocking
the mechanisms of cytoskeletal remodelling and inter-cellular adhesion, or in-
hibiting the chemotactic and persistent component of cell motion. Indeed, all of
the proposed solutions emerge from biologically reasonable variations in model
parameters or assumptions.

The basic assumption introduced by Szabo et al. [262] is that the ECs behave
actively and prefer to adhere to other elongated ECs, rather than remaining in
the middle of the aggregate. Such a preferential adhesion mechanism is sufficient
for the formation, and the subsequent stabilization of branches. Indeed, this
mechanism would also explain the formation of multicellular long segments in
cultures growing in standard conditions on solid substrates, which are therefore
not subjected to chemical or mechanical stimuli.

The Hamiltonian used in this work accounts only for the standard terms
describing the cell morphological changes (see Eq. (4.4)) and the intercellular
adhesion (see Eq. (4.3)). In particular, there is only a constraint on cell area
(this implies that cells are allowed to significantly remodel), the cell-medium
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contact strength is normalised to 1, while the cell-cell adhesiveness is a variable
parameter.

The proposed preferential attraction to elongated cells is formulated by
adding a new inherently asymmetric term in the Boltzmann transition func-
tion (4.1). In more detail, the authors first define a measure of the anisotropy
of each cell σ, with

θσ =

(
aσ
bσ

)1/2

− 1 , (2.43)

where aσ ≥ bσ are the two eigenvalues of its inertia tensor. Then, they represent
the tendency of the cell to be adjacent to polarized individuals as:

W (σ(xsource)→ σ(xtarget))

= λasym
[
δτ(σ(xsource)),C − δτ(σ(xtarget)),C

]∑
θσ(x), (2.44)

where δ = 1 if σ is a cell (i.e. τ(σ(x)) = C) and 0 elsewhere, thus ensuring
that only cells (and not the medium) exhibit this preference. The summation is
taken over only those neighbour sites of xtarget that belong to cells other than
σ(xsource) and σ(xtarget). Eq. (2.44) also implies that the strength of attraction
depends only on the contact target.

The resulting probability function provided by the authors in the same work
is given by:

P (σ(xsource)→ σ(xtarget)) = min
{

1, e−∆H+W
}
. (2.45)

Here the Boltzmann temperature T is set equal to 1, and the term W can be
interpreted as the asymmetric extension of the standard adhesion term (4.3). It
is useful to notice that (2.45) is an asymmetric transitional probability and that
it can no longer satisfy a balance condition, so that the dynamics of the system
can not be interpreted as the relaxation of an energy functional to a thermal
equilibrium.

In the simulations, after an initial bud appears, the constituting elongated
cells attract other individuals (that isotropic cell-cell adhesion alone would keep
within the aggregate) so that the segment continues to extend. This influx of
additional cells helps to stabilize the extending sprout. The sprouts, which are
able to connect pairs of islands, are structured further, whereas the others de-
generate, as the overall system reaches a stationary state where surface-tension-
driven coarsening is balanced by the formation of new sprouts. In contrast with
[103, 244], the characteristic dimensions of the final pattern depend on the cell
density. Specific sets of simulations show that a connected network of sprouts
occurs only for λasym greater than the isotropic intercellular adhesive strength.
Moreover, for a fixed value of λasym, increments in the cell-cell adhesiveness
result in coarser structures. This CPM differs from those in [170, 172, 174]
by the fact that the polarization of ECs is not imposed by a specific rule in
the Hamiltonian, but arises from the asymmetric correction of the Boltzmann
probability.

The basic assumption that the emergence of vascular sprouts is driven by
cell preferential attraction to stretched elongated individuals is developed by
the same authors in a different type of model [261]. Here, the motility of cells is
described as a persistent diffusion process, where the velocity of each individual
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k, represented as a point particle, satisfies a Langevin equation:

dvk
dt

= −vk
τ

+
√
Dξk + Mk, (2.46)

where τ is the persistent time of motion, D a diffusion parameter which depends
on cell type, and ξk an uncorrelated white noise. The term Mk is a deterministic
bias which represents the interaction of cell k with the local environment, i.e.,

Mk =
∑
j

xj − xk
|xj − xk|

[f1(|xj − xk|) + wjf2(|xj − xk|)] , (2.47)

where the summation is taken over the Voronoi neighbours of xk. The function
f1 is an intercellular repulsion, which ensures cell impenetrability, and f2 is an
intercellular attraction. The cell preferential adhesion to anisotropic structures
(which, in the absence of an explicit representation of cell shape, are inferred
from the overall particle configuration) is implemented by a specific construction
of the weights wj :

wk =
1

nk

∑
j:|xj−xk|<R

|exp(2iϕjk)| , (2.48)

where the sum is taken over all the nk cells within a circle of radius R around
k, and ϕjk represents the angle between the vector (xj − xk) and a reference
direction. Indeed, w = 0 for particles in an isotropic environment and w = 1
for particles in a highly elongated, linear configuration.

The resulting simulations show that, at sufficiently high density of random-
sited cells, a network pattern emerges both by sprouting of new branches and
by coarsening of adjacent cords. Moreover, the authors conclude that the char-
acteristic pattern size is almost independent of the initial cell density, which
instead determines the connectivity of the mesh, with a percolative transition
as in [103, 237].

3 Angiogenesis

3.1 Mechanisms of Angiogenesis

Although angiogenesis is a physiological process occurring in many different cir-
cumstances (for instance, in wound healing, ovary and uterus vascularization
during the female cycle, and mammary gland vascularization during lactation),
the majority of the literature on angiogenesis focuses on tumour-induced an-
giogenesis, one of the most dangerous pathological aspects. In fact, one of the
crucial milestones in tumour development is the so-called angiogenic switch,
when the tumour gains the ability to trigger the formation of its own vascular
network by the secretion of angiogenic factors.

As expected angiogenesis has many similarities with vasculogenesis, although
its origin is very different. In the case of angiogenesis, the new vessels sprout
from existing capillaries and post-capillary venules. Angiogenesis is regulated by
precise genetic programmes and is strongly influenced by many chemical factors
(generally called tumour angiogenic factors (TAF)) and the subsequent activa-
tion of even more related pathways. Some of the proteins involved are vascular
endothelial growth factor (VEGF), transforming growth factor β (TGF-β), basic
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fibroblast growth factor (bFGF), hypoxic growth factor (HIF), platelet-derived
growth factor (PDGF), metallo-proteinases (MMPs), and angiopoietins (Ang-1
and Ang-2). In addition, several cell populations (such as macrophages, peri-
cytes, and smooth muscle cells) influence the process through e.g. inflammation
and vessel maturation. All of these contributing features render the process
very complex, and the interested reader can find more information for instance
in references [16, 47, 56, 57, 163, 203, 227]. In particular, an in-depth and very
useful phenomenological description having in mind the following modelling step
is given in [16, 163]. Although the reader can refer to these reviews for more
details, we summarize the main stages of angiogenesis below.

The first stage of angiogenesis is characterized by changes in the shape of
the ECs covering the walls of the blood vessel, by the loosening of the adhesive
connection between cells, and by the reduction of vascular tonus. This induces
an increase in the permeability of the blood vessel, which in turn results in an
increase in both the availability of nutrients and the interstitial pressure.

The following stage consists of the production of proteolytic enzymes (serine-
proteins, iron-proteins) which degrade the basal lamina and the extracellular
matrix surrounding the capillary, thus facilitating cellular movement. Then the
ECs are able to proliferate and to migrate chemotactically towards the place
where it is necessary to create a new vascular network. In this phase it is possible
to distinguish between tip cells leading the way through the ECM and stalk cells
forming in the rear of the lumen of the new capillary. During growth, capillaries
may undergo branching or they can merge to form loops when two capillaries
encounter each other, a process called anastomosis. From these branches and
loops more sprouts may form. Indeed, the whole process may repeat several
times resulting in a capillary network through which blood may circulate.

The stage of differentiation is characterized by the exit of ECs from the
cellular cycle and by their capacity to survive in sub-optimal conditions and to
build themselves primitive capillary structures, not yet physiologically active.

Finally, in the maturation stage, the newborn vessel is completed by the for-
mation of new perivascular ECM and by the arrival of pericytes and sometimes
of flat muscle cells. During this phase a major role is played by angiopoietins
(Ang-1, Ang-2), which results in the development of the simple endothelial tubes
into a more elaborate vascular tree composed of several cell types. The angiopoi-
etins contribute to the maintenance of vessel integrity through the establishment
of appropriate cell-cell and cell-matrix connections.

After the formation of the vascular network, a reorganization process com-
mences, influenced by the blood flow. This involves the loss of some physio-
logically useless capillaries, the adaptation of the size of the lumen, and the
remodelling of the extracellular matrix.

Angiogenesis can also be simulated in vitro [17, 94], where clusters of ECs,
cultivated in an extracellular matrix gel, are able to migrate, to proliferate and
to build structures similar to capillaries.

For sake of completeness, we mention a further process leading to vessel for-
mation called atherogenesis, which is triggered by the occlusion of an artery.
In order to avoid the possible formation of ischemic tissues, the pre-existing
arteriolar connections enlarge to become true collateral arteries. By bypassing
the site of occlusion, they have the ability to markedly grow and increase their
lumen, thus providing enhanced perfusion to regions near the occlusion. The
formation of these collateral arteries is not simply a process of passive dilata-
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tion, but of active proliferation and remodelling. However, no mathematical
modelling has been devoted to this process.

3.2 Continuum Models of Angiogenesis

The article by Deakin [75] represents the first attempt to model angiogenesis as
a result of the migratory response of ECs to angiogenic factors leading to the
formation of capillary loops. Approximately a decade later, several continuum
models followed. Generally speaking these models consist of a set of advection-
reaction-diffusion equations for the cell densities, ρi, and the concentrations of
chemicals, cj , in the form:

∂ρi
∂t

+∇ · (ρivi) = ∇ · (Ki∇ρi) + Γi −∆i , i = 1, . . . , N , (3.1)

∂cj
∂t

+∇ · (cjwj) = ∇ · (Dj∇cj) + Pj − Lj , j = 1, . . . ,M . (3.2)

Here the advection velocities vi and wj , the growth terms Γi, the death terms
∆i, the production terms Pj , and the decay terms Lj in general depend on all
the cell densities and concentrations of chemical factors. In many cases, the
advection velocities are directed towards the source of the angiogenic stimulus
or towards hypoxic regions via a chemotactic term, or towards regions with a
higher concentration of ECM or matrix-bound proteins, via a haptotactic term,
i.e. :

vi =

M∑
i=1

χi(ci)∇ci .

One family of articles on modelling angiogenesis is based on the idea origi-
nally proposed by Balding and McElwain [22], who distinguished between the
density of tip cells, ρt, and of stalk cells, ρs (also named capillary sprouts).
The former are sensitive to VEGF, while the latter follow by duplication. This
mechanism is modelled in one-dimension by postulating the presence of a so-
called snail-trail term in the equations, so that if the tip cells are subject to an
advective flux

Jsnail = −Kc
∂ρt
∂x

+ ρtχ(c)
∂c

∂x
,

then there is a growth term in the equation for the density of stalk cells given
by −Jsnail. The model then writes as:

∂ρt
∂t

= −∂Jsnail
∂x

+ γcscρs − δtsρtρs , (3.3)

∂ρs
∂t

= −Jsnail − δsρs , (3.4)

and they are then coupled to an RD equation for the tumour angiogenic factor.
We remark that ρt and ρs do not have the same units.

We also observe that only tip cells are allowed to proliferate in these equa-
tions; this corresponds to the experimental observation that EC proliferation
occurs mainly near the tip of the vasculature and is rather infrequent in the
main body of the growing vasculature. The death term describes the anasto-
mosis of tip cells when they encounter other stalk cells.
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The general three-dimensional model of this type that can be found in the
literature can be summarized as:

∂ρt
∂t

+∇ · Jsnail = Γbranch −∆anast , (3.5)

∂ρs
∂t

= Ks∇2ρs + |Jsnail|+ Γs − δsρs , (3.6)

where
Jsnail = −Kc∇ρt + ρtχ(c)∇c , (3.7)

and
Γbranch = γcscρs + γctcρt ,

∆anast = δtsρtρs + δttρ
2
t ,

Γs = γs

(
1− ρs

ρs0

)
ρs .

