
TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 1

On the Parallelization of Vector Fitting Algorithms
Alessandro Chinea and Stefano Grivet-Talocia, Senior Member, IEEE

Abstract—The so-called Vector Fitting (VF) algorithm has
gained much popularity over the last few years. This technique
provides a very effective system identification tool that, starting
from input-output responses of a linear and time-invariant
system, computes a rational approximation of its transfer matrix.
The latter is routinely used to synthesize compact broadband
equivalent circuits or state-space models of possibly complex
interconnects at the chip, package, board, or even system level.
The VF algorithm is based on a combination of iterative linear
least squares solutions and eigensolutions, and proves robust
and reliable. A potential weak point of VF is its relatively
poor scalability with the complexity of the structure under
modeling. When the number of input-output ports is very
large (one hundred or more, as in the case of power buses or
packages), the excessive computational requirements may hinder
VF performance and prevent its successful application. In this
paper, we address these issues by first presenting a detailed
analysis of the computational cost of all the algorithm parts.
The results show a very good potential for VF parallelization for
multicore hardware, and suggest a few alternative parallelization
strategies. Each of these strategies is described in detail. Finally,
numerical results and comparisons are provided on a large set
of industrial benchmarks. These results demonstrate excellent
scalability and speedup factors for the parallel sections of the
algorithm, leading to a drastic reduction in overall runtime.

I. INTRODUCTION

This paper discusses about the efficient extraction of be-
havioral models of linear and time-invariant structures, with
particular reference to electrical interconnects such as pack-
ages, power buses, connectors, vias and via fields. Despite
the huge literature on the subject and the very good results
achieved by the academic and industrial communities over the
last few years, the model extraction process still remains a hot
topic due to the ever increasing demand for higher complexity,
higher capacity, higher efficiency and runtime reduction.

Let us consider a generic electrical interconnect with its
set of well-defined interface ports. Standard modeling flows
involve a preliminary full-wave characterization, aimed at
capturing all interactions between port signals, induced fields,
geometry, and materials. The results of such characterization
can be exploited in two forms. If one has access to the internal
variables of the field solver, a standard model order reduction
process can be applied [1]-[13], leading to a compact state-
space or descriptor model, which can be directly used in time-
domain simulation. An alternative is to extract an external port
characterization from the field solution, typically as a table of
frequency samples of the scattering matrix over the desired
bandwidth. This dataset is then fed to a system identification
algorithm, which fits a rational model and synthesizes it as

Manuscript received ; revised.
Alessandro Chinea and Stefano Grivet-Talocia are with the Department

of Electronics, Politecnico di Torino, Torino 10129, Italy (e-mail: alessan-
dro.chinea@polito.it, stefano.grivet@polito.it).

a state-space system or as an equivalent circuit [14]-[24],
ready for transient analysis. The above techniques are well-
established. Yet, there is still margin for improvements.

In this work, we will concentrate on black-box identifica-
tion, assuming that the system is known via finite frequency
samples of its input-output transfer matrix. In particular, we
will focus on the Vector Fitting (VF) algorithm. Since its
introduction [14], VF has gained much popularity due to its
simplicity, robustness and higher performance with respect
to the preexisting state of the art methods. The VF scheme
computes poles and residues of a rational function providing
a fit to the raw data points. The direct nonlinear optimization
process is relaxed to a weighted linear least squares system,
which is reformulated and solved iteratively until convergence.
As opposed to more traditional approaches, VF allows for
high-order model identification due to the good conditioning
of its “basis” functions, consisting of suitably defined partial
fractions. For the above reasons, most commercially available
black-box model extraction tools include some implementa-
tion of the VF algorithm. We remark that other competitive
solutions for black-box identification exist, such as the Löwner
matrix approach of [25]. Such methods are not addressed in
this work.

