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Abstract. We obtain an estimate for the covering dimension of the set of
bifurcation points for solutions of nonlinear elliptic boundary value problems

from the principal symbol of the linearization along the trivial branch of solu-

tions.

1. Introduction

In [?] we defined an index of bifurcation points β(f) of a parametrized family f of
C1-Fredholm maps. Nonvanishing of β(f) entails the existence of at least one point
of bifurcation from a trivial branch of zeroes of the family f. Linearization of f along
the trivial branch produces a parametrized family of linear Fredholm operators L.
The index β(f) depends only on the stably fiberwise homotopy equivalence class
of the index bundle IndL of L. The nonvanishing of β(f) can be checked through
the Stiefel-Whitney and Wu characteristic classes of IndL since they are invariant
under stably fiberwise homotopy equivalence.

If the parameter space is a manifold, the nonvanishing of the Stiefel-Whitney
and Wu classes of IndL not only implies that the set B(f) of all bifurcation points
of f is nonempty, but also provides some further information about the covering
dimension of this set and its position in the parameter space.

In this paper, using the above observation (Theorem ?? in section 3) together
with our results from [?], we obtain an estimate on the covering dimension of the
set of bifurcation points of solutions of nonlinear elliptic boundary value problems
parametrized by a smooth manifold.

Roughly speaking, the approach is as follows: assuming that the coefficients of
the leading terms of L are independent from the parameter near the boundary, an
extension to families of the Agranovich reduction identifies the complexification of
IndL with the index bundle of a family of pseudo-differential operators S on Rn.
Applying to S a cohomological form of the Atiyah-Singer family index theorem,
due to Fedosov, we determine the Chern character of the complexification c(IndL)
as an integral along the fiber of a differential form associated to the symbol of the
family.

In principle, the above leads to the computation of Wu classes of the index bundle
of L, since they are polynomials in Pontriagin classes of IndL with Zp coefficients.
However, the general expression is messy and can hardly be used in practice. It
becomes much simpler by evaluating Wu classes of IndL on spherical homology
classes. Restricting the family f to spheres embedded in the parameter space and
using our approach in [?], we obtain explicit conditions for non vanishing of Wu
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classes and hence estimates for the dimension of the set of bifurcation points. A
similar use of the Stiefel-Whitney classes gives some complementing results.

The topological dimension of the set of solutions of nonlinear equations and the
set of bifurcation points has been discussed in various places, mainly in the case of
compact vector fields and semi-linear Fredholm maps [?, ?, ?, ?, ?, ?]. However,
it should be remarked, that our estimates are obtained directly from the leading
coefficients of linearized equations without the need to solve them. This is the main
reason for using elliptic invariants in a topological approach to bifurcation which
complements the classical Lyapunov-Schmidt method.

The paper is organized as follows: in section 2 we state our main result, theorem
??. In section 3 we relate Wu classes of IndL to the dimension of the set of
bifurcation points of f . In section 4, after discussing the Agranovich reduction,
we carry out the computations of the relevant characteristic classes, completing in
this way the proof of theorem ??. In section 5, assuming that the linearization
along the trivial branch is a (real) lower-order perturbation of a family of elliptic
boundary value problems with complex coefficients, we obtain sufficient conditions
for bifurcation in dimensions not covered by theorem ??, using Stiefel-Whitney
classes.

I would like to thank Yuli Rudiak, Michael Crabb and Friedrich Hegenbarth for
their generous help.

2. The main theorem

We consider boundary value problems of the form

(2.1)

{
F (λ, x, u, . . . , Dku) = 0 for x ∈ Ω,
Gi(λ, x, u, . . . ,Dkiu) = 0 for x ∈ ∂Ω, 1 ≤ i ≤ r,

where Ω is an open bounded subset of Rn with smooth boundary ∂Ω, u : Ω̄→ Rm
is a vector function, λ is a parameter belonging to a smooth compact connected
d-dimensional manifold Λ and, denoting with k∗ the number of multindices α’s such
that |α| ≤ k,

F : Λ× Ω̄× Rmk
∗
→ Rm and Gi : Λ× Ω̄× Rmk

∗
i → R

are smooth with F(λ, x, 0) = 0, Gi(λ, x, 0) = 0, 1 ≤ i ≤ r.
Here and below we will freely use the notation from [?].