The terms in ∆anast describe respectively tip-to-stalk and tip-to-tip anastomo-
sis. In specific cases, some of the terms can be neglected. For instance, in
[50, 102, 207, 208], γct = δs = 0, which corresponds to the assumptions that
tip cells are generated only by the duplication of stalk cells and that there is no
death of stalk cells. We must also mention that the model parameters need to
be carefully calibrated, and that in three-dimensional situations there is some
ambiguity in properly defining the snail-trail term in (3.5) and (3.6).

3.2.1 Wound-Healing Angiogenesis

Although the original model by Balding and McElwain [22] was developed to
investigate corneal angiogenesis, the same concept was used ten years later to
model wound-healing-induced angiogenesis (see, for instance, [48, 49, 50, 102,
207, 208]). In this section, we focus on the main modifications introduced by
different authors and on some models that have been recently used as a basis
for more complex models.

In [207], the diffusion coefficient of stalk cells, Ks, is assumed to depend
linearly on the concentration of tip cells. This choice has been probably done
in order to describe a higher random motility near the tip of the vessels. In
addition, the growth term in the equation for the stalk cells has been omitted.
The authors perform a boundary layer analysis and investigate a travelling wave
solution.

The model in [208] is more complex, as it consists of six equations for the
densities of tip cells, stalk cells, fibroblasts, and extracellular matrix, and for the
concentrations of oxygen and an angiogenic factor. In addition, the snail-trail
term in (3.5, 3.6) is modified to become:

Jsnail = −Kcmρ
n
t∇ρt + χ(c)mρt∇c , (3.8)

so that the motility coefficient increases with the amount m of ECM. On choos-
ing n > 0, the equation for the tip cells becomes a degenerate parabolic equation,
which gives rise to solutions with compact support (if the initial condition has
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compact support). The governing equations for the densitities of fibroblasts, f ,
and ECM, m, include a similar snail-trail term:

∂f

∂t
+∇ · Jf = γf

(
1− f

f0

)
f , (3.9)

∂m

∂t
= Km∇ · (f∇ρs) + |Jf |+ γm

(
1− m

m0

)
f , (3.10)

where Jf is given by:

Jf = −Kff
n∇f + fmχf (c)∇c .

We remark that the growth term for the fibroblast density is a logistic term,
whilst the growth term for the ECM density models production by the fibrob-
lasts up to a saturation value.

Working in spherical coordinates, the authors in [50] modify the model in
[207] both by omitting the diffusion and the growth term in (3.6) and by intro-
ducing a snail-trail velocity rather than a flux:

vsnail = −Kc∇ρt + χ(c)∇c . (3.11)

The term in (3.11) is substituted into the mass balance equation and gives rise
again to a degenerate parabolic equation. The relation between vsnail and Jsnail
in (3.5) is simply given by Jsnail = ρtvsnail.

Based on the work of [207], Flegg et al. [90] recently proposed a model of
hyperbaric oxygen therapies to assist the healing of chronic wounds, and in
particular diabetic foot ulcers (see also [270] for a review of the biology of the
problem). Their one-dimensional model describes the evolution of the densities
of both tip and stalk cells and the concentration of oxygen co, and defines the
snail-trail velocity as:

vsnail = −χ∂co
∂x

,

so that cells tend to move towards hypoxic regions. The model is written as:

∂ρt
∂t

+
∂ρtvsnail

∂x
= γtcρsH(co − cL)H(cH − co)− δtρt , (3.12)

∂ρs
∂t

= ρtvsnail + γsρs

(
1− ρs

ρs0

)
, (3.13)

∂co
∂t

=
∂2co
∂x2

+ πsρs(1 + δON (t))− dcscoρs
ρs0

− dcco . (3.14)

On the right-hand side of (3.12), the first term describes the proliferation
of tip cells only for co ∈ [cL, cH ], while the last term describes their natural
death (anastomosis is more realistically accounted for in a following paper [91]).
On the right-hand side of (3.14), the second term describes the increase in the
oxygen supply with the vessel density, the third term the oxygen uptake by the
vessels themselves, and the last the natural decay of oxygen, which can also be
due to oxygen consumption by the cells in the environment. The term δON (t)
(which is equal to 0 or 1 depending on whether the therapy is off or on) accounts
for the fact that the level of oxygen in the wound substantially increases during
hyperbaric oxygen therapies.
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In [91], the model was then extended in the spirit of [208] to include the
effect of angiogenic factors, fibroblasts, and ECM.

Both models supported the importance of intermittency in healing chronic
wounds, while therapies using normobaric oxygen were ineffective. They also
indicated that patients with a poor arterial supply of oxygen, or with a high
consumption of oxygen by the wound tissue, may not respond adequately to
hyperbaric oxygen therapies.

The work by Gaffney et al. [102] modifies the snail-trail concept by assuming
that tip and stalk cells move with proportional flux terms. Specifically, they
took:

Jsnail = −Kt
∂ρt
∂x
−Ksρt

∂ρs
∂x

, (3.15)

and postulated the following minimal model:

∂ρt
∂t

= −∂Jsnail
∂x

+ γtρt − δtsρtρs − δttρ2
t , (3.16)

∂ρs
∂t

= −k∂Jsnail
∂x

+ γsρtρs

(
1− ρs

ρ0

)
+ γ′sρs

(
1− ρs

ρ′0

)
+ β(δtsρtρs + δttρ

2
t ) , (3.17)

where there is no chemical factor triggering angiogenesis. The last two terms
in both equations describe the transformation of tip cells into stalk cells due to
anastomosis as a result of the encounter of a tip cell with a capillary or another
tip cell respectively. In addition, in (3.16), the first reaction term describes vessel
branching, whereas in (3.17), it is a logistic growth term, which also considers
the effect of the presence of tip cells.

Following the same idea, but with the proportionality constant also propor-
tional to ρs, Schugart et al. [235] develop a much more complex model with
seven equations describing the evolution of capillary tips, stalk cells, fibrob-
lasts, inflammatory cells (e.g. macrophages and neutrophils), ECM, oxygen,
and angiogenic factor. The model is characterized by two snail-trail-like cou-
pling terms, one involving tip and stalk cells (notice the sign difference in the
chemotactic term):

Jtsnail = −Kt∇ρt + χc
m

m0
ρtH(ρt0 − ρt)∇c ,

and the other involving fibroblasts and ECM:

Jfsnail = −Kf∇f + χffH(f0 − f)∇c .

Another difference with respect to (3.16) is the fact that the snail-trail term
is introduced into the equations for the capillary sprouts and for the ECM as
an advection term based on the observation that mass balance (and not the
material derivative as written in [235]) implies that equations have the form of
(2.4). Finally, inflammatory cells move chemotactically towards hypoxic regions
and standard RD equations hold for the chemical factors.
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Hence the governing equations can be written as:

∂ρt
∂t

= −∇ · Jtsnail + (γcscρs + γctcρt)H(ρt0 − ρt)− (δstρs + δttρt)ρt ,

∂ρs
∂t

= Ks∇2ρs −∇ · (ksρsJtsnail) + γsGb(co)ρs

(
1− ρs

ρs0

)
,

∂f

∂t
= −∇ · Jfsnail + γfGf (co)f

(
1− f

f0

)
,

∂m

∂t
= Km∇2m−∇ · (kmmJfsnail) + γmm

(
1− m

m0

)
,

∂ρi
∂t

= Ki∇2ρi +∇ · [χiρiH(ρi0 − ρi)∇co]− δiρi ,

∂c

∂t
= Dc∇2c+ γcGc(co)ρi − (δctρt + δcsρs + δc)c ,

∂co
∂t

= Do∇2co + γoGo(co)ρs − (δoff + δoiρi)co ,

(3.18)
The contribution due to macrophage-derived growth factors (MDGF) is con-

sidered by Maggelakis [155, 156], who proposed a model where the capillary
density grows according to an ODE with a logistic term and a growth coeffi-
cient proportional to the concentration of MDGF. Of course, due to the absence
of any advection or diffusion term, such a model requires that capillary cells are
present everywhere in the wound.

By suitably merging the models by Maggelakis [155, 156] (for the coupling
with MDGF), by Gaffney et al. [102] (for angiogenesis), and by Holmes and
Sleeman [123] (for the coupling of angiogenesis and ECM contraction due to
the action of ECs), Javierre and coworkers present models in a series of recent
papers [281, 282, 283], which attempt to couple wound-healing angiogenesis with
re-epithelialization, whilst also taking into account visco-elastic effects related
to wound contraction. As in [123], the mechanochemical model is based on the
work by Murray and coworkers [185, 186, 187], which is the same basis for their
vasculogenesis models discussed in Section 2.2 and in more detail in references
[11, 163]. The densities of ECM, fibroblasts, epithelial cells and capillaries,
and the concentrations of oxygen, VEGF, and epithelial growth factor (EGF),
are described through advection-reaction-diffusion equations similar to those in
(3.2) with the feature that all the advective velocities are equal to that of the
ECM. This simplifying assumption, known as the constrained mixture hypothesis
in mixture theory, has the questionable implication that all chemical factors are
transported by the ECM, as though they were bound to the ECM. However,
the presence of diffusion terms does allow molecules to move randomly relative
to the ECM.

A similar approach is used by Valero et al. [279], who deduce a model for
the concentrations of oxygen and MDGF, and the densities of fibroblasts and
capillaries. It is assumed that the density of the ECM is proportional to the
density of capillaries, which determines the deformation of the ECM through an
Ogden constitutive equation. Also in this case a constrained mixture hypothesis
is enforced, but it is not completely clear how the deformation is computed.

Xue et al. [300] also developed a mechanochemical model coupled with an-
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giogenesis to describe wound healing. Working in radial symmetry, they treat
the ECM as a compressible viscoelastic fluid, but then they use the constitutive
equation for an incompressible Maxwell fluid. The rest of the model is similar
to [235] (see Eq. (3.18)), except for minor terms and except for the fact that
the chemotactic behaviour of fibroblasts is triggered by the action of growth
factors like PDGF-A and TGF-β, rather than by VEGF directly. These factors
are produced by macrophages that evolve according to an equation similar to
that for the fibroblasts.

3.2.2 Tumour-Induced Angiogenesis

Snail-trail models very similar to (3.5) and (3.6) were also proposed by Byrne
and Chaplain [48, 49] for the scenario in which the formation of the vascular
network is stimulated by the production of VEGF by a tumour. On the other
hand, Chaplain and coworkers (see, for instance, [61, 63, 196]) have also pro-
posed several models based on RD equations for ECs, fibronectin, and TAF,
characterized by the presence of chemotaxis and haptotaxis terms, so that in
(3.1)

vc = χc(c)∇c+ χf∇f ,

where f is the density of fibronectin.
In the same framework as described in detail in [163], much more detailed

models were developed by Levine, Sleeman and coworkers [145, 146, 147, 148],
which take into account many more cell populations, chemical factors, and their
related receptors and receptor complexes. For instance, macrophages, pericytes,
and anti-angiogenic agents were added into the model in [146]. In the latest de-
velopment of this series of articles, Plank et al. [212] develop a reinforced random
walk model to study the action of angiopoietins (Ang-1 and Ang-2) on angiogen-
esis. Capillaries are distinguished as mature or immature. The stabilising and
destabilising effects of Ang-1 and Ang-2, respectively, are taken into account
through their influence on the motility coefficient. Ang-1 (ca1

) stabilises vessels
by decreasing the motility coefficient, whereas Ang-2 (ca2) destabilises vessels
by increasing the motility coefficient, which allows the ECs to move more freely,
and to respond chemotactically and possibly haptotactically. This concept is
quantified by defining the diffusion coefficient as:

Kc(ca1
, ca2

) = k
(1 + α2ca2

)n2

(1 + α1ca1)n1
.

Angiopoietin also influences the chemotactic coefficients and the proliferation
of immature ECs, that activates only if the ratio of ca2

/ca1
is above a threshold

value. Among other things, the model supported the conjecture that Ang-2 is
a critical regulator of angiogenic activity. The absence of Ang-2 allows Ang-
1 to maintain vessels in the quiescent state, while expression of Ang-2 allows
either angiogenic outgrowth, or vessel regression, depending on the presence or
absence of VEGF.

As a final example of a continuum model aimed at describing tumour-induced
angiogenesis, we recall reference [123], in which the growth of capillaries is cou-
pled to ECM contraction, as already mentioned in the previous section.