A potential weak point of the basic VF scheme is its
relatively poor scalability with the number of input-output
ports P of the structure under modeling. Although the numeri-
cal performance will depend on the particular formulation and
implementation of VF, overall complexity will be obviously
not less than O(P 2) in the general case. This scaling law
may be a serious limit when the number of ports grows
beyond one hundred or more, as required by most challenging
high-speed packaging applications. In this work, we aim at
breaking this complexity by reformulating the VF scheme in
such a way that it can be easily parallelized and deployed
on multicore hardware platforms. Multicore parallelization is
indeed a most promising solution for runtime reduction of
numerical simulation or extraction algorithms, since parallel
hardware is becoming widespread even at the desktop level
and at quite acceptable costs.

After a review of the basic VF scheme in Section II in
order to set the notation, we perform in Section III a detailed
analysis of the computational cost for each sub-task involved
in the VF flow. In particular, we analyze the number of
floating point operations (flops) required in case the rational
model is structured with common poles among all responses,
private poles for each response, and in the intermediate case
of common poles for partial subsets of port responses. These
three “splitting” strategies have an influence not only on the
synthesized model structure, hence on its efficiency in subse-
quent system-level simulations, but also on the flops required
by its identification. The results of this analysis provide the

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 2

basis for the design of suitable parallelization strategies. In
particular, we observe that a multiple QR factorization stage
is the most demanding part of the scheme, therefore the
main candidate for our parallelization. Combining this with
the above splitting strategies, we obtain four different parallel
versions of VF, which are described in detail in Section IV. A
preliminary formulation of one of these versions is available
in [26].

The theoretical performance of the presented Parallel VF
(PVF) schemes is compared in Section V to the numerical
results obtained on a large set of industrial benchmarks
(various types of electrical interconnects such as packages,
connectors, vias and via fields, power buses). Main parameters
controlling the complexity of such test cases is the number
of ports P (ranging from 22 to 245), the number of poles
per response N (4 to 64), and the number of raw frequency
samples K (10 to 1228). These benchmarks, summarized in
Table I, form a quite comprehensive and representative set. We
remark that N denotes the number of poles that are required
for an accurate rational approximation of each scalar transfer
matrix element. The actual dynamic order of the complete
macromodel will depend on the size of an associated minimal
state-space realization, as discussed in Section II-D.

The PVF schemes have been coded for a shared memory
architecture using OpenMP and deployed on a 16-core ma-
chine. The scalability tests described in Section V show that
the parallel efficiency and the speedup factor with respect to a
serial implementation are close to ideal for the code fragments
that have been parallelized. Obviously, some overhead remains
for the small parts of the VF algorithm that cannot be
parallelized, due to its iterative nature. Nonetheless, this paper
demonstrates that VF parallelization is indeed quite effective,
leading to major runtime reduction and in some cases to almost
real-time model extraction.

Before proceeding, we remark that no discussion will be
performed here on the important subject of model passivity
check and enforcement [27], [28], [29]. Several methods are
available for this task [30]-[44]. Some preliminary results on
their parallelization are available in [45]. A comprehensive
treatment of parallelized passivity check and enforcement
schemes will be the subject of a future report.

II. BACKGROUND

A. The basic VF scheme

The Vector Fitting (VF) scheme [14] is an efficient algo-
rithm for the estimation of the rational transfer function of a
linear multiport structure. We start by reviewing the basic VF
scheme in order to set the notation. In particular, we adopt a
formulation among the many available in the literature [14]-
[24], that will facilitate the description of our parallelization
work. The various algorithm steps that are outlined below are
also summarized in the block-diagram of Fig. 2.

The input to the VF algorithm is a set of simulated or
measured frequency samples Sij,k = Sij(jωk), with k =
1, 2, . . . ,K and i, j = 1, 2, . . . , P , where P denotes the
number of electrical ports. Assuming a macromodel in rational

TABLE I
LIST OF BENCHMARK CASES. P DENOTES THE NUMBER OF PORTS, K THE

NUMBER OF FREQUENCY SAMPLES, AND N THE NUMBER OF POLES PER
RESPONSE.