We will denote with (F ,G) the family of nonlinear differential operators

(2.2) (F ,G) : Rq × C∞(Ω̄;Rm)→ C∞(Ω̄;Rm)× C∞(∂Ω;Rr)

defined by

(F ,G)(λ, u) = (F(λ, x, u, ..,Dku), τG1(λ, x, u, ..,Dk1u), .., τGr(λ, x, u, ..,Dkru),

where τ is the restriction to the boundary.
We assume:

H1) For all λ ∈ Λ, the linearization (Lλ(x,D),Bλ(x,D)) of (Fλ,Gλ) at u ≡ 0, is
an elliptic boundary value problem. Namely, Lλ(x,D) is elliptic, properly
elliptic at the boundary, and the boundary operator

Bλ(x,D) = (B1
λ(x,D), ...,Brλ(x,D))t

verifies the Shapiro-Lopatinskij condition with respect to Lλ(x,D).
H2) There exists a point ν ∈ Λ such that, for every f ∈ C∞(Ω̄;Cm) and

g ∈ C∞(∂Ω;Cr), the problem:{
Lν(x,D)u(x) = f(x) for x ∈ Ω
Bν(x,D)u(x) = g(x) for x ∈ ∂Ω,
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has a unique smooth solution.
H3) i) The coefficients biα(λ, x), |α| = ki, 1 ≤ i ≤ r, of the leading terms of

boundary operators B1
λ(x,D), . . . ,Brλ(x,D) are independent of λ.

ii) There exist a compact set K ⊂ Ω such that the coefficients
aα(λ, x); |α| = k of the leading terms of Lλ, are independent of λ for
x ∈ Ω̄−K.

Let p(λ, x, ξ) ≡
∑
|α|=k aα(λ, x)ξα be the principal symbol of Lλ.

By ellipticity, p(λ, x, ξ) ∈ GL(m;C) if ξ 6= 0. On the other hand, by H3,

p(λ, x, ξ) = p(ν, x, ξ) for x ∈ Ω̄−K.
Therefore, putting

σ(λ, x, ξ) = Id for any (λ, x, ξ) with x /∈ K,
the map σ(λ, x, ξ) = p(λ, x, ξ)p(ν, x, ξ)−1 extends to a smooth map

(2.3) σ : Λ× (R2n −K × {0})→ GL(m;C).

Assuming, without loss of generality, that K × {0} is contained in the unit ball
B2n ⊂ R2n, we associate to σ the restriction (pulback ) of the matrix one-form
σ−1dσ to Λ× ∂B2n ' Λ× S2n−1, which will be denoted in the same way.

Taking the trace of the (q+ 2n− 1)-th power of the matrix σ−1dσ we obtain an
ordinary (q + 2n− 1)-form tr(σ−1dσ)q+2n−1 on Λ× S2n−1.

Let Σ ' Sq ⊂ Λ be an embedded sphere of even dimension q. We define the
degree deg(σ; Σ) of σ on Σ by

(2.4) deg(σ; Σ) =
( 1

2q + n− 1)!

(2πi)( 1
2 q+n)(q + 2n− 1)!

∫
Σ×S2n−1

tr(σ−1dσ)q+2n−1.

We will see later that, for any embedded sphere Σ, deg(σ; Σ) is an integral
number.

Let us recall that a bifurcation point from the trivial branch for solutions of (??)
is a point λ∗ ∈ Λ such that there exist a sequence (λn, un) ∈ Λ×C∞(Ω̄) of solutions
of (??) with un 6= 0, λn → λ∗ and un → 0 uniformly with all of its derivatives.

Theorem 2.0.1. Let the boundary value problem (??) verify H1−H3 and let p be
an odd prime such that p ≤ d/2 + 1.

If, Λ is orientable and, for some embedded sphere Σ ⊂ Λ, of dimension
q = 2(p− 1), deg(σ; Σ) is not divisible by p, then

i) the Lebesgue covering dimension of the set B of all bifurcation points of
(??) is at least d− q,

ii) the set B either disconnects Λ or is not contractible in Λ to a point.

3. Characteristic classes and bifurcation of Fredholm maps

We begin with a short recapitulation of [?]. From now on, Fredholm means
Fredholm of index 0.

Let O be an open subset of a Banach space X and let Λ be a finite connected
CW -complex. A family of C1-Fredholm maps continuously parametrized by Λ
is a continuous map f : Λ × O → X such that the map fλ : O → Y defined by
fλ(x) = f(λ, x) is C1, for each λ ∈ Λ. Moreover, Dfλ(x) is a Fredholm operator of
index 0 which depends continuously on (λ, x) with respect to the norm topology in
the space of L(X,Y ).