Generally speaking, however, all of the continuum models described in the
previous section and above do not allow the morphology of the capillary net-
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works to be captured, which is very much at variance with the vasculogenesis
models discussed in Section 2.2.

An exception is the model by Travasso et al. [275] that describes the forma-
tion of capillaries through an order parameter φ. The capillaries are identified
by the regions where φ > 0, i.e. ρs = φ+. The model can then be written as
follows:

∂φ

∂t
= K

[
∇2(φ3 − φ)− ε∇4φ

]
+ γsmin{c, cmax}φ+ , (3.19)

∂c

∂t
= ∇ · (D∇c)− δcφ+c+ γc(ω) , (3.20)

where ε is related to the width of the capillary wall, δc is the uptake coefficient
of TAF from ECs, and a source of TAF, γc(ω), from hypoxic cells is randomly
placed at a certain distance from the pre-existing vessel, until oxygen is prop-
erly delivered to them by the newly formed capillary vessels. The term in the
Laplacian in (3.19) destabilizes solutions with small densities, giving rise to a
backward heat equation term, that is however stabilized by the bi-Laplacian.
This results in an aggregation-like mechanism, well-known in phase-field theory,
and sometimes denoted as spinoidal decomposition, that can be found in other
tumour growth models (see, for instance, [64, 297]).

The differentiation of stalk cells into tip cells occurs only at large values of
both TAF and φ. The tip cells will chemotactically move (only if the chemical
gradient is above a threshold Gmin) according to:

v = χmin{|∇c|, Gmax}H(|∇c| −Gmin)
∇c
|∇c|

, (3.21)

where χ is their chemotactic response and Gmax is a saturation coefficient.
A cell-cell contact-dependent mechanism (for instance through the Notch

pathway) prevents the activation of two neighbouring cells. This rule is imple-
mented by allowing the activation only of those cells whose centre is at a given
distance from the centres of already existing tip individuals. Indeed, when one
of the activation conditions is no longer satisfied, a differentiated EC returns to
the stalk cell state.

Finally, to merge tip cell and capillary dynamics, the order parameter inside
the tip cell, denoted by φc, is defined by the following ratio:

φc =
γsmin{c, cmax}πRc

2|v|
, (3.22)

which is determined by the excess cell density by proliferation that occurs as the
tip cell moves chemotactically in the tissue per unit time (γsmin{c, cmax}πR2

c)
divided by the area that the cell sweeps per unit time (2Rc|v|φc). Here Rc is
the estimated radius of an EC.

The final result is a branching structure, similar to a vascular tree, directed
towards the chemotactic source. Anastomosis is also present. Focussing on
the dependence of the vessel tree structure on the underlying parameters, it is
observed that:

• For low values of the chemotactic response χ, the vessels are thick and
not so ramified. The reason for this is that, the slower the tip cells move,
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the more time the stalk cells behind have to proliferate and to consume
angiogenic factors. The subsequently reduced concentration of angiogenic
factors becomes insufficient to induce further branching.

• For low values of the proliferation rate of stalk cells γs, the emerging
vessels are thin and without ramifications, whereas at high proliferation
rates, they are thick and have many branches, which may merge laterally
to form even thicker vessels. Since physiologically the capillaries have a
definite range of radii, these outcomes suggest that the parameters related
to chemotaxis and proliferation must be properly balanced.

• An increase in TAF production from the hypoxic cells, γc, enhances vessel
branching while leaving vessel diameter unchanged. For too low values of
γc, the vessel network cannot even form.

Finally, the authors simulate the role played by the MMPs produced by the
hypoxic cells. By cleaving the ECM, MMPs free heparin-binding angiogenic
factors, thus influencing the structure of the vessel network. At low values of
MMP activity, few vessels develop in the direction of hypoxic regions, while
higher values lead instead to a straighter and thinner vessel phenotype.

3.3 Discrete and Discretized Models in Continuum Fields

3.3.1 Tumour-Induced Angiogenesis

An idea proposed by Anderson and Chaplain [14, 59, 60] represented a break-
through in modelling realistic vascular structures. Their idea consisted essen-
tially of the following. Instead of using reinforced random walk methods to
obtain a continuum model from a discrete one, it is useful to retain the discrete
feature for the capillary sprout tips, following their random path in a cubic lat-
tice towards the tumour, or even to go back to a discrete and stochastic version
of a continuum model to capture the cell-scale structures (see also [16] for a
review). In order to distinguish this type of model from cell-based models that
also possess hybrid characteristics, following the spirit of the titles of the articles
[14, 73, 169] this type of hybrid models can be denoted as discrete-continuum
models, or as discretized models. In fact, in them, cells are described as discrete
entities moving according to laws obtained by a discretization of suitable con-
tinuum models under the influence of chemical fields and substrata described as
a continuum, which are then possibly discretized.

Focussing on the ECs at the sprout-tips, where there is no proliferation in
the absence of branching, the basic model is written as:

∂ρt
∂t

+∇ ·
[(

χ

1 + sc
∇c+ wf∇f

)
ρt

]
= K∇2ρt , (3.23)

∂c

∂t
= −δcρtc , (3.24)

∂f

∂t
= γρt − δfρtf , (3.25)

where δc is the uptake coefficient from tip cells, δf is the degradation of fi-
bronectin by tip cells, and γ is the production rate of fibronectin by the cells.
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Therefore, the TAF secreted by the tumour diffuses into the surrounding
tissue and sets up the initial concentration gradient between the tumour and
any pre-existing vasculature, which is responsible for the directionality in the
formation of the new capillaries. Then, ECs uptake TAF, while its diffusion is
neglected.

In [14], this continuum model is simulated, but, as mentioned above, the
main idea consists of using the resulting coefficients of the five-point stencil
of the standard central finite-difference scheme to generate the probabilities of
movement of an individual cell in response to the chemoattractant gradients
superimposed to an isotropic random walk.

Working in two-dimensions, if P0 depends on both the probability of the cell
of being stationary and on the probability of cells of moving from the node {i, j}
to one of its neighbours, P1 is related to the probability of new cells coming from
the node to the right, and similarly for the others, one can write:

ρi+1
j,k = P0ρ

i
j,k + P1ρ

i
j+1,k + P2ρ

i
j−1,k + P3ρ

i
j,k+1 + P4ρ

i
j,k−1 , (3.26)

ci+1
j,k =

(
1−∆tδcρ

i
j,k

)
cij,k , (3.27)

f i+1
j,k =

(
1−∆tδfρ

i
j,k

)
f ij,k + ∆tγρij,k , (3.28)

where, for sake of brevity, we have re-written ρc as ρ and, for instance,

P0 = 1− 4∆tK

∆x2

+
∆t

4∆x2

sχ

(1 + scij,k)2

[
(cij+1,k − cij−1,k)2 + (cij,k+1 + cij,k−1)2

]
− ∆t

∆x2

[
χ

1 + scij,k

(
cij+1,k + cij−1,k + cij,k+1 + cij,k−1 − 4cij,k

)
+wf

(
f ij+1,k + f ij−1,k + f ij,k+1 + f ij,k−1 − 4f ij,k

) ]
,

P1 =
∆tK

∆x2
− ∆t

4∆x2

[
χ

1 + scij,k
(cij+1,k − cij−1,k) + wf (f ij+1,k − f ij−1,k)

]
.

In particular, if there is no chemical gradient, the situation is isotropic and
the probabilities P1, . . . , P4 of moving in any direction are equal. Even in this
case, the extraction of a random number will decide whether the tip cell will
stay still or will move to a particular neighbouring node rather than another.
On the other hand, in presence of a chemical gradient the random walk becomes
biased, because the cell has a higher probability of moving up the gradients of
chemical factors.

The main merit of the discretized set-up is that it allows phenomena like
branching and anastomosis, and their dependence on sub-cellular mechanisms,
to be more properly described, which is difficult to do using a model based on
partial differential equations. With regards to branching, the authors assumed
that the density of ECs necessary to allow capillary branching is inversely pro-
portional to the distance from the tumour and proportional to the concentration
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of TAF. However, further ramification can only happen a minimal distance from
the previous branching point, and, of course, there must be enough space in the
discretized grid to allow the formation of a new capillary. This assumption is
consistent with the observation that the distance between successive branches
along the capillaries decreases as the tumour is approached. This phenomenon
is called the brush border effect and is well-described by the model and the
simulation.

Regarding anastomosis, when a capillary tip meets another capillary during
their motion, then they merge to form a loop. If two sprout tips meet, then
only one of the original sprouts continues to grow. In the simulation presented,
particular attention is given to the importance of branching and anastomosis in
order to get a realistic network (see the 3D animation available at the web site
www.maths.dundee.ac.uk/s̃anderso/3d/index.html). Some qualitative proper-
ties of the full continuum model focusing on the distribution of tip cells can be
found in [15, 246], and logistic growth of cells is included in [74].

Different models were developed by Sleeman and coworkers [210, 211, 247]
using a similar approach. In particular, Plank and Sleeman [210] added the
effect of a proteolytic enzyme of the ECM (say, MMPs) and of angiostatin, an
anti-angiogenic factor, which is assumed to act as an MMP-inhibitor. The pro-
tease is produced by ECs stimulated to move by the presence of VEGF. When
the density of fibronectin falls below a certain threshold level, the basement
membrane has been sufficiently degraded to allow ECs to move into the ECM.
They assumed that while VEGF and protease have a chemotactic action, hapto-
taxis has the effect of attracting cells to regions of low fibronectin concentration,
in contrast to the model by Chaplain and Anderson (see Eq.(3.23)).

In [301] Eqs.(3.23–3.25) are modified by introducing a discrete scheme based
on a nine-point stencil of the finite difference scheme, and assuming with little
biological justification a dependence of vessel motility on the distance from the
center of the tumour.

In [211] a circular random walk model is applied to (3.23–3.25) in order
to make cell motion independent of the lattice, and the resulting network is
compared in detail with that obtained using the cubic lattice. Simulations are
also generalized to the model proposed in [210], which mainly focusses on the
effect of angiostatin.

3.3.2 Discrete Models in Continuum Field

Similarly to [211], the core of the models described below consists of tracking
the trajectory of sprout tips moving as a point mass in a continuum substratum
under the influence of a continuum field of chemoattractant. For this reason,
such models can be denoted as discrete-in-continuum models. For instance, in
Sun et al. [256, 257, 258] the capillaries are traced out by the trajectory of the tip
cells, which move subject to both chemotaxis and haptotaxis. The evolution of
fibronectin is again given by (3.25), whilst, using a different approach to equation
(3.24), the chemoattractant is constantly produced outside the capillaries and
is absorbed by them, as well as decaying naturally. Specifically, the motion of
tip cells is described in [257] by:

v = k(c)
u

|u|
, where u = K(χ∇c+ wf∇f) , (3.29)
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where K is a tensor which accounts for the anisotropy of the extracellular matrix.
Branching occurs when sprouts are older than a threshold branching age, under
the assumption that new sprouts must mature before being able to branch. In
addition, sprouting requires a strong deviation in the direction of the velocity.

As usual, anastomosis occurs when a sprout tip meets another sprout tip or
a sprout. After a tip-to-sprout anastomosis, the tip cell forms part of the loop,
and will no longer undergo sprouting. On the other hand, tip-to-tip anastomosis
might either lead to the disappearance of both tips in the case of a head-on-head
encounter, or to the survival of one tip cell only in the case of a shoulder-on-
shoulder encounter. From the simulations, it appears that capillaries tend to
fill the space but to avoid anastomosis, probably because when the capillaries
approach each other the VEGF field pulls capillary tip cells aside, so that they
move along parallel directions.

A similar approach is used by Milde et al. [175], who describe the motion of
capillary sprout tips using the following expression:

dv

dt
+ λv = ηK

(
χ

1 + sc
∇c+ wf∇fb

)
, (3.30)

rather than (3.29), which can be however obtained in the strongly damped limit.
The terms η and K both depend on the density m of the ECM. In particular, η
has a bimodal behaviour (as shown for instance in the experiments in [80, 200],
and by the models in [241, 242]) and is given by:

η(m) = η0(m0 +m)(M −m) with m0 < M .

The tensor K is given by:

K(m) = (1− βm)I + βmD ,

where D is an orientation tensor that can be related to the microscopic direction
of ECM fibres and can be obtained through digital tensor imaging (see [65, 121]).