Id Ports P Samples K Poles N
1 56 1001 50
2 83 1228 30
3 245 197 20
4 34 570 64
5 48 690 26
6 92 71 22
7 40 1001 10
8 46 71 28
9 34 1000 10
10 167 27 12
11 41 572 10
12 160 101 6
13 44 301 12
14 24 1001 12
15 35 145 20
16 22 201 22
17 22 201 20
18 28 501 6
19 25 572 6
20 23 572 6
21 40 40 12
22 140 10 6
23 72 11 4
24 52 13 4

form and cast as a sum of partial fractions,

S̃ij(s) = r̃ij,0 +

N∑
n=1

r̃ij,n
s− p̃n

, (1)

the VF algorithm tries to find the set of unknown poles p̃n
and residues r̃ij,n that minimize the least squares distances∑K
k=1 |Sij,k − S̃ij(jωk)|2.
The non linear optimization problem (1) is solved by an

iterative procedure that refines an initial estimate or guess pn
of the poles (the so-called “starting poles”). This relaxation is
achieved by introducing a weight function

σ(s) = 1 +

N∑
n=1

cn
s− pn

=

∏N
n=1(s− zn)∏N
n=1(s− pn)

(2)

with known poles pn and unknown residues cn. The following
condition

σ(jωk)Sij,k ' rij,0 +

N∑
n=1

rij,n
jωk − pn

. (3)

is then enforced by collecting all responses i, j ∈
{1, 2, . . . , P} and all frequency samples k ∈ {1, 2, . . . ,K} in
a single linear system, which is solved in least squares sense.

The solution of (3) gives the residues cn of the weight
function and the coefficients rij,n, which are discarded. Intu-
itively, if the raw data samples Sij,k come from a N -th order
rational function and if (3) is solved exactly, the zeros zn of the
weight function must implicitly cancel the (still unknown) true
poles of the model. This observation provides the guideline to
setup the next VF iteration, i.e., to replace the starting poles
of σ(s) with its zeros pn ← zn, and to repeat the process
until convergence. The zeros zn can be found by computing
the eigenvalues

zn = eig
{
Aσ −BσD

−1
σ Cσ

}
, (4)

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 3

where (Aσ,Bσ,Cσ,Dσ) is a minimal state-space realization
of σ(s). Although a general convergence proof is not yet
available [46], the pn usually converge to the dominant poles
of the structure p̃n in few iterations.

Once the dominant poles p̃n have been found, another
simple linear least squares problem ∀i, j ∈ {1, 2, . . . , P}, k ∈
{1, 2, . . . ,K}

Sij,k ' r̃ij,0 +

N∑
n=1

r̃ij,n
jωk − p̃n

, (5)

is used to determine the residues r̃ij,n.

B. The pole identification stage

A closer look at the problem (3) reveals the matrix structure
ϕ1 0 . . . 0 −S1ϕ
0 ϕ1 . . . 0 −S2ϕ
...

...
. . .

...
...

0 0 · · · ϕ1 −SP 2ϕ

r1
r2
...

rP 2

c

 =

S11K
S21K

...
SP 21K

 (6)

where 1K ∈ RK is a column vector of ones, and

ϕ =

1

jω1−p1
1

jω1−p2 · · · 1
jω1−pN

1
jω2−p1

1
jω2−p2 · · · 1

jω2−pN
...

...
. . .

...
1

jωK−p1
1

jωK−p2 · · · 1
jωK−pN

 ,
ϕ1 =

[
1K ϕ

]
Si+(P−1)j = diag

k∈{1,2,...,K}
(Sij,k)

ri+(P−1)j =
[
rij,0 rij,1 · · · rij,N

]T
c =

[
c1 c2 · · · cN

]T
.

(7)

The matrix involved in (6) is depicted in Fig. 1a and has
a size KP 2 × ((N + 1)P 2 + N). This size is obviously
prohibitively large for structures with few tens of ports. For
example, case #5 of Table I (P = 48, K = 690, N = 26)
would require about 1.4 TB of memory (using double precision
complex numbers). By using a sparse storage format, the
required memory decreases to 1.3 GB, but even in this case a
direct solution of (6) requires an excessive computational cost.