We will assume everywhere in this paper that O is a neighborhood of the origin
0 ∈ X and that f(λ, 0) = 0 for all λ in Λ. Solutions (λ, 0) of the equation f(λ, x) = 0
form the trivial branch, which we will identify with the parameter space Λ.
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A point λ∗ in Λ is called bifurcation point from the trivial branch for solutions
of the equation f(λ, x) = 0 if every neighborhood of (λ∗, 0) contains nontrivial
solutions of this equation.

The linearization of the family f along the trivial branch is the family of opera-
tors L : Λ→ Φ0(X,Y ) defined by Lλ = Dfλ(0), where the right hand side denotes
the Frechet derivative of fλ at 0.

Bifurcation only occurs at points λ ∈ Λ where Lλ is singular but, in general, the
set B(f) of all bifurcation points of a family f is only a proper closed subset of the
set Σ(L) of all singular points of L.

Given a compact space Λ, let KO(Λ) (resp. K(Λ)) be the Grothendieck group of

all real (resp. complex) virtual vector bundles over Λ, and let K̃O(Λ)(resp. K̃(Λ)
be the corresponding reduced group, i.e., the kernel of the rank homomorphism.
Recalling that two vector bundles are stably equivalent if they become isomorphic
after addition of trivial bundles to both sides, in this paper, we will identify K̃O(Λ)
with the group of all stable equivalence classes of vector bundles over Λ.

With the above identification the index bundle IndL of a family L of Fredholm
operators is defined as follows: using compactness of Λ, one can find a finite dimen-
sional subspace V of Y such that

(3.1) ImLλ + V = Y for all λ ∈ Λ.

Because of (??) the family Eλ = L−1
λ (V ), λ ∈ Λ, is a vector bundle E. By def-

inition, IndL = [E] ∈ K̃O(Λ), where [E] denotes the stable equivalence class of
E. For families of Fredholm operators between complex Banach spaces the same
construction produces an element IndL ∈ K̃(Λ).

If f(λ, x) = Lλx, where {Lλ}λ∈Λ is a family of linear Fredholm operators, then
the set of singular points Σ(L) coincides with the set of bifurcation points of f . By
definition of the index bundle, Σ(L) = B(f) is nonempty whenever IndL 6= 0 in

K̃O(Λ). Hence, in the case of linear families, bifurcation is caused by the nonvanish-
ing of the index bundle. However, in order to detect the presence of bifurcation for
a family of nonlinear Fredholm maps IndL is not sufficient, and we have to resort
to the image of IndL by the generalized J -homomorphism J : K̃O(Λ)→ J (Λ) [?].

Let us recall that two vector bundles E,F are fiberwise homotopy equivalent if
there is a fiber preserving homotopy equivalence between the corresponding unit
sphere bundles S(E) and S(F ). Moreover, E and F are said to be stably fiberwise
homotopy equivalent (shortly sfh-equivalent) if they become fiberwise homotopy
equivalent after addition of trivial bundles to both sides.

Let J(Λ) be the quotient group of K̃O(Λ) by the subgroup generated by elements
of the form [E]− [F ] with E sfh-equivalent to F. The generalized J-homomorphism

J : K̃O(Λ)→ J(Λ) is the projection to the quotient. By definition, J([E]) vanishes
in J(Λ) if and only if E is sfh-trivial. The groups J(Λ) were introduced by Atiyah
in [?] who showed that, if Λ is a finite CW -complex, the group J(Λ) is finite.

Let f : Λ × O → Y be a continuous family of C1-Fredholm maps (of index 0)
parametrized by a finite connected CW -complex Λ, such that f(λ, 0) = 0. The index
of bifurcation points β(f) ∈ J (Λ) of the family f is defined by β(f) = J (IndL).

Theorem 1.2.1 in [?] states that, if β(f) 6= 0 in J(Λ) and Σ(L) is a proper subset
of Λ, then the family f possesses at least one bifurcation point from the trivial
branch.

An n-dimensional vector bundle (n-plane bundle) is a vector bundle π : E → Λ
such that dimEλ = n for all λ ∈ Λ. Let V ectn(Λ) be the set of all isomorphism
classes of n-plane bundles over Λ.
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If R is a ring, a characteristic class c : V ectn(−) → H∗(−;R) is said to be of
sfh-type (or spherical) if it depends only on the sfh-equivalence class of the vector
bundle.

Spherical characteristic classes detect elements with nontrivial J-image. Here
we will consider only Wu classes with values in the singular cohomology theory
H(2p−1)∗(−,Zp), if p is an odd prime, and Stiefel-Whitney classes, for p = 2.