The last term in (3.30) describes haptotaxis and depends on the density,
fb, of bound fibronectin (which is cleaved by sprout tips that produce MMPs).
A distinction is also made between cleaved, soluble, and bound VEGF. Bound
VEGF is also cleaved by MMPs, and the soluble and cleaved forms (which could
be merged in a single equation) are absorbed by the capillaries. Chemotaxis is
caused by all forms.

Branching occurs where the local curvature of the trajectory of tip cells
exceeds a threshold level. A sample result of the simulations is displayed in
Figure 9.

The three-dimensional model proposed by Das et al. [73] can be divided into
two distinct, but communicating, modules: a stochastic and a deterministic one.
The former is a lattice model based on Markov processes, where at any time
each lattice point can be occupied either by a cell, by ECM, or remain empty.
Cells can be quiescent, proliferating, migrating, or apoptotic, and transitions
between the states are described by transition probabilities. Transitions to a
state of migration or proliferation go through a series of sub-states, the number
of which is determined by the persistence time and the progression through the
cell-cycle. Apoptotic cells leave the grid site empty.

Every grid site occupied by the ECM is associated with a field describing
the concentrations of VEGF and MMPs, and with the stiffness of the ECM.
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Figure 9: Growth of a capillary network according to the model in [175]. The
figure on the right shows only the vascular tree. Figure courtesy of F. Milde
and P. Koumoutsakos.

Intercellular communication occurs only via the field, and the related local and
global concentrations change the cell transition probabilities.

The deterministic component of the model is composed of the advection-
reaction-diffusion equations that govern the evolution of VEGF (in its soluble,
ECM-bound, and receptor-bound forms), MMPs, matrix-binding sites available
for binding to MMPs, and cleaved matrix. In contrast to previous models,
this model also includes transport of both soluble VEGF and MMPs by the
interstitial fluid. However, this contribution is then neglected in the simulations.

The authors also employ a further set of rules for cell evolution, which in-
clude:

1. The direction of cell migration is stochastic and biased towards the lattice
point occupied by the ECM with the highest concentration of chemoat-
tractants and MMP;

2. A cell can only migrate into a lattice position occupied by ECM, but can
divide into either empty space or ECM;

3. Cells are allowed to divide both at the cell monolayer where sprouts stem
from and in the stalks of the capillaries;

4. After division, the daughter cells occupy the ECM lattice position with
the highest concentration of MMP, since it causes local degradation of
ECM;

5. A migrating or dividing cell releases MMPs into all the adjacent elements
with an amount that depends on the state of the cell itself;

6. VEGF is both released and consumed by the cells according to their state.

In all simulations, cells are initially seeded as a monolayer and a VEGF
gradient is established. New sprouts are allowed to be initiated for the first 4
hours only, to mimick the fact that when the first sprouts appear, they inhibit
further sprouting nearby.

In the extreme scenario when almost all of the cells are in a state of migration,
many individuals are seen to protrude far into the ECM. In the opposite scenario
when most of the cells are proliferating, the entire monolayer starts to expand
and forms large clusters. Furthermore, it is observed that sprout formation is
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inhibited when the probability of cells remaining in the quiescent state is higher.
However, several branches develop in all the intermediate cases. It is interesting
that the length of the growing sprouts is positively correlated to a decrease in
the proliferation rate of the ECs and/or to an increment in the probabilities that
they remain quiescent or migrate. In these cases, fewer sprouts are initiated,
but they grow longer. On the contrary, a higher rate of cell mitosis gives rise to
network-like short capillary structures.

Another set of simulations indicates that the formation of a large number of
continuous sprouts requires a balance between migration and quiescence, which
can be interpreted as a balance between effective capillary induction and stabi-
lization. Moreover, the model predicts that the ratio between proliferation and
quiescence should be increased in order to increase the number of continuous
sprouts when compared with isolated migrating cells. Finally, the authors indi-
cate the range of probabilities within which the formation of branched sprouts
occurs, and they demonstrate, in close comparison with experimental assays,
the crucial role played by the VEGF machinery in new vessel formation.

Other developments, targeted at better numerical implementations and vi-
sualization techniques, can be found in references [149, 150, 223, 224, 265, 266,
287], in which very realistic vascular structures are presented. In particular,
[149, 223] focus on angiogenesis in skeletal muscles.

3.3.3 Corneal and Retinal Angiogenesis

The cornea is particularly suited to visualize the processes of formation of vas-
cular networks, since it is transparent and initially avascular. In addition, it is
particularly easy to implant a fragment of a solid tumour or a polymer bead
containing TAF, and to observe vessel sprouting from the nearby limbal vessels.
Indeed, Balding and McElwain [22] mentioned above took inspiration for their
model from experiments performed on the cornea.

Harrington et al. [117] proposed a contiuum-based discrete model of corneal
angiogenesis, which is a development of a previous model by Tong et al. [272].
Their model is characterized by the diffusion and uptake of both a tumour
angiogenic factor and an inhibitor. Proliferation of the ECs forming the cap-
illaries is possible if the concentration of TAF is above a given threshold and
the concentration of inhibitor is below another threshold. The evolution of the
capillaries is described at a discrete level, with rules determining the direction
of vessel growth; this is influenced by the previous capillary direction and by
the concentration gradients of the tumour angiogenic factor and the inhibitory
factor. Sprouting of vessels from the limbal vessel, and branching, also depend
on the concentrations of the growth factors. However, little branching occurs
and vessels tend to merge while progressing toward the source of TAF.

Jackson and Zheng [129] also propose a model for corneal angiogenesis, in
which a system of PDEs governs the evolution of VEGF, Angiopoietin-1 and
-2, and EC mass and maturation. The discrete aspect of the model is that each
individual EC is located in a point of discretized space, and is assigned a time-
dependent cell mass and a maturity level. A sprout is then formed of an array
of discrete points. The shape of the sprout is also influenced by the distribution
and alignment of ECM fibres.

Retinal angiogenesis also received some attention in the early years of an-
giogensis modelling, in particular the RD approach proposed by Maggelakis
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Figure 10: Retinal angiogenesis as described in ref. [169, 290]. On the left
the vessel structure and on the right the dimensions of the vessel radii after
remodelling. Figure courtesy of M. Chaplain.

and Savakis [157, 158]. In general, the models aim to show possible causes of
pathological angiogenesis in the retina that can impair vision and even lead
to blindness in some cases. This pathology, for instance, may affect diabetic
people and premature children, who are prone to be affected by proliferative
retinopathy.

More recently, Aubert et al. [20] focussed on the ab initio development of
the retinal vascular plexus (see references [100, 104] for a review of the process),
and they deduced a continuum model very similar to that proposed by Gaffney
et al. [102] for wound healing, with an additional chemotactic contribution to
the snail-trail term (3.15).

In the same article, a further extension of the model is proposed to account
for the presence of astrocytes and PDGF-A. Astrocytes emerge from the optic
nerve region before the formation of the vascular plexus, and start migrating
across the inner surface of the retina under the chemotactic action of PDGF-A.
The coupling of the dynamics of the astrocytes and of the capillary tip cells
occurs through the assumption that the production of VEGF is proportional to
the density of astrocytes.

As already discussed in Section 3.2.2, the continuum model above is unable to
generate vascular networks. However, a more realistic discretized (or discrete-
continuum) model is presented in [169, 290] (see Figure 10). It employs the
procedure explained in Section 3.3.1 to account for the effect of PDGF-A and
astrocytes, and it includes the following additional features:

• A haptotactic term due to the action of a protein bound to the under-
lying plexus of retinal ganglion cells, which form at an earlier stage of
development;

• The activity of matrix degrading enzymes produced by astrocyte and en-
dothelial tip cells, that reduce the local concentration of two different
matrix-bound proteins secreted by astrocytes themselves.

Using the models describing blood flow through vascular networks and vessel
remodelling that will be discussed in Section 3.5 (see, for instance, [166, 167,
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252, 253]), they also studied the subsequent adaptation of the vascular network
in response to blood flow.

Capasso and coauthors [54, 55] instead use a family of stochastic processes
to describe the cells forming the vessel network. The network of vessels is mod-
elled as the union of the trajectories traced out by tip cells, which evolve accord-
ing to a system of Langevin-like stochastic differential equations. Branching is
modelled by the birth of new tip cells according to a stochastic point process.
Both the stochastic differential equations and the branching process are coupled
with RD equations describing the evolution of the underlying relevant chemical
fields, such as nutrients and tumor angiogenic factors. As the authors clearly
state, their main aim is not to propose a new model, but to investigate the role
of randomness and the relationship between the different qualitative behaviours
obtained by using the fully stochastic model, the deterministic continuum model
(that can obtained though suitable limiting procedures), and the hybrid model
(in which the parameters of the stochastic model are dependent on the deter-
ministic approximation of the underlying fields (parameter homogenization)).
The outcomes can be summarized as:

1. The continuum model cannot capture the vascular structure at all;

2. The hybrid model may lead to realistic vascular structures only if param-
eter homogenization is applied after a sufficiently large time, so that the
laws of large numbers are applicable.

In more detail, three different cell types are considered in [55]: mural cells,
type-2 cells and dead cells. Mural cells are mature cells that supply a protein
which, as we shall see below, affects the motion of tip cells (the authors call this
protein a nutrient). When the concentration of these cells is low, they duplicate
and generate type-2 cells. The mural cells barely move and may die. Type-2
cells are either tip cells or stalk cells in the neighbourhood of tip cells. They
can proliferate and die. In addition to Brownian motion, their movement is
regulated by repulsive chemotaxis with respect to the motility protein produced
by mural cells, and attractive chemotaxis with respect to VEGF. When the
concentration of type-2 cells is high, they convert themselves into mural cells.

3.4 Cell-Based Models of Angiogenesis

The first CPM for tumour-induced angiogenesis was developed by Bauer et
al. [25]. As in other CPMs (see Section 2.3), the basic Hamiltonian is formed
by three terms that regulate, respectively, the shape of all cell types (see Eq.
(4.4)), the mutual adhesive interactions (see Eq. (4.3)), and the chemotactic
movement of the activated ECs (see Eq. (4.5), in this case without contact
inhibition and saturation, i.e. s = 0).

With respect to vasculogenesis models, however, angiogenesis models require
cell duplication, so when the parental EC doubles its volume (which is possible
since the Potts coefficient λarea is set very low) and has gone through a defined
time span (corresponding to the duration of the cell cycle), it undergoes mitosis.
Then the authors differentiate between tip and stalk ECs, and only the latter
are allowed to proliferate.

The tumour-secreted pro-angiogenic factor is assumed to diffuse throughout
the stroma, where it decays and is taken up by ECs. The morphogen satisfies a
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partial differential equation of type (4.17), where B(c) = min{c, cmax} is again
limited by a threshold value and S is the constant amount of chemical supplied
at the boundary of the domain where the tumour is supposed to be localized.
Simulations start with the tumour and a single EC on opposite sides of the
domain. The space in-between represents the stroma and is composed of ECM
fibers, (almost fixed) tissue specific cells and generic interstitial fluid, and is
penetrated by the vascular sprouts.

The model is extended in [26] to highlight the effect of ECM topography on
vascular morphogenesis and the mechanisms that control cell shape and orienta-
tion, sprout extension speeds, and sprout morphology. It is found that both the
ECM density and the connectivity and orientation of the fibre network influence
the speed and morphology of sprout extension. The density and heterogeneity
of the ECM fibres also affect capillary branching. The model predicts an op-
timal density for capillary network formation and shows that maximal sprout
extension speeds are achieved within a density range similar to the density of
collagen found in the cornea.

The authors also evaluate the effects of MMPs produced by the tip cell on the
velocity of the sprouts, and demonstrate that degradation promotes sprouting
at high densities, but has an inhibitory effect at lower densities.

A cellular Potts model, with very similar inputs to the one above for the
Hamiltonian and the diffusion equation for VEGF, is at the basis of a parallel-
computational search for novel potential anti-angiogenic strategies for anti-
cancer therapies, as presented in [159]. However, in this case, the Hamiltonian
also accounts for haptotaxis through an energetic contribution analogous to the
classical linear chemotactic term (4.4):

∆Hhaptotaxis = −µhapto(m(xtarget)−m(xsource)) , (3.31)

where m is the local level of matrix proteins. The gradient is created by the fact
that, as they migrate, tip ECs cleave ECM in their surroundings at a constant
rate (as in Anderson and Chaplain’s model [14]). Eventually, when the quantity
of proteins within a fibre drops below a given threshold, the fibre disappears.