In [24], a new formulation of the least squares problem (6)
is introduced in order to overcome these limitations. Given
that the terms rl are discarded in the VF process, the main
idea in [24] is to find a new set of equations where only
the unknowns c are considered and solved for. First, each
block-row of system (6) for l = 1, 2, . . . , P 2 is considered
independently (see Fig. 1b) and subject to a “thin” QR
decomposition [47] (Fig. 1c)[

ϕ1 −Slϕ
]

= QlRl = Ql

[R11
l R12

l

0 R22
l

]
, (8)

where the N×N upper triangular matrix R22
l is associated to

the unknowns c. By collecting all the matrices R22
l we obtain

(a) (b) (c) (d)

=
=

=

=

=

=

=

=

=

=

Fig. 1. (a) Sketch of the matrix structure for the pole identification
system (6); (b) problem decoupling and (c) associated QR decompositions;
(d) compressed system (9).

the new “compressed” least squares problem
R22

1

R22
2
...

R22
P 2

 c =

QT

1 S11K
QT

2 S21K
...

QT
P 2SP 21K

 , (9)

depicted in Fig. 1d, that requires much less memory (NP 2 ×
N) and is computationally tractable.

C. Relaxed Vector Fitting

We recall in this section a slightly modified version of VF
which has superior convergence performances, especially in
presence of noise in the raw data [17]. The main idea is to
remove the asymptotic unitary constraint of σ(s) in (2) by
replacing it with a decision variable d, so we define a modified
weight function

σ̂(s) = d+

N∑
n=1

cn
s− pn

= d

∏N
n=1(s− zn)∏N
n=1(s− pn)

(10)

In this case the least squares system in (3) becomes

ϕ1 0 . . . 0 −S1ϕ1

0 ϕ1 . . . 0 −S2ϕ1
...

...
. . .

...
...

0 0 · · · ϕ1 −SP 2ϕ1

r1
r2
...

rP 2

ĉ

 =

0
0
...
0

 , (11)

with

ĉ =
[
d c1 c2 · · · cN

]T
. (12)

In order to avoid the all-vanishing trivial solution one more
equation is added,

Re

{
K∑
k=1

(
d+

N∑
n=1

cn
jωk − pn

)}
= K , (13)

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 4

START

QR decompositions
in (8)

O(P 2KN2)

QT
l applications to
the RHS of (9)

O(P 2KN)

LSP (9) for poles
estimation

O(P 2N3)

EIGP (4) for poles
estimation

O(N3)

Poles con-
vergence?

LSP (5) for residues
estimation

O(P 2KN)

END
yes

no

Fig. 2. Block-diagram description of the adopted formulation of the VF algorithm, including the computational cost of each block. Acronyms LSP and
EIGP stand for Least Squares Problem and Eigenvalue Problem, respectively. Note that the block with the applications of QT

l is not necessary in the relaxed
version of the VF algorithm.

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

(4,1)

(4,2)

(4,3)

(4,4)

none

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

(4,1)

(4,2)

(4,3)

(4,4)

column

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

(4,1)

(4,2)

(4,3)

(4,4)

all

Fig. 3. Graphical illustration of the adopted splitting strategies. The ”none”
case considers all responses together; the ”column” case splits the system into
a set of disjoint single-input subsystems corresponding to the columns of the
transfer matrix; the ”all” case models each response independently.

According to this relaxed formulation, the QR decompositions
are applied to

[
ϕ1 −Slϕ1

]
= Q̂lR̂l = Q̂l

[
R̂11

l R̂12

l

0 R̂22

l

]
, (14)

and the final system for poles identification becomes
R22

1

R22
2
...

R22
P 2

rT

 ĉ =

0
0
...
0
K

 (15)

where the row vector rT contains the coefficients of the
constraint in (13).