Below we collect the needed properties of Wu classes. We will denote with X∗ the
Alexander one-point compactification of a locally compact space X. X∗ is naturally
a pointed space. A proper map f : X → Y extends uniquely to a map f̄ : X∗ → Y ∗

preserving base points. Moreover, (X × Y )∗ is homeomorphic to the wedge

X∗ ∧ Y ∗ = X∗ × Y ∗/(X∗ × {∞} ∪ {∞} × Y ∗).
This makes the one point compactification into a product preserving functor from
the category of locally compact spaces to the category of pointed compact spaces.

Thom space of an n-plane bundle π : E → Λ is the one point compactification
E∗ of its total space E. Using the above homeomorphism with X = E and Y a
trivial m-plane bundle over a point we conclude that the Thom space of E ⊕ θm is
the m-th suspension of the Thom space of E.

Let rλ : E∗λ → E∗ be the extension of the inclusion of the fiber Eλ into E. An

orientation (Thom) class for the vector bundle E is an element u ∈ H̃n(E∗;Zp)
such that, for all λ, r∗λ(u) is a generator of H̃n(E∗λ;Zp) ' Zp.

It is easy to see that every n-plane bundle admits an orientation over Z2, and
that a bundle is orientable over Zp with p > 2 if and only if it is orientable, i.e., it
admits a reduction of its structure group to SO(n).

The map d : E → Λ× E defined by d(v) = (π(v), v), being proper, extends to a
map δ : E∗ → Λ∗ ∧ E∗. Composing the wedge product

∧ : H̃∗(Λ∗;Zp)× H̃∗(E∗;Zp)→ H̃∗(Λ∗ ∧ E∗;Zp)

with δ∗ : H̃∗(Λ∗ ∧ E∗;Zp) → H̃∗(E∗;Zp) and using H∗(Λ;Zp) ' H̃∗(Λ∗;Zp) we
obtain a cup product

∪ : H∗(Λ;Zp)× H̃∗(E∗;Zp)→ H̃∗(E∗;Zp).

Thom’s isomorphism theorem states that, if u ∈ H̃n(E∗;Zp) is a Thom class for E,
the homomorphism

Ψu : H∗(Λ;Zp)→ H̃∗+n(E∗;Zp)
defined by Ψu(a) = a ∪ u is an isomorphism.

Let p be an odd prime. The k-th Wu characteristic class qk(E) ∈ H2(p−1)k(Λ;Zp)
of an n-plane bundle E orientable over Zp is defined by

(3.2) qk(E) = Ψ−1
u P ku = Ψ−1

u P kΨu(1),

where
P k : H̃n(E∗;Zp)→ H̃n+2(p−1)k(E∗;Zp)

is the k-th Steenrod reduced power [?].

One of the consequences of the Thom isomorphism theorem is that H̃∗(E∗;Zp)
is a free module over the ring H∗(Λ;Zp) generated by u via the cup product defined
above.

Any two Thom classes u, u′ ∈ H̃n(E∗;Zp) are related by u = a ∪ u′ with a ∈
H0(Λ;Zp) invertible. Since P k are module homomorphisms substituting u = a∪u′
in (??) we obtain that the classes qk(E) are independent from the choice of the
Thom class u. Since the suspension homomorphism commutes with r∗λ, from the
characterizing property of Thom’s class it follows that the m-th suspension u′ =
σm(u) of a Thom class u of E is a Thom class for E ⊕ θm. Moreover, since the cup
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product verifies a ∪ σu = σ(a ∪ u), we have Ψu′ = σmΨu. On the other hand also
P k commute with the suspension. Hence, we get

(3.3) qk(E ⊕ θm) = Ψ−1
u′ P

ku′ = Ψ−1
u σ−mP kσmu = Ψ−1

u P ku = qk(E).

Thus qk depends only on the stable equivalence class of E, and hence we have a
well defined natural transformation qk : ˜KSO(−)→ H2(p−1)k(−;Zp), where ˜KSO(−)
is the ring of stable equivalence classes of orientable bundles. As a matter of fact,
the classes qk can be defined for all elements of K̃O(−), but we will not use this
here.