As a biologically relevant outcome of the model, the authors evaluate the
level of oxygen in the tissue and, in particular, within the tumour mass. The
oxygen profile is described by an RD equation similar to (4.17), where the term
B now measures the absorption of oxygen by the tumour cells. This absorption
is limited to a maximum rate, which is realistic since the capacity of the cells
to absorb oxygen saturates at a limit value determined by the maximum rate of
reaction on their membranes. The term S accounts for the amount of oxygen
secreted only by the sprouts that form loops, since only such vessels will be
capable of maturing and carrying blood flow.

The resulting simulations display emergent processes such as the growth
and development of single sprouts, and their subsequent anastomosis. Moreover,
parallel-computational implementations, which cover a large range of parameter
values, allow the Pareto-optimal anti-angiogenic strategy to be identified, which
results in a reduction in the amount of oxygen supplied to the tumour mass of
approximately 50%. In particular, possible strategies include:

• The disruption of the machinery of the angiogenic factor;

• The inhibition of the ability of the ECs to degrade ECM components;
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• Inducing an increase in adhesiveness between the ECs themselves and the
stromal cells.

Interestingly, the authors also quantify the cost of each biomedical strategy,
starting with the following assumptions:

1. Currently available treatments have a low cost;

2. Treatments with the potential to become available in the foreseeable future
have a medium cost;

3. Treatments that are forecast to be difficult to develop with current tech-
nologies have a high cost.

In the review article [72], the authors examine the critical features of some
of the CPMs described above. Firstly, they discuss these assumptions made in
the angiogenic models presented in [25, 159]:

1. The stalk cells are only passively dragged by the motile tip individuals;

2. The overall structure is stabilized by intercellular adhesive interactions.

They argue that these assumptions could not account for full multicellular
sprouting. In fact, such a structure, which is stabilized by surface tension only,
would be prone to Plateau-Rayleigh instability, eventually resulting in its break-
up. In order to overcome this issue, the authors suggest that both tip and stalk
cells should be allowed to actively migrate in response to gradients of external
growth factor. The same review also contests that the CPMs, which reproduce
in vitro vessel-sprouting from spheroids of ECs based on the activity of an au-
tocrine chemoattractant (i.e. [171, 173]), require further assumptions to allow
an aggregation of cells to establish a branched structure. Gradients in the con-
centration of chemoattractant induce an instability in the surface of the overall
colony, which results in the initial extension of sprouts. However, it is the fi-
nite compressibility of the cells between such primary branches (i.e. their ability
to resist compression) that provokes the outer individuals to migrate further.
The authors also argue that the proposed autocrine morphogens (i.e. VEGF
isoforms) are unlikely to be the effective regulator of the spouting process, and
are rather simply a contributing factor. According to the authors, the concen-
tration of the autocrine VEGF molecules is too small when compared with the
amount already present in the ECM microenvironment. Finally, they emphasise
that the patterns produced in the standard chemotactic models of vasculogene-
sis arise from a gradual coarsening of short, dispersed EC segments, rather than
from a real sprouting mechanism, i.e. the extension of long EC segments.

In reference [263], the same group extends the model proposed in [262] to
demonstrate that longer multicellular sprouts cannot be fully explained by the
sole presence of a preferential cell-cell adhesion, but require both the differenti-
ation of a single tip cell and an active polarization-dependent motility of stalk
cells. In their previous approach, the motion of cells is mainly governed by
surface-adhesive energies, both isotropic and asymmetric. This results in the
following features:

• The movement of the sprout edge is not sufficiently persistent;

• The bodies of the previously formed sprouts move sideways;
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• The speed of expansion diminishes over time.

The authors employ the same Hamiltonian functional, but with an additional
two terms included in the asymmetric correction of the Boltzmann probability
(2.44). These terms implement the effect of the polarization of a cell, both on
its self-protrusion and on its membrane dynamics. The first term writes:

W2(σ(xsource)→ σ(xtarget)) = λpol
∑
σ

pσ
|pσ|

· (xtarget − xsource), (3.32)

where λpol is the Potts parameter describing the relative importance of the
directional component in cell migration, and pσ is the polarity vector of the
individual σ, which is updated as follows (by considering spontaneous decay
and reinforcement due to displacement):

∆pσ = −pσ
τσ

+ ∆xCMσ . (3.33)

Here τσ is a characteristic memory length of the polarization vector, and ∆xCMσ
is the displacement of the centre of mass of the cell due to the proposed spin
update. The second term dealing with membrane dynamics is based on the
assumption that membrane dynamics in a polarized cell are more pronounced
at the leading edge, and inhibited at the sides and trailing surfaces.

It is useful to note that, in this model, the authors establish a feedback
loop involving the explicit polarization of the ECs and their movement, whereas
in references [237, 238], the elongation of a vascular individual is the result of
the remodelling of their cytosolic region in response to a chemotactic-induced
migration (facilitated by the stiffness of the nucleus), which directly affects their
velocity through the persistence term in (4.14).

In [263], all the model simulations start with a compact aggregation of cells,
in which a leader tip cell is distinguished by a higher value of Tσ. The other
parameter values are the same for both the leader and the stalk individuals.
Specific sets of realizations show that only the full model yields sprouting dy-
namics comparable to experimental observations. The tip cell pulls the initially
passive stalk individuals, and forms a primary branch. The stalk cells then
become elongated and attract further individuals, allowing the growing sprout
to stabilize and to further elongate. The persistence time of the leading cell
determines the shape of the sprout and the speed of elongation. The absence of
a differentiated leader cell results instead in the formation of transient sprouts
consisting of elongated stalk cells, whose shape is completely determined by the
values of the intercellular adhesion parameters. On the contrary, the activity
of tip cells is unable to sustain continuous cell recruitment to the sprout by
isotropic cell-cell adhesion alone.

Another cellular automaton model was proposed by Markus et al. [165], who
focused more on the mechanisms underlying isotropic morphogenesis, including
dichotomous and lateral branching, blind vessel ends, and closed loops due to
anastosmosis, lateral inhibition of an autocatalytic morphogen, as well as a
genetic switch that differentiates tissue into substrate-depleting vessels.

Addison-Smith et al. [3] focus on a different issue related to tumour-induced
angiogenesis, namely the mechanisms of sprout formation. In the previous mod-
els, the initial site of the sprout on the existing capillary was either given a priori
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or determined stochastically. In [3], the authors have developed instead a sim-
ple mathematical model to determine the probable locations of sprouts and the
relative distance between them.

In [30], a hierarchical agent-based model analyzes the role played by the
notch-mediated selection of tip cells in the early stage of angiogenesis, i.e. when
an immature network of sprouts develops from an existing vessel. In particular,
the authors study the feedback loop that links VEGF-A tip cell induction with
delta-like 4 (Dll4)/notch-mediated lateral inhibition. They identify VEGF-A
concentration, VEGF-A gradients and filopodia extension as further critical
parameters in determining the robustness of tip/stalk patterning (also called
salt-and-pepper patterning).

The model domain is a 3D grid, which is initiated with a single hollow,
cylindrical capillary. This parent vessel is comprised of several ECs, described
by a given set of lattice sites. There is one cell per vessel cross section, with no
auto-cellular junction.

The model simulations show that gradients in VEGF affect the selection
rate of EC agents. In a uniform VEGF field, curled filopodia grow in random
directions, whereas in the presence of a linear VEGF gradient, they are long and
well-directed. The overall VEGF concentration is observed to affect the number
of tip cells. A low level of VEGF is not sufficient to induce differentiation of tip
individuals, whereas an intermediate level is able to generate the classic salt-
and-pepper pattern. Higher levels of VEGF eventually result in a synchronous
oscillation, when the ECs are all either tip or stalk at the same time. Normal
patterning can be also obtained when the expression level of Dll4 lies within
a specific range. When Dll4 is under-expressed, i.e. there is little lateral inhi-
bition, this gives rise to an excess number of tip cells, whereas, when Dll4 is
over-expressed, abnormal oscillations occur. Finally, the authors use a phase-
plane analysis to establish the relationship between the three selected system
behaviours, i.e. no response, no tip cell inhibition, and normal salt-and-pepper.

3.5 Vessel Remodelling

The natural evolution of angiogenesis models similar to that proposed in [60] was
to include blood flow in the capillary network, the consequent vessel remodelling
[166, 167, 252, 253], and also the recruitment of pericytes [168] that lead to vessel
maturation. One of the main aims of these developments is to use the outcome
of the vascular network model to study drug perfusion. For instance, it is found
that a rather irregular and highly connected network leads to poor blood flow
to a tumour, and therefore poor drug delivery.

In these models, the capillary network is treated as a series of small straight
tubes in which blood flows according to fully developed Poiseuille flow. The
flow, Q, in each capillary is related to the pressure drop, ∆P , between the ends
of the tube by the classical expression:

Q =
πR4∆P

8µappL
, (3.34)

where R and L are respectively the radius and the length of the capillary branch,
and µapp is the apparent (or effective) blood viscosity. In fact, as is well known,
blood is a complex biphasic mixture of cells and plasma, and certainly possesses
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viscoelastic characteristics. The overall impact of the different constituents on
the mechanical properties of the blood as a whole depends on the width of
the capillary in a very complex manner. Pries and Secomb [216] attempted to
resolve the complexity of this problem by proposing the following experimental
fit for the apparent (or effective) viscosity of blood:

µapp(R,HD) = µplasma [1 + (µ0.45(R)− 1)f(HD)g(R)] g(R) , (3.35)

where HD is the discharge hematocrit (normally HD = 0.45) and

f(HD) =
(1−HD)n − 1

(1− 0.45)n − 1
, (3.36)

g(R) =

(
2R

2R− 1.1

)2

, (3.37)

µ0.45 = 3.2 + 6e−0.17R − 2.44e−0.06(2R)0.0645

, (3.38)

n =
(
0.8 + e−0.15R

)( 1

1 + 10−11(2R)12
− 1

)
+

1

1 + 10−11(2R)12
.(3.39)

Kirchhoff’s law then holds at the capillary junctions to describe the mass dis-
tribution.

The model developed by Pries and Secomb [217, 218, 220, 221] for vessel
adaptation and remodelling is the following:

1

R

dR

dt
= log(τw(Q) + τref )− kplogτe(P ) + kmlog

(
Qref
QHD

+ 1

)
− ks , (3.40)

where the first logarithmic term reflects the effect of wall shear stress evaluated
as:

τw =
4µapp|Q|
πR3

, (3.41)

A small constant τref is included in the argument of the logarithm to avoid sin-
gularities at low shear rates. The second term includes the effect of intravascular
pressure (measured in millimetres of mercury):

τe(P ) = 100− 86exp
{
−5000[log(logP )]5.4

}
. (3.42)

The third term refers to the effect of metabolic hematocrit, and the last to the
natural tendency of capillaries to shrink.

The final remodelled tumor-induced vasculature is used in [166, 167, 253]
(see also [62] for a review) to assess the efficacy of the network to deliver a
continuously infused drug or a bolus. It is found that only a small fraction of
the injected drug reaches the tumour surface because it flows through the highly
conductive dilated backbone, largely by-passing the tumour and recirculating
back to the parent vessel. This results supports the idea that a nomalisation of
the vascular network is necessary to optimise drug delivery as proposed by Jain
and coworkers [109, 130, 131].

Recently, in references [215, 219, 222], Pries and coworkers focused on the
problem caused by functional shunts. For two different vessels connecting the
same two points of a vascular network, the shorter vessel is subject to higher
shear stresses because the pressure differences between the ends of the vessels
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are identical, but its length is shorter (assuming that the diameter of the two
vessels is initially the same). Therefore, the shorter vessel is stimulated to in-
crease its size and flow. The consequence of this mechanism is that longer
pathways are bypassed, since they progressively bring less flow, so that they
might be pruned eventually. From this observation, the authors conclude that
there must be a signalling process that communicates upstream the status of
the downstream vascular network. This might be provided by conducted re-
sponses that travel upstream via gap junctions along the walls of microvessels.
They suggest conexin as a possible candidate, and hypothesize that the lack of
such communication mechanisms might explain observed vascular pathologies
(for instance, in tumour-related angiogenesis), leading to abnormal flows and
increased heterogeneity in the distribution of oxygen.