D. Splitting strategies

The derivation of the basic VF scheme in Section II-A
assumes that the poles pn are common to all model responses,
see (1). This assumption may be appropriate when modeling
lumped circuits or structures with global resonances. When
however VF is used as a general numeric tool for rational
approximation, the common-pole assumption may be overly
restrictive and may lead to non-optimal accuracy. Another
drawback in the common-pole assumption is the necessity
to consider all responses together in the pole identification
stage, as discussed in Section II-B, leading to large-size
systems whose solution requires significant CPU and memory
resources.

A different approach is to consider a large multiport struc-
ture as a collection of connected but disjoint subsystems.
For instance, considering the columns of the transfer matrix
separately corresponds to a partition of the system into a
set of Single-Input-Multiple-Output (SIMO) subsystems. The
connection of these subsystems into a global model leads to
state-space realizations with higher degree of sparsity [15],
[31], with increased performance in successive transient sim-
ulations. For what concerns the model identification stage,
each of these subsystems can have its own private set of
poles, which can thus be computed using the VF scheme on
a restricted set of responses. This procedure allows saving
memory and CPU usage. Moreover, such a system partition
is an obvious and effective decoupling strategy in view of a
parallelization of the overall model extraction process.

We provide a more formal description of this splitting strat-
egy. Let I be the set of P 2 pairs (i, j), with i, j ∈ {1, . . . P},
and let J = {I1, . . . , IM} be a partition of I, i.e.,

M⋃
µ=1

Iµ = I ,

Iµ ∩ Iν = ∅, ∀µ, ν ∈ {1, . . .M}, µ 6= ν .

(16)

Each element Iµ in this partition is associated with a sub-
model, whose responses share a common pole set. This
submodel reads

S̃ij(s) = r̃ij,0 +

Nµ∑
n=1

r̃ij,n
s− p̃µ,n

, ∀(i, j) ∈ Iµ . (17)

The identification of this µ-th submodel is performed as
described in Section II-B, but discarding the responses (i, j) /∈
Iµ in all steps.

Although quite general and fancy splitting strategies can
be devised, in this work we use only the following three
alternatives, which we consider practically relevant. See also
Fig. 3 for a graphical illustration.
• none: a single partition J = {I} is used, i.e. all

responses are considered as a whole;
• column: the transfer matrix is partitioned column-wise,

i.e., J = {I1, . . . , IP } with Iµ = {(1, µ), . . . , (P, µ)};
• all: each partition is a singleton, i.e., J = {I1, . . . , IP 2},

with Ii+(P−1)j = {(i, j)}.
Usage of the keywords that label each partitioning scheme will
be consistent throughout the paper.

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 5

A few remarks on the state-space realization (A,B,C,D)
of models obtained using the above splitting strategies are in
order. In the “all” case, the state-space dimension is obviously∑P 2

µ=1Nµ, which reduces to P 2N if all responses are fitted
with the same number Nµ = N of poles. This large state-
space dimension is compensated by the high sparsity of the
state-space matrices (A,B,C), which are block-diagonal. For
the “column” case, matrix A is block-diagonal with size∑P
µ=1Nµ, matrix B is a sparse input-to-state mapping and

matrix C stores all residues and is full [31]. Finally, for the
“none” case, minimal realizations can be obtained using the
Gilbert form, following the procedure reported in [48], [49].
In case of full-rank residues, the same state-space size of
the “column” case is obtained. Otherwise, the state-space size
results

∑N
n=1 ρn, with ρn ≤ P denoting the rank of the residue

matrix associated to the n-th pole.
The actual numerical efficiency in system-level simulation

of models in the three above formats strongly depends on
the implementation. For instance, a direct equivalent circuit
synthesis for SPICE-based simulation results more compact
for the “none” and “column” cases, due to the reduced
number of required dynamic components. However, for more
advanced and direct implementations making use of analytic
Laplace transform inversion and fast/recursive convolutions
(an example is the Laplace element [50], now available in most
commercial circuit solvers), all model forms are essentially
equivalent.