On the other hand, a fiberwise homotopy equivalence h : S(E)→ S(F ) by radial
extension produces a proper homotopy equivalence between the total spaces of E
and F and hence a base point preserving homotopy equivalence h̄ : E∗ → F ∗. This
later restricts to a homotopy equivalence h̄λ : E∗λ → F ∗λ . It follows from this that,
if v is an orientation for F, then u = h̄∗(v) is an orientation for E and moreover
Ψu = h̄∗Ψv. Substituting in (??) we get qk(E) = qk(F ). Thus qk depends only
on the fiberwise preserving homotopy class of the sphere bundle S(E) and hence

qk : ˜KSO(−)→ H2(p−1)k(−;Zp) factorizes through the functor J(−).
The same holds for the Stiefel-Whitney classes ωk ∈ Hk(−;Z2) since they are

constructed from the Thom class of E using Steenrod squares Sqk in (??).
With this at hand we can state the main result of this section.
Let us first recall that the covering dimension of a topological space X is defined

to be the minimum value of n such that every open cover of X has an open refine-
ment for which no point is included in more than n+ 1 elements. By a well known
characterization due to Hurewicz, the topological dimension of a compact space X
is at least n if, for some closed subset C of X, the Alexander-Spanier cohomology
Hn(X,C) 6= 0.

Theorem 3.0.1. Let Λ be a compact connected topological manifold and let
f : Λ × O → Y be a continuous family of C1-Fredholm maps verifying f(λ, 0) = 0
and such that Σ(L) is a proper subset of Λ.

i) If Λ and IndL are orientable and, for some odd prime p, there is a k ≥ 1
such that qk(IndL) 6= 0 in H2(p−1)k(Λ;Zp), then the Lebesgue covering
dimension of the set B(f) is at least dim Λ− 2(p− 1)k.

ii) If ωk(IndL) 6= 0 in Hk(Λ;Z2) for some k ≥ 1, then the dimension of B(f)
is at least dim Λ− k.

Moreover, either the set B(f) disconnects Λ or it cannot be deformed in Λ into a
point.

Proof. (see also [?], [?]) We will denote with H̄∗(X;Zp) the Alexander-Spanier
cohomology of X with Zp coefficients. It is well known that H̄∗(X;Zp) coincides
with the singular cohomology of X when X is a manifold.

Let B = B(f). If dim Λ = m and Λ − B is not connected then the covering
dimension of B must be at least m − 1, since sets of smaller dimension cannot
disconnect Λ. Hence, in this case, the theorem is proved.

From now we assume that Λ − B is connected. Let α ∈ H2(p−1)k(Λ;Zp) be
any homology class such that the Kroenecker pairing < qk(IndL);α > 6= 0 and let
η ∈ Hm−2(p−1)k(Λ;Zp) be the Poincaré dual of α.

Let i : B → Λ be the inclusion and let ζ = i∗(η) ∈ H̄∗(B;Zp) be the restriction
of η to B. If we can show that ζ 6= 0 in H̄∗(B;Zp), then the theorem is proved.
Indeed, ζ = i∗(η) is an obstruction to the deformation of the subspace B to a point
and, by cohomological characterization of the covering dimension, dimB must be
at least m− 2(p− 1)k.

In order to show that ζ 6= 0 let us consider the following commutative diagram



INDEX BUNDLE AND BIFURCATION II 7

(3.4)
i∗

Hm−2(p−1)k(Λ;Zp) −→ H̄m−2(p−1)k(B;Zp)x x
H2(p−1)k(Λ−B;Zp) −→ H2(p−1)k(Λ;Zp) −→ H2(p−1)k(Λ,Λ−B;Zp)

j∗ π∗

where the vertical arrows are the Poincaré duality isomorphisms and the bottom
sequence is the homology sequence of a pair.

By commutativity, ζ is dual to π∗(α). Hence, it is enough to show that the
homology class π∗(α) does not vanish.

If so, by exactness, α = j∗(β) for some β ∈ H2(p−1)k(Λ− B;Zp). Since singular
homology has compact supports, there exists a finite connected CW -complex P
and a map h : P → Λ − B such that β = h∗(δ) for some δ ∈ H2(p−1)k(P ;Zp) (for
this it is enough to take as P any closed connected polyhedral neighborhood of the
support of a singular cochain representing β).

Since Λ − B is connected, we can assume without loss of generality that some
point λ0 ∈ Λ − Σ(L) belongs to the image of h. Let us consider now h̄ = jh and
the family f̄ : P ×X → Y defined by f̄(p, x) = f(h̄(p), x).

The linearization at the trivial branch of f̄ is L̄ = Lh̄. Since λ0 = h(p0) is
not a singular of L, the set Σ(L̄) is a proper subset of P. On the other hand, by
construction, h̄ sends bifurcation points of f̄ into bifurcation points of f, and since
h̄(P ) ∩B = ∅, the family f̄ has no bifurcation points.