This hypothesis has been included in a very recent article by Watson et
al. [290], discussed in Section 2.3.3, which, however, deals with retinal angio-
genesis. It would be very interesting to extend its application to tumour-induced
vascular networks, since as already dissed above one of the results deduced in
[166, 167, 253] is that drug infusion is inefficient due to the formation of shunts
which by-pass the tumour.

Finally, for completeness, we mention that the modelling approach presented
above has also been applied to wound healing by Machado et al. [152].

Intussusception is another mechanism of vessel remodelling, and occurs as
a result of internal division of the vessel lumen. Although recognized as an
important mechanism of vessel remodelling, intussusception has received much
less attention than sprouting angiogenesis.

Szczerba and Székely [264, 267] developed a model that couples flow and
vessel remodelling of a pre-existing capillary interstitium. The flow is described
by Stokes flow and the vessel walls are discretized into cell-like elements. Dis-
crete elements are then eliminated from the vessel lumen if the shear stress due
to blood flow is above a given threshold, and added if it is below another thresh-
old. Under these rules, the two capillary walls evolve to form pillars in regions
of low shear stress, and move away in regions of high shear stress. This gives
rise to capillary beds with a small characteristic size (determined by the size of
the network elements), which only look realistic when compared to tissues that
require substantial oxygenation.

In their original version of the model [264], the authors could not avoid arti-
ficial artero-venous anastomosis and the formation of shunts, which is consistent
with the observations in the articles by Pries and Secomb [215, 219, 222]. In
order to overcome this problem, the computational model was extended in [268]
to include molecular signals affecting remodelling, and then further in [267], to
consider the structural maturation of the vessel wall, in addition to control by
stimulating or inhibiting chemical factors.

3.6 Coupling Angiogenesis and Tumour Growth

One of the first attempts (which nowadays can be considered naive) to cou-
ple the dynamics of angiogenesis to tumour growth can be found in [29, 76],
where a free-boundary value problem was proposed to describe the evolution of
angiogenic factors, capillary density, live tumour cells, dead tumour cells and
nutrients. Growth inhibitory factors were also considered, but were not included
in the simulations. The model was able to predict the formation of a necrotic
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Figure 11: Angiogenesis coupled to a tumour growth model as modelled in ref.
[96, 154, 302]. Figure courtesy of J. Lowengrub and P. Macklin.

region in the core of the tumour, a proliferating rim at the tumour surface and a
quiescent region in the middle. It also predicted the angiogenesis process, with
the proliferation of capillaries just outside the tumour surface and the pene-
tration of capillary sprouts into the periphery of the tumour. The action of
anti-angiogenic factors was also considered, which lead to the regression of the
capillary network and eventually to the regression of the tumour size. However,
this one-dimensional simulation could not account for the branching structure of
the capillary network and the heterogeneous tumour growth along the network.
Recently, Hogea and coworkers [122] applied a level-set method to perform a
two-dimensional simulation for different spatial distributions of pre-existing cap-
illaries, with the same morphological problem that also characterizes the other
continuum models for wound healing described in Section 2.2.1.

Still starting from the tumour growth model proposed in [29, 76], a convected
element method is used in Pindera et al. [209] to get more realistic vasculatures.
The method consists of superimposing two domains: a base domain associated
with the solid tumour and the surrounding host tissue, and a vasculature domain
that is discretized by a 1D grid that evolves in a Lagrangian manner prescribed
by the convected element method. The two separate domains communicate with
each another through suitable source and sink terms. Vessel growth is described
by a model based on that proposed by Levine et al. [145, 146]. Blood flow in
the vessel network is also included, which delivers nutrients to the tumour and
the surrounding tissue.

In articles [96, 154, 302], the discretized approach described in Section 2.3
was successfully coupled to a tumour growth model previously developed by
Cristini et al. [70] (see also [69]). This approach has subsequently been applied
to tumour cell invasion [97] and to the vascular growth of gliomas [28]. An
example of the simulation results is shown in Figure 11.

The authors in [153] showed that the module describing tumour growth is
characterized by a gross morphological instability. Depending on the microenvi-
ronmental conditions, this instability can lead to tumour invasion via individual
cells, cell chains, strands, or detached clusters infiltrating into adjacent tissue;
this produces the typical morphological patterns seen in the histopathology of
different cancers. However, this intrinsic feature of the tumour growth model
is strongly modified by the coupling to the vascular network, which continually
remodels.

With regards to the local coupling between tumour and vessel growth, it
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is found (in agreement with clinical observations) that the stress generated by
massive cell duplication may shut down blood vessels. In fact, this is particularly
important when the blood vessels are still immature, a feature which has not yet
been considered in the model. This phenomenon will, of course, dramatically
affect the flow, and will result in the formation of hypoxic regions and the
instigation of the angiogenesis process.

It is also found that degradation of the ECM by tumour cells has a large
effect on the development of the vascular network. For instance, when the
degradation of ECM is strong, the newly formed vessels tend to encapsulate,
rather than penetrate, the tumour. This has the benefit that the vessels are
less effective in delivering nutrients to the tumour. However, from a therapeutic
point of view, it means that it is more difficult for chemotherapeutic drugs to
reach the core of the tumour mass and, in particular, the hypoxic regions that
are difficult to target with radiotherapy.

With the same aim of coupling angiogenesis and tumour growth, Alarcon
and co-workers [4, 5, 6, 7, 8, 41, 51, 199] used a cellular automata model.
The model retains hybrid characteristics, since nutrients and chemical factors,
mainly VEGF, evolve according to RD equations, which are suitably discretized
using a finite difference scheme. Sub-cellular models of the cell cycle govern cell
proliferation and apoptosis through the activation of p53. The underlying vas-
culature permeating the tissue has a hexagonal structure. Initially, the tissue
contains some tumour cells that grow and develop into a vascularized tumour
mass. Vascular network remodelling (without changing the structure of the net-
work due to the sprouting of new vessels) is considered in [7, 51], where the size
of the capillaries is adjusted in time according to the rules proposed by Pries and
Secomb (defined in Eq. (3.40)). Following the ideas in [109, 130, 131], the model
is further developed in [7] to focus on the normalisation of vessel networks, with
a view to the optimisation of drug delivery. In [199], the vessel network evolves
via the sprouting of tip cells (with a probability that increases with the local
VEGF concentration), the formation of new capillary loops due to anastomosis,
and pruning of vessel segments with low wall shear stress.

Perfahl et al. [206] extended the model proposed by Owen et al. [199] to three
spatial dimensions. Each lattice site can be occupied by several cells that move
according to a reinforced random walk. The ensemble of cells is superimposed
onto a vascular network consisting of vessel segments connecting adjacent nodes
on the lattice. They used an experimentally derived vascular network for their
initial conditions, and tried to predict the outcome of the in vivo experiment.
Nutrients and chemical factors perfuse in and out of the network. The vessel
network evolves again via sprouting, anastomosis and pruning. An example of
the simulation results is shown in Figure 12.

Gevertz and Torquato, [105], study angiogenesis and vascular growth of
glioblastoma using a cellular automata model based on a Voronoi tessellation.
Tumour cells are divided into proliferative cells, non-proliferative/hypoxic cells,
and necrotic cells. The tissue is provided with a capillary network with a hetero-
geneous distribution based on an underlying triangular sub-structure (similar to
references [292, 293, 294], which will be discussed below). The network is hetero-
geneous, in the sense that not all sides of the homogeneous triangular mesh are
occupied by vessels. The network then evolves, with new sides of the triangular
mesh being activated according to the production and diffusion of VEGF, Ang-1
and Ang-2, and according to the presence of the related receptors, VEGFr and
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Figure 12: Angiogenesis model coupled to a tumour growth model as simulated
in ref. [206]. Figure courtesy of H. Perfahl.

Tie-2.
The cellular automaton models proposed by Rieger and coworkers [24, 143,

292, 293, 294, 295] focus on the interaction between tumour cells, capillaries,
and blood flow. With regards to the vessels, each site occupied by a vessel is
characterized by its radius, its blood flow rate (if the element is part of a loop
through which blood can flow), and its wall shear stress. As already seen in the
previous section, these characteristics determine vessel remodelling, through di-
lation, regression, pruning and sprouting. An important characteristic of the
tumour cell modelling is the time spent in an under-oxygenated state. In addi-
tion, excessive pressure from the tumour cells can cause vessel collapse.

They also incorporate vessel dilation within the tumour related to a change
in the vascularization program based on the observations by Erber et al. [83].
In [83], it is suggested that the vascular patterning program is influenced by
ephrin and ephrin receptors (EphB4/ephrinB2) which act as inhibitors of vessel
branching and switch the vascularization program from sprouting angiogenesis
to circumferential vessel growth (independent from the shear-induced dilation
mentioned above). As a result, the radius of vessels (which were originally
capillaries) within the tumour can increase up to three times. Since blood
flow increases with the fourth power of the capillary radius, this has drastic
consequences for the blood flow patterns within the tumor.

More in detail, in [24], the authors employ a hybrid probabilistic cellular
automaton model to describe the transformation of a regular vasculature into
a highly heterogeneous tumour capillary network. The model is defined on a
square lattice (which is then extended into three dimensions in ref. [143]), where
each site may be empty or occupied by a single tumour cell and/or by a vessel
segment, characterized by a specific radius, blood flow rate, and shear stress.
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Figure 13: Snapshots from the simulation of a growing tumor at time 100, 300,
500 and 700 h. The first three pictures show 400 µm thick slices through the
origin. The scale bar represents 0.5 mm at all times. The first figure is a close-
up, illustrating the fine-structure of the arterio-venous initial network. The
figure for the last time (700 h) shows a 3D view where the quarter of the virtual
camera is cut out. The yellow region indicates the viable tumor mass and void
spaces within the tumor are necrotic regions. The network is color-coded by
blood pressure: red represents high pressure (arteries) and blue represents low
pressure (veins). Figure courtesy of H. Rieger (see [143, 294, 295]).
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The tumour and the vasculature evolve in separate layers, i.e. vessel elements
can occupy sites where malignant cells are also present. Each lattice site also
contains several microenvironmental variables, e.g. the oxygen transported by
the vasculature and the pro-angiogenic growth factors synthesized by the ma-
lignant cells. The production of angiogenic factors is described by a function
linearly decreasing in space, which approximates the exponentially decaying
Green’s function characteristic of diffusion problems with a point-source and a
spatially constant decay rate.

As already observed in Section 2.5, the shear stress exerted by the blood
flow upon the vessel walls is the principal stimulus for ECs. In particular, if
the emerging vessels are approximated by cylindrical tubes of a given radius,
the blood flow is determined by the pressure drop between the end points of
each vascular segment, according to the Poiseuille law given by Eq. (3.34). The
boundary conditions for the pressure are defined so as to obtain a homogeneous
flow distribution in the vessels of the original regular network.

A tumour cell can proliferate only if it has at least one free neighbouring
site and if it senses a sufficient concentration of oxygen. The probability of
duplication depends on a pre-determined mitotic time. On the other hand, ma-
lignant individuals undergo apoptosis with probability 1/2, only if their oxygen
concentration is below a given threshold for a sufficiently long time.

New vascular segments can be introduced between two circulated vessels
only if:

1. The local amount of TAF is above a certain level;

2. No site in the migration path is occupied by tumour cells;

3. No neighbouring site of the migration path is occupied by other vessels;

4. The distance between the two parent segments is low enough.

If all the conditions above are satisfied, a new segment is added with a proba-
bility established by an estimated EC proliferation time. With the same prob-
ability, a vessel segment, surrounded by tumour cells and with a TAF concen-
tration sufficiently large, may also increase its radius up to a maximum. A
circulated capillary, which is surrounded by the tumour, collapses with a de-
fined probability if the wall shear stress falls below a critical value, whereas a
vessel segment, which is under-oxygenated and not circulated, is eliminated with
probability equal to 1/2. The overall system evolves in time following a Monte
Carlo algorithm. The microscopic variables are updated after each update in
the configuration of the discrete elements (i.e. the tumour and the vasculature).