III. COMPLEXITY ANALYSIS

A detailed analysis of the computational cost required by the
various VF steps is the key to devise a proper parallelization
strategy. We recall first the number of floating-point operations
(flops) needed for some standard linear algebra problems
involved in VF algorithm [47]. Given a matrix A ∈ Rm×n,
the QR factorization of A is performed in

FlQR(m,n) =

2m2n− 2

3
m3 if n > m

2n2m− 2

3
n3 if n < m

(18)

flops. An accurate description of flops required for a standard
eigenvalue problem is more difficult to find, given that this
depends on how rapidly the algorithm converges [47]. An
average number is

FlEIG(m) ∼ 10m3 (19)

where m is the size of the eigenvalue problem.
We consider now a least squares problem with multiple

right-hand sides
min ‖Ax1 − b1‖
min ‖Ax2 − b2‖

...
min ‖Axp − bp‖

(20)

where A ∈ Rm×n (with m > n), bk ∈ Rm, x ∈ Rn.
The solution of (20) is performed in three steps. First, a QR
decomposition of A is computed

A = QR, (21)

then each right-hand side is multiplied by QT ,

b̂k = QT bk (22)

and finally the triangular systems

Rxk = b̂k (23)

are solved using back-substitution. The three steps re-
quire FlQR(m,n), 2mnp and n2p flops, respectively. There-
fore, the total number of floating point operations for a least
squares problem with multiple right hand sides is

FlLSP(m,n, p) = FlQR(m,n) + p(2mn+ n2) (24)

With these premises, we are ready to count the number of
floating point operations required by the VF algorithm, a block
diagram of which is reported for clarity in Fig. 2. We indicate
with H the number of iterations required for poles estimation
and with L the number of elements of the transfer matrix to
be modeled. We suppose also that the relaxed version of VF
is used, therefore the block of QT

l applications in Figure 2 is
not necessary. The number of flops results

FlVF(L,K,N,H) = H
[
L · FlQR(2K, 2(N + 1))

+ FlLSP((N + 1)L+ 1, N + 1, 1)

+ FlEIG(N)
]

+ FlLSP(2K,N + 1, L)
(25)

where the number of rows in QR decompositions as well as
the number of rows in final LS problem are multiplied by two
because the complex matrices involved in these operations are
first converted to double size real matrices by taking their real
and imaginary parts.

We now substitute (18), (19), and (24) into (25). Extracting
the leading term under the assumption K > N (i.e., the
number of poles of the rational approximation does not exceed
the number of available frequency samples) leads to the
following dominant scaling law

FlVF(L,K,N,H) ' 16LKN2H . (26)

It can be observed that this expression is basically the same as
would be obtained by considering the QR factorization alone,
which is therefore the dominant part of the VF scheme for
what concerns the CPU requirements. Table II confirms this
proposition by listing the percentage share of overall CPU time
needed by each VF sub-task, based on the above theoretical
derivation, and for the “none” splitting strategy. The QR
phase (14) needs 87% of the CPU time in the worst-case #22
and requires more than 98% for most cases. The solution of the
LSP problem for poles identification (15) requires only 1-2%
in most cases, reaching 11% for case #22. The computational
cost EIG problem (4) is negligible with respect to all other
parts, whereas the final LSP problem (5) for the evaluation
of the residues is also in the range 0-2%. Collectively, these
results show that the primary goal in our parallelization work
will be to address the QR step.

We now consider the influence of the adopted splitting
strategy on the theoretical flops count. Considering the general

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 6

TABLE II
THEORETICAL PERCENTAGE OF CPU-TIME SPENT ON EACH VF STEP
(“NONE” SPLITTING CASE) FOR THE BENCHMARK CASES OF TABLE I.