By [?, Theorem 1.2.1 ], J(Ind L̄) = 0 and hence all characteristic classes qk
of Ind L̄ must vanish. But Ind L̄ = h̄∗(IndL), and by naturality of characteristic
classes qk(Ind (L̄)) = h∗j∗qk(IndL).

Hence,

0 =< h∗j∗
[
qk(IndL)

]
; δ >=< qk(IndL); j∗(β) >=< qk(IndL);α >,

which contradicts the choice of α.
The proof of ii) is similar.

4. Proof of the main theorem

Denoting by Hs the Sobolev-Hardy spaces, the map

(F ,G) : Λ× C∞(Ω;Rm)→ C∞(Ω;Rm)×
r∏
i=1

C∞(∂Ω;R)

defined by (??) extends to a smooth map

(4.1) h = (f, g) : Λ×Hk+s(Ω;Rm)→ Hs(Ω;Rm)×H+(∂Ω;Rr),

where, by definition, H+(∂Ω;Rr) =
∏r
i=1H

k+s−ki−1/2(∂Ω;R).
By our assumptions, u ≡ 0 is a solution of hλ(u) = 0 for all λ ∈ Λ. Hence

Λ × {0} is a trivial branch for h. The Frechet derivative Dhλ at u = 0 is the
operator (Lλ, Bλ) induced on Hardy-Sobolev spaces by (Lλ,Bλ).

It is shown in [?, Proposition 5.2.1] that, under the hypothesis of Theorem ??,
we can find a neighborhood O of 0 in Hk+s(Ω;Cm) such that

h : Λ×O → Hs(Ω;Rm)×H+(∂Ω;Rr)
is a smooth parametrized family of Fredholm maps of index 0. By [?, Proposition
5.2.2], the set of bifurcation points of (??) coincides with the set Bif(h) of bifur-
cation points of the map h. Moreover, denoting with (L,B) the linearization of h
along the trivial branch, we have that ν /∈ Σ(L,B).
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If Ind (L,B) is nonorientable, ω1Ind (L,B) 6= 0. By assertion ii) of Theorem ??,
dimB ≥ d−1 and Bif(h) carries a nontrivial class of positive degree in cohomology
with Z2 coefficients. Hence, in this case, the conclusions of Theorem ?? hold
regardless any condition on d(σ,Σ).

If Ind (L,B) is orientable, the proof of Theorem ?? is obtained by relating the de-
gree deg(σ; Σ) defined in (??) with the evaluation of the first Wu class of Ind (L,B)
on the spherical homology class [Σ]. Only the first Wu class is of interest for us
because, as we will see, all characteristic numbers obtained in this way from higher
Wu classes vanish.

The relation between characteristic classes of the index bundle and the de-
gree deg(σ; Σ) comes from the family version of the Agranovich reduction and the
Atiyah-Singer theorem.

Let σ : Λ× (R2n−K ×{0}) //GL(m;C) be the map defined by (??). In [?] we
have constructed a smooth family S : Λ → Ell(Rn) of elliptic pseudo-differential
operators of order zero on Rn such that the principal symbol of Sλ coincides with
σλ. The Agranovich reduction relates S with the family (L,B) considered as a
family of differential operators with complex coefficients.

More precisely, denoting by Sλ : Hs(Ω;Cm)→ Hs(Ω;Cm) the operator induced
by Sλ on Hardy-Sobolev spaces and with (Lc, Bc) the complexification of (L,B),

Theorem 4.1.1 of [?] states that in K̃(Λ)

(4.2) Ind (Lc, Bc) = IndS.

Since the index bundle of the family (Lc, Bc) is the complexification of the (real)
index bundle Ind (L,B), we have:

(4.3) c(Ind (L,B)) = IndS,

where c : K̃O(Λ)→ K̃(Λ) is the complexification homomorphism.
Using the Chern-Weil theory of characteristic classes of smooth vector bundles

over smooth manifolds, in [?] Fedosov obtained an explicit expression for the differ-
ential form representing Chern character ch(IndS) in de Rham cohomology with
complex coefficients. He showed that ch(IndS) is the cohomology class of the form

(4.4) −
∞∑
j=n

(j − 1)!

(2πi)j(2j − 1)!

∮
S2n−1

tr(σ−1dσ)2j−1,

where
∮

denotes the integration along the fiber (see [?] Appendix C) and S2n−1 is
the boundary of a ball in R2n containing the set {(x, η)/ detσ(λ, x, η) = 0}.