The resulting simulations are initialised with a regular mesh of vessels with
a small tumour mass in the centre, and describe a compartmentalization of
the tumour cluster into several regions (i.e. necrotic, quiescent, proliferating),
which also differ in vessel density and diameter. The model also predicts that
microvascular density does not necessarily determine the dynamics of tumour
progression, which is instead influenced by the topology of the original network
as well as by the metabolic demand of the individual tumour cells. In particular,
the 3D realization performed in [143] shows that vessel collapse leads to a cor-
related percolation process, that is driven towards criticality by the mechanism
of hydrodynamic vessel stabilization.
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In [292], the same research group extends the above model, employing a 2D
triangular lattice. They include the following additional effects:

• Oxygen sources are calculated implicitly (driven by concentration gradi-
ents between blood and tissue);

• Modifications are made to the rules for vessel collapse;

• The insertion of completely new perfused vessels is accounted for.

This extended approach also considers the effective viscosity of blood as de-
scribed in Section 2.5.

One of the interesting outcomes of the model is the analysis of the time-
evolution of the distribution of a drug, which has been injected into the blood
stream, within the tumour mass, and the results are compared with those ob-
tained from a model containing only vessel ingrowth.

A further extension of this model, which focusses on growth in an arterio-
venous system, is presented in [293]. The most relevant improvement is that the
vasculature is modelled as a network of connected ideal tubes that run along the
bonds of the 2D triangular lattice. Individual vessels and tumour cells can there-
fore occupy the same space within the grid. The model further incorporates a
hierarchically organized initial vasculature, which comprises arteries, veins, and
capillaries, and it reproduces the standard processes of sprouting angiogenesis,
vessel co-option, dilation and regression, as well as tumour cell proliferation and
death.

The resulting simulations show that the emerging tumour vasculature is
non-hierarchical and is compartmentalized into well-characterized zones. They
display a complex geometry with necrotic zones and hot-spots of increased vessel
density, as well as efficient transport of an injected drug.

Finally, in [294], the same group presents a 3D version of their vascular
remodelling model with initially arterio-venous vessel network (see Figure 13),
which comprises also a number of small changes with respect to [293]. They
include the dynamics occurring at the cell level involving vessel wall degradation
or maturation, and they represent the tumour mass by a continuous variable,
with terms describing the flux and the proliferation/death rate.

Drasdo’s well-known individual cell-based model (see, for instance, [225]) has
also been coupled to an angiogenesis model in [82]. Here a tumour is embedded
in a 3D cubic network of capillaries as shown in Figure 14. The tumour mass
takes up the oxygen supplied by the pre-existing vasculature and proliferates.
When their internal oxygen level drops below a certain threshold, cells become
hypoxic and start secreting long-diffusing pro-angiogenic factors. These chemi-
cals then activate the ECs to form vessel sprouts, which in turn chemotactically
move towards the spheroid and eventually form new capillary loops. The en-
semble of cells was described by an individual cell-based model that accounts
for contact-inhibition of growth and nutrient-related growth and apoptosis.

A similar cubic vessel network is used by Shirinifard et al. [245], who pro-
pose a very complex 3D uncompartmentalized CPM following most of the rules
detailed above. In addition, vascular and inactive neovascular ECs secrete a
short-range chemoattractant towards which they are chemotactically attracted;
they also elastically connect to neighbouring individuals until the intercellular
distance becomes too high. The inactive neovascular ECs are able to differ-
entiate into active neovascular ECs in response to high levels of long-diffusing
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Figure 14: Tumour growth as simulated by the individual cell-based model
presented in [82] in a static vessel network (left) and with angiogenesis (right).
Figure courtesy of N. Jagiella (modified from [82]).
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pro-angiogenic factors. Active neovascular ECs then move by chemotaxis up
gradients of both long- and short-diffusing chemical substances, and proliferate.

The Hamiltonian regulating the evolution of the entire system is formed of
the classical terms which describe the morphological changes of the different
types of tumour and ECs (i.e. Eq. (2.26) applied to volumes and not to areas,
since the model is 3D), and their mutual adhesions (i.e. Eq. (2.25)). Normal
and hypoxic tumour cells, and active neovascular individuals, undergo mitosis
when they reach a volume double their initial size. This is allowed by a low value
of λvolume, and by the growth of their target volume at a rate that depends on
the level of oxygen and of the long-diffusing angiogenic factors, according to
a Michaelis-Menten law. The authors also implement two different chemotac-
tic terms for both the long- and the short-diffusing chemical substances, with
concentrations denoted by cl and cs respectively:

∆Hchemical = µch
[

cl(xtarget)

sc0 + cl(xtarget)
− cl(xsource)

sc0 + cl(xsource)

]
+µch (cs(xtarget)− cs(xsource)) . (3.43)

Finally, the authors add an energetic contribution to account for the tight junc-
tions which maintain the integrity of blood vessels:

Helastic = λelastic(lσ,σ′ − ltarget)2. (3.44)

Here ltarget is the equilibrium length of the connection, and lσ,σ′ is the actual
distance between neighbouring cells σ and σ′, which causes the rupture of the
capillary if it becomes too long.

The evolution of the concentration of the long-range angiogenic factor, cl, is
described by an RD equation similar to (2.28); its secretion occurs only from the
hypoxic tumour cells, whereas both decay and diffusion occur over the entire
domain. The description of the evolution of the concentration of the short-range
chemical, cs, is simply the 3D extension of the model for the autocrine growth
factor employed in [171, 172, 173, 174].

The proposed modeling environment is able to distinguish the main phases
of tumour development. The cancer mass is first characterized by an avascular
linear growth, during which it remains in a spherical morphology whilst increas-
ing its volume. Then the tumour undergoes a vascular transition, as it recruits
its own capillary network, thus overcoming diffusional limitations. The malig-
nant mass first elongates into a cylinder, and then reorganizes into a paddle
shape.

For sake of completeness, we also mention that a similar morphology has
been found and studied by Astanin and co-workers [18, 19], and by Bertuzzi and
co-workers [35, 36, 37, 40]. They used PDE models to describe the growth of
cylindrical arrangements of tumour cells (called tumour cords) along pre-existing
capillaries and capillary networks (see Figure 15), but they ignored angiogenesis.
Both approaches use the framework of mixture theory (see [13, 52]), and the
evolution of the volume fractions of the cell populations is determined via mass
balance equations, coupled to RD models for the chemicals of interest. For
instance, in [19], attention is focused on the metabolism of both tumour and
host cells, and on the possibility that tumour cells have to switch from an aerobic
to an anaerobic metabolism. The structure of the model for the volume fractions
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of aerobic cells φo, anaerobic cells φg, and host cells φh, is given by the following
set of governing equations (in dimensionless form):

∂φo
∂t

= ∇ · [Kφo∇Σ(φo + φg)] + (ζo)+φo − ε(−ζo)+φo − So→g , (3.45)

∂φg
∂t

= ∇ · [Kφg∇Σ(φo + φg)] + (ζg)+φg − ε(−ζg)+φg + So→g , (3.46)

∂φh
∂t

= ∇ · [Kφh∇Σ(φh)]− εφh (θ − (1− φh)cocg)+ , (3.47)

where ζo = kococg − θ, ζg = k1kocg − θ, and the term So→g = νφoH(−ζo)
describes the aerobic-anaerobic switch. The first two equations hold within the
tumour, and the last outside it. The function Σ expresses the response of cells
to compression. Two RD equations for the concentrations of oxygen and glucose
released from the blood vessels then close the system.

The models by Bertuzzi and coworkers [33, 35, 36, 37, 40] generally close
the system of mass balance equations with a constrained mixture assumption
(i.e. that all populations move with the same velocity), and a saturation as-
sumption (i.e. that the sum of the volume fractions of all the cell populations
involved is constant). The motion of the interstitial fluid with respect to the
cell population is governed by Darcy’s law.

In [32, 34, 38], the tumour cord model is applied to study the response
to single-dose radiation treatments, and then extended in [39] to include the
kinetics of the repair/misrepair process of radiation damage, and the influence
of re-oxygenation on the response to two impulsive irradiations separated by a
time interval (i.e. a split-dose response).

4 Lymphangiogenesis

The lymphatic system plays a key role in the human body. It forms the main
tissue-drainage system, which helps to maintain tissue-fluid homeostasis [259].
Its primary function is to sustain and control a pressure gradient from the blood
capillaries, through the interstitium, to the lymphatic vessels. This allows the
clearance of extravasated fluids, tissue waste products, and plasma proteins, and
it is also involved in fat metabolism and in graft rejection. The lymphatic system
is also essential for immuno-surveillance in the body, since it provides one of the
main routes for the immune cells. As a result, a malfunctional lymphatic system
can lead or contribute to many diseases, such as lymphedema, fat metabolism,
immune diseases, psoriasis, Melkersson-Rosenthal-Meischer syndrome, Kaposi
sarcoma, lymphatic filariasis, Crohn’s disease, and chronic inflammation in gen-
eral [9, 135, 204].

The lymphatic network also plays an important role in the progression of
cancer. In particular, the intravasation of lymph vessels by cancer cells leads
to metastasis of cancer in the body, and there are also indications that tumour
lymphangiogenesis is correlated with cancer metastasis (see, for instance, [1,
78, 160, 248, 260]). A malfunctional lymphatic system can lead to an increase
in interstitial pressure, which results in swollen tissue and difficulties in drug
delivery [130, 131]. In addition, a reduction in the pressure gradient between
the blood and the lymphatic system leads to a much slower, mainly diffusive,
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Figure 15: Growth of a tumour cord in a vascular network. Colours indicate
the concentration of oxygen. The plots show how the increased metabolism of
tumour cells leads to the formation of a hypoxic region away from the capillaries.
Figure courtesy of S. Astanin.

movement of nutrients, and thus to an increased accumulation of waste products
in the tissue.

The term lymphangiogenesis is used to refer to the development of lymphatic
vessel networks both de novo and from pre-existing networks. However, in
spite of the evident importance, lymphangiogenesis is much less studied than
angiogenesis and vasculogenesis, and the morphological, spatial, and temporal
features of lymphangiogenesis are poorly understood. A recent review of in
vitro and in vivo experimental models for investigating lymphangiogenesis can
be found in Bruyère and Noël [43]. Previously, research was hindered by the
lack of markers for the lymphatic vessels, but this has been remedied in the last
couple of decades by the identification of specific molecular markers, such as
Prox1 (transcription factor), podoplanin (transmembrane glycoprotein), LYVE-
1 (lymphatic vessel hyaluronan receptor 1) and VEGFR-3 (vascular endothelial
growth factor receptor-3) [71].

The formation of lymphatic networks is coordinated primarily by the growth
factors VEGF-C and VEGF-D, mediated through the receptor VEGFR-3 [21].
VEGF-C, in particular, appears to be the most essential factor in promoting
lymphangiogenesis by generating a chemotactic response from the lymphatic
endothelial cells (LECs). This process differs from angiogenesis and vasculogen-
esis of blood ECs, which is mainly induced by VEGF-A, and mediated through
the receptor VEGFR-2; see [230, 269] for excellent illustrations of the molecular
characteristics of blood and LECs, and [2, 134, 194] for further information on
the molecular biology of lymphangiogenesis. Other influences on lymphatic net-
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work development come from the molecular interactions between the LECs and
the biophysical and molecular environment of their local ECM, which can affect
migration, adhesion, proliferation, differentiation and organisation [133, 296].

Commencing with the observation that one of the main roles of the lymphatic
system is to maintain interstitial fluid balance and protein convection, Swartz
and co-workers [42, 92, 118, 119, 193] have investigated the effects of interstitial
flow on lymphangiogenesis. In [42], they observed in vivo that interstitial fluid
channels formed in a collagen implant before LEC organization, and that the
subsequent lymphatic capillary network organization was initiated primarily in
the direction of lymph flow. Subsequently, they have shown in vitro that blood
and LEC morphogenesis is triggered differentially by very low rates of interstitial
flow [193], and by the synergistic combination of interstitial flow and proteolytic
release of ECM-bound VEGF, [118]. In the latter case, they accounted for the
synergy by proposing, and demonstrating with the support of an advection-
diffusion model, that the flow generates a downstream bias in the distribution
of VEGF and a shift in the maximum concentration, that the cell will then follow
downstream (see also [92], where this phenomenon is described as the generation
of autologous morphogen gradients). The work was then extended to explore the
effects of ECM composition on the EC reorganisation [119] by manufacturing
matrices with different proportions of fibrin and collagen. They found that
organisation of blood ECs and LECs preferred distinct matrix compositions,
and that the structures produced were morphologically different.