Using Fedosov’s formula we will show that, under the hypothesis of theorem
??, q1(Ind (L,B)) 6= 0 in H2(p−1)(Λ;Zp). Then theorem ?? will follow immediately
from Theorem ?? i) and [?, Proposition 5.2.1], which shows that the set B(h) of
bifurcation points of the map h coincides with the set B of bifurcation points for
classical solutions of the system (??).

The rest of this section is devoted to show that q1(Ind (L,B)) 6= 0. For this, we
will consider the restriction of the family h to Σ×Hk+s(Ω;Rm).

More precisely, if q = 2(p − 1) and e : Sq → Λ is an orientation preserving
embedding with Im e = Σ, let

h̄ : Sq ×Hk+s(Ω;Rm)→ Hs(Ω;Rm)×H+(∂Ω;Rr)
be defined by h̄(α, u) = h(e(α), u).

The family h̄ is the nonlinear Fredholm map induced in functional spaces by the
pullback of the problem (??) to the sphere Sq. The linearization of h̄ along the
trivial branch is the family (L̄, B̄) = (L,B) ◦ e.

Let σ̄(α, x, η) = σ(e(α), x, η) and S̄ = S ◦ e. Then S̄ is induced in functional
spaces by the family of pseudo-differential operators S̄ with principal symbol σ̄.
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By the previous discussion, from (??) we get

(4.5) c(Ind (L̄, B̄)) = Ind S̄

Let us show that, for q = 2(p− 1), the Kroenecker pairing

< q1(Ind (L,B)); e∗([S
q] > 6= 0.

By naturality of characteristic classes and the index bundle we have

(4.6) < q1(Ind (L,B)); e∗([S
q]) >=< q1(Ind (L̄, B̄)); [Sq] >

In order to compute the right hand side let us recall that, putting r = 1
2 (p − 1),

the Wu class qk(E) of an n-plane bundle over X can be written as a polynomial
Krk(p1, · · · , prk) in Pontriagin classes reduced mod p. The polynomialsKrk are with
Zp coefficients and belong to a multiplicative sequence associated to the function
φ(t) = 1 + tr [?].

To shorten notations, let η = Ind (L̄, B̄) and ηc = c(Ind (L̄, B̄)).
For vector bundles over S4r we have pi(η) = 0 for i < r and q1(η) = ±rpr(η)

reduced mod p. Indeed, it follows from Lemma 1.4.1 in [?] and Newton’s identity
relating power sums to elementary symmetric functions, that, over the integers, the
coefficient of the integral Pontriagin class pr in Kr is given by sr(0, . . . , 0, 1) = ±r.

By Bott’s integrality theorem [?, section 18.9], the Chern character ch(ηc) =
ch2r(η

c) is an integral class. Moreover, using (??), for the integral Pontriagin class
pr it holds that

(4.7) pr(η) = (−1)rc2r(η
c) = ±(2r − 1)!ch2r(Ind S̄),

which gives

(4.8) < q1(Ind (L̄, B̄)); [S4r] >= ±r(2r − 1)! < ch2r(Ind S̄); [S4r] > mod p.

Here we denote in the same way the fundamental class in homology with coefficients
in Z and Zp.

By Fedosov’s formula (??), the differential form representing ch2r(Ind S̄) in de
Rham cohomology is

Ω =
(n+ 2r − 1)!

(2πi)(n+ 2r)(2n+ 4r − 1)!

∮
S2n−1

tr(σ̄−1dσ̄)2n+4r−1.

Since the cohomology class of Ω belongs to H4r(S4r;Z), we have that

< ch2r(S); [S4r] >=
(n+ 2r − 1)!

(2πi)(n+ 2r)(2n+ 4r − 1)!

∫
S4r

∮
S2n−1

tr(σ̄−1dσ̄)2n+4r−1 =

=
(n+ 2r − 1)!

(2πi)(n+ 2r)(2n+ 4r − 1)!

∫
S4r×S2n−1

tr(σ̄−1dσ̄)2n+4r−1

is an integer.
The last term of the above expression coincides with deg(σ; Σ) defined in (??).

Thus, from (??) we obtain

< q1(Ind (L̄, B̄)); [S4r] >= ±r(2r − 1)! deg(σ; Σ) mod p.