Compared to angiogenesis and vasculogenesis, very little research has been
directed at modelling the formation and remodelling of lymphatic vessels. In
order to explain the collagen pre-patterning caused by interstitial fluid flow,
before the migration of LECs to form networks, observed in [42], Roose and
Fowler [228] propose a model developed in the framework of the theory of mix-
tures and using the theory of two phase rubber materials due to Flory et al.
[93]. The model considers the interaction of the collagen gel with a solute, such
as protons, which can remodel the gel. It consists of two coupled fourth order
PDEs describing the evolution of the collagen volume fraction φ and the solute
concentration c, that can be written as follows:

∂φ

∂t
= ∇ ·

{
φ2(1− φ)2

[
F∇φ− κ∇(∇2φ) +G∇c

]}
,

∂c

∂t
= ∇ ·

{
−cφ2(1− φ)2

[
F∇φ− κ∇(∇2φ) +G∇c

]}
+

1

Pe
∇ · [D(φ)∇c] ,

(4.1)

where Pe is the Peclet number. Here F = fφφ− cfφc and G = fφc− cfcc, where
the function f measures the influence of entropy, enthalpy and elastic energy on
the organisation of the collagen gel, and is given by:

f = (1− φ) log(1− φ) + χφ(1− φ) +
1

2Nx

(
φ0 − φ−

1

3
φ log

φ0

φ

)
. (4.2)

As the sign of the terms F and G is not determined, there might be an anti-
diffusive term in the equation for the volume fraction (4.1), although it is regu-
larized by the bi-Laplacian, as in the angiogenesis model in [275]. They studied
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the linear stability of the homogeneous distribution, finding that patterning can
be observed above a critical level of solute concentration. The time-scales of the
fastest growing modes are consistent with experimental findings.

To investigate the onset of lymphangiogenesis in and around tumours due
to tumour-secreted growth factors, Friedman and Lolas [205] propose a con-
tinuum model consisting of eight RD equations. These equations govern the
evolution of the density of LECs and tumour cells, and the concentrations of
ECM, VEGF-C, urokinase secreted by LECs and by tumour cells, and plasmin
activated by LECs and tumour cells. The LECs and tumour cells migrate due
to diffusion, chemotaxis and haptotaxis, and their proliferation is modelled by
logistic growth. The LECs also proliferate due to VEGF-C-induced mitosis.
The ECM is degraded proteolytically by plasmin, and re-establishes itself logis-
tically. Tumour-activated plasmin plays an important role in the model, since
it both proteolytically cleaves tumour-secreted VEGF-C and releases matrix-
bound VEGF-C (in its role as an ECM-degrading protease). Simulations in
1D produce sharp peaks in the density of LECs in several distinct locations,
that may be regarded as the formation of a network of lymphatic vessels. A
limitation of the model is that it does not take into account any competition for
space. In ref. [99], the authors study the model analytically to prove existence
and uniqueness of the solution.

Finally, whilst they neglect any effects of lymphangiogenesis, we mention the
recent article by Wu et al. [299], who investigate the effect of interstitial fluid
pressure/flow (IFP/IFF) and the lymphatic network on vascularized tumour
growth. Elevated IFP inside the tumour can block the delivery of nutrients
or drugs, and may also affect the gradients of biochemical signals around the
tumour. This work extends the model for angiogenesis and vascularized tumour
growth in [154, 166, 167, 252, 302] already discussed in Sections 2.5 and 2.6, to
include IFF and drainage through the lymphatic system. The IFF is modelled
using a two-phase continuum model, where the phases are fluid and cells, with a
source term representing the release of IFF from the vasculature, and a sink term
representing the drainage of IFF into the lymphatic network, which also allows
for tumour stress-induced collapse of lymphatic vessels. The lymphatic network
is modelled by a continuous density field, and is degraded by a proteolytic
enzyme. In agreement with experimental observations, the IFP is elevated inside
the tumour, leading to large IFF directed towards the surrounding tissue. Their
results also indicate that the root cause of the plateau in the IFP inside the
tumour is the elevated interstitial hydraulic conductivity combined with poor
lymphatic drainage.

5 Discussion

Focussing on the literature developed in the last ten years to describe the for-
mation of vascular networks, we have identified several classes of models, from
continuum to discrete and cell-based models. Each type of model, with its
own advantages and limitations, has achieved significant results. Indeed, all of
the proposed mathematical approaches have improved considerably in the last
ten years, and have shown an increased ability to reproduce accurately selected
phases, and to identify or confirm the underlying mechanisms of the vasculogenic
process.
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In spite of this, all of the models must be updated constantly to keep pace
with new biological discoveries in the field, and all of them could be extended to
include more effects. In the main body of the article, we have already indicated
critical features of the different models and suggested some possible develop-
ments. Here, we simply restrict ourselves to a discussion of the general features
of the modelling frameworks that could be improved.

Aside from the specific applications, each model class described above pro-
vides a distinct, and complementary, framework to describe the formation of
vascular networks. However, it is evident that some of the experimental ob-
servations can be explained only by one particular type of model, and not by
the others (or better by some types of models than by others). For instance,
the continuum models discussed in Section 2.2.1 successfully describe the early
stages of vasculogenesis, which are dominated by the chemotactic and persis-
tent motion of the ECs. However, as discussed in Section 2.2.2, they needed
to be suitably extended to describe the subsequent phases of the process, when
the cells adhere more strongly to the substratum and mechanical interactions
with the substratum become important. Even in this phase, future work will
be required to include plastic effects related to the attachment and detachment
mechanisms of focal adhesion points.

In this respect, although adhesion mechanics is one of the basic aspects of
CPMs, to date they are not able to deal with mechanical effects, such as defor-
mation of the substrate. However, in principle it should be feasible to include
these effects, since CPMs are based on an energetic formulation and it is stan-
dard in continuum mechanics to define constitutive equations on the basis of
energetic considerations, at least in the elastic or poroelastic case. Hence, it
would be interesting to investigate the possibility of generalizing and calibrat-
ing the Hamiltonian to include an extra elastic energy term derived from a
continuum mechanics model. However, it is not so clear how this could be done
for other cell-based models, e.g. a cellular automata model.

As they are focussed on the cellular scale, generally speaking cell-based mod-
els possess a lot of flexibility in their ability to describe vasculogenesis. They
allow a detailed description of the behaviour of single ECs during network for-
mation and stabilization, and of their morphological evolution and adhesion
mechanics. They also permit proper inclusion of intra-cellular processes, that
are fundamental in determining the biophysical properties and behaviour of the
cell. This essential feature, which is more difficult to include in continuum
models, is of great interest to the biomedical community, in particular in view
of the recent understanding of genetic processes and proteomics. Such charac-
teristics, already included in some cellular automata models and in extended
cellular Potts models (CPMs), allow a mesoscopic description of cell dynamics
so that its behaviour can be linked successfully to the underlying sub-cellular
machineries. For example, the model can include the activation or inactivation
of intra-cellular protein cascades by chemical factors diffusing in the outer en-
vironment (conveniently described by continuum approximations, such as RD
equations), or take into account of the expression and internalisation of receptors
and adhesion molecules like cadherins and integrins.

Discrete and discretized models also permit the coupling of mesoscopic dy-
namics to the intra-cellular processes. Their main advantage, however, is that
they are currently able to capture more explicitly the dynamics of vessel branch-
ing, anastomosis, pruning, and vessel diameter remodelling. In principle, some
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of these processes could also be included into a CPM, but this remains to be
done.

Generally speaking, a practical limitation of cell-based models is the fact that
sometimes they are not so efficient at providing a general outlook on the system
as a whole. In addition, they are computationally expensive. This becomes
particularly evident when one needs to simulate large regions of tissue, whilst
maintaining a good resolution at the cellular or even sub-cellular scale, or when
one has to perform many simulations either because of the inherent stochasticity
embedded in the models or because of the need to conduct a parameter sweep.
On the other hand, continuum models are more suited and computationally
cheaper to describe the behaviour of tissues from the macroscopic point of view,
but it is more difficult to account for sub-cellular mechanisms. In this respect,
it would be desirable to develop some coarse-graining techniques which relate a
tissue-scale description to a cell-based model, so that it is possible to focus on
the cellular or sub-cellular level where and when needed and homogenize where
and when this level of detail is excessive. This feature is particularly important
when coupling the vasculature dynamiwith the evolution of the whole tissue.
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[189] Murray, J.D., Swanson, K.R., 1999. On the mechanochemical theory of biological pattern
formation with applications to wound healing and angiogenesis. In On Growth and
Form: Spatio-temporal Pattern Formation in Biology, M.A.J. Chaplain, G.D.
Singh, J.C. McLachlan, Eds., J. Wiley and Sons.

[190] Murray, J.D., 2003. On the mechanical theory of biological pattern formation with ap-
plication to vasculogenesis. Comp. Rend. Biol., 326, 2239–2252.

[191] Namy, P., Ohayon, J., Traqui, P., 2004. Critical conditions for pattern formation and
in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol., 227, 103–120.

[192] Neufeld, G., Cohen, T., Gengrinovitch, S., Poltorak, Z., 1999. Vascular endothelial
growth factor (VEGF) and its receptors. Faseb J., 13, 9–22.

[193] Ng, C.P., Helm, C.-L.E., Swartz, M.A., 2004. Interstitial flow differentially stimulates
blood and endothelial cell morhpogenesis in vitro. Microvas. Res., 68, 258–264.

[194] Norrmén, C., Tammela, T., Petrova, T.V., Alitalo, K., 2011. Biological basis of thera-
peutic lymphangiogenesis. Circulation, 123, 1335-1351.

[195] Olsen, L., Sherratt, J.A., Maini, P.K., Arnold, F., 1997. A mathematical model for the
capillary endothelial cell extracellular matrix interactions in wound healing angiogenesis.
IMA J. Math. Appl. Med. Biol., 14, 261–282.

[196] Orme, M.E., Chaplain, M.A.J., 1997. Two-dimensional models of tumour angiogenesis
and anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol., 14, 189-205.

73



[197] Oster, G. F., Murray, J. D., Harris, A. K., 1983. Mechanical aspects of mesenchymal
morphogenesis. Cell traction models for generation of pattern and form in morphogen-
esis. J. Embryol. Exp. Morph., 78, 83–125.

[198] Othmer, H., Stevens, A., 1997. Aggregation, blowup and collapse: The ABC’s of gen-
eralized taxis. SIAM J. Appl. Math., 57, 1044–1081.

[199] Owen, M.R., Alarcon, T., Maini, P.K., Byrne, H.M., 2009. Angiogenesis and vascular
remodelling in normal and cancerous tissues. J. Math. Biol., 58, 689–721.

[200] Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., Horwitz, A.F., 1997.
Integrin-ligand binding properties govern cell migration speed through cell-substratum
adhesiveness. Nature, 385, 537–540.

[201] Parker, B.S., Argani, P., Cook, B.P., Liangfeng, H., Chartrand, S.D., Zhang, M., Saha,
S., Bardelli, A., Jiang, Y., St Martin, T.B., Nacht, M., Teicher, B.A., Klinger, K.W.,
Sukumar, S., Madden, S.L., 2004. Alterations in vascular gene expression in invasive
breast carcinoma. Cancer Res., 64, 7857–7866.

[202] Parsa, H., Upadhyay, R., Sia, S.K., 2011. Uncovering the behaviors of individual cells
within a multicellular microvascular community. Proc. Natl. Acad. Sci. U.S.A., 108,
5133–5138.

[203] Peirce, S.M., 2008. Computational and mathematical modeling of angiogenesis. Micro-
circulation, 15, 739-751.

[204] Pepper, M.S., 2001. Lymphangiogenesis and tumor metastasis: Myth or reality? Clin.
Cancer Res., 7, 462–468.

[205] Pepper, M.S., Lolas, G., 2008. The lymphatic vascular system in lymphangiogenesis,
invasion and metastasis: A mathematical approach. In Selected Topics in Cancer
Modeling: Genesis, Evolution, Immune Competition, and Therapy, E. De
Angelis, M.A.J. Chaplain, N. Bellomo, Eds., Birkhäuser, 255–276.
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