Since r(2r−1)! is not divisible by p, by (??) q1(Ind (L,B)) 6= 0 whenever deg(σ; Σ)
is not divisible by p. This concludes the proof of the theorem. �

Remark 4.0.1. Notice that the above calculation gives

< qk(Ind (L̄, B̄)); [S4r] >= 0, for k > 1.
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5. Other results

In this section, we will obtain sufficient conditions for bifurcation of solutions for
a particular class of nonlinear elliptic boundary value problems (??) on dimensions
not covered by Theorem ??.

More precisely, we substitute m with m′ = 2m and r with r′ = 2r in (??) and
we denote with (L′,B′) the linearization of (??) along the trivial branch in both
hypotheses H2 and H3. But instead of H1 we assume:
H ′1) - The principal part of the linearization (L′,B′) at the trivial branch is

obtained from a family of elliptic boundary value problems for linear partial differ-
ential operators with complex coefficients

(L,B) : Rq × C∞(Ω;Cm)→ C∞(Ω;Cm)× C∞(∂Ω;Cr)
by forgetting the complex structure.

Notice that H ′1 is verified by semilinear equations arising as real lower-order
perturbations of families of linear elliptic boundary value problems with complex
coefficients. It also holds in the case of quasilinear elliptic problems for functions
with values in Cm of the form

(5.1) F(λ, x, u,Dku) =
∑
|α|=k

aα(λ, x, u,Dk−1u)Dαu+ l.o.t.,

where aα ∈ Cm×m, and the boundary map g defined in the same way. In this case
the assumption H ′1 is verified because, for maps Fλ defined by (??), the principal
part of the linearization at 0 is given by Lλv =

∑
|α|=k aα(λ, x, 0)Dαv, and similarly

for G.
Assuming H ′1, we will use the principal symbol p(λ, ξ) of the complex differential

operator L to define

(5.2) σ : Λ× (R2n −K × {0})→ GL(m;C)

in the same way as in (??). Moreover, given a q−sphere Σ embedded in Λ, we
define deg(σ; Σ) by the equation (??).

Theorem 5.0.1. Let the boundary value problem (??) verify H ′1, H2 and H3. If,
for some sphere Σ of dimension q = 2, 4 embedded in Λ, the number deg(σ; Σ)
defined by (??) is odd, then the Lebesgue covering dimension of the set B of all
bifurcation points of (??) is at least d− q and the set B(f) either disconnects Λ or
is not contractible in Λ to a point.

Proof. : A complex Fredholm operator of index 0 is still Fredholm, with the same
index, when viewed as a real operator. Hence, from H ′1 it follows that the family
(L′B′) induced by (L′,B′) is a family of Fredholm operators of index 0 and moreover
(L′ν , B

′
ν) is invertible.

In the same way as in the previous section, we can find a neighborhood O of
u ≡ 0 such that h = (f, g) : Λ × O → Hs(Ω;Rm′) × H+(∂Ω;Rr′) is a smooth
parametrized family of Fredholm maps of index 0 whose linearization at the trivial
branch is the family (L′, B′).

If S is the family of pseudo-differential operators associated to σ, then, by The-
orem 4.1.1 of [?], Ind (L,B) = IndS.

Let r : K̃(Λ) // K̃O(Λ) be the homomorphism obtained by forgetting the com-
plex structure. We will compute the Stiefel-Whitney classes of r (Ind (S)) by re-
stricting them to Σ. As before, let e be an embedding of the sphere Sq, q = 2s,
whose image is Σ. For any element η ∈ K̃(S2s), the Chern character ch(η) = chs(η)
is an integral class. Moreover the Chern class cs(η) = ±(s− 1)!chs(η).

The Stiefel-Whitney class ωq(η) is the image of cs under the change of coefficients
ρ : Hq(Sq;Z)→ Hq(Sq;Z2) and therefore, < ωqr(η); [Sq] > is the mod 2 reduction
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of (s−1)! < chs(η); [Sq] > . Thus, if s = 1, 2 and < chs(η); [Sq] > is odd, ωqr(η) 6= 0
in Hq(Sq;Z2).

Using Fedosov’s formula for the Chern character of the index bundle as before,
we obtain < chs(e

∗(IndS)); [Sq] >= deg(σ; Σ). Taking η = e∗(IndS) in the above
discussion, if q = 2, 4 and d(σ; Σ) is odd, then e∗ωqr(IndS) 6= 0 in Hq(Sq;Z2) and
hence ωqr (Ind (L,B)) = ωqr(IndS) 6= 0 in Hq(Λ;Z2) as well. Thus B(h) verifies
the conclusion ii) of theorem ?? and the bootstrap [?, Proposition 5.2.1] concludes
the proof. �
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