Id QR (14) LSP (15) EIGP (4) LSP (5)
1 99.17 0.66 0.00 0.17
2 99.40 0.33 0.00 0.27
3 98.16 1.42 0.00 0.41
4 98.37 1.48 0.01 0.14
5 99.17 0.51 0.00 0.32
6 95.08 4.50 0.00 0.42
7 99.09 0.15 0.00 0.76
8 93.90 5.74 0.01 0.35
9 99.09 0.15 0.00 0.76
10 92.10 7.11 0.00 0.79
11 98.98 0.26 0.00 0.76
12 97.80 0.99 0.00 1.21
13 98.76 0.58 0.00 0.65
14 99.17 0.17 0.00 0.65
15 97.62 1.94 0.01 0.43
16 98.07 1.52 0.01 0.40
17 98.17 1.39 0.01 0.43
18 98.61 0.20 0.00 1.19
19 98.63 0.17 0.00 1.20
20 98.63 0.17 0.00 1.20
21 94.61 4.64 0.01 0.74
22 87.05 11.35 0.00 1.59
23 90.72 7.29 0.00 1.99
24 91.98 6.09 0.00 1.93

case (25), we can particularize it as follows

FlVF-NONE(P,K,N,H) = FlVF(P 2,K,N,H) ,

FlVF-COLUMN(P,K,N,H) = P · FlVF(P,K,N,H) ,

FlVF-ALL(P,K,N,H) = P 2 · FlVF(1,K,N,H) .

(27)

Due to the linear scaling with respect to the number of
responses L, see (26), the difference in performance for a serial
implementation of the three splitting strategies is expected to
be minimal. Of course, the number of operations required
by any splitting strategy will be slightly larger with respect
to the case of no splitting, due to the additional overhead
introduced by the repeated EIG and LSP problems, which
are solved only once per iteration in case of no splitting.
Taking FlVF-NONE(P,K,N,H) as a reference and computing
the theoretical flops count for the “column” and “all” splitting
cases, we obtain a maximum overhead of 1% and 39%, respec-
tively, among all cases of Table I. So, the only motivation for
introducing these splitting strategies appears to be the promise
for an embarrassingly parallel implementation.

IV. PARALLELIZING VECTOR FITTING

In this work, we focus on a shared-memory programming
model, based on the OpenMP paradigm [51]. The main idea is
to organize and parallelize the computational tasks by splitting
a master thread into a specified number T of slave threads that
run concurrently. Each of these threads has an identification
number t ∈ {0, 1, . . . , T−1} that is easily retrieved at runtime
using the OpenMP programming interface, and which can be
used to schedule and assign individual tasks. Parallel blocks
in the code are introduced by using suitable preprocessor
directives, which specify all the properties of the parallel
sections (e.g., shared/private variables, type of scheduling
method, etc.). OpenMP has the advantage of requiring very

Algorithm 1 Poles refinement
Input
T : number of available threads
L : number of elements to be processed
N : number of poles
K : number of frequency samples
Î : split to be processed, Î = {(i1, j1), . . . , (iL, jL)}
pn : current poles, ∀n ∈ {1, . . . , N}
ωk : frequency points, ∀k ∈ {1, . . . ,K}
Sij,k : frequency samples, ∀(i, j) ∈ Î, ∀k ∈ {1, . . . ,K}

function zn = POLESREF(T, L,N,K, Î, pn, ωk, Sij,k)

build matrix ϕ1 using ωk and pn
Ñ ← N + 1

parallel region (only if T > 1)

t← thread number

for l←
⌊
t
T L
⌋

+ 1 to
⌊
t+1
T L

⌋
V

(t)

[:,1:Ñ]
← ϕ1

V
(t)

[:,Ñ+1:2Ñ]
← −diagk∈{1,...,K}{Siljl,k}ϕ1(Q(t),R(t)
)
← QR

(
V (t)

)
(dgeqrf)

W
[(l−1)Ñ+1:lÑ,:]

←R(t)

[Ñ+1:2Ñ,Ñ+1:2Ñ]

end for
end parallel region
W [LÑ+1,:] ← rT

w ←
[
0 · · · 0 K

]T
ĉ← arg min ‖Wx−w‖ (dgels)

Build s.s. realization {Aσ,Bσ,Cσ,Dσ} using ĉ and pn
zn ← eig

{
Aσ −BσD

−1
σ Cσ

}
(dgees)

end

few modifications of the original serial code but, unlike other
methods of parallel programming based on message passing
(MPI, see [52]), it can be used only in shared memory
computers. Two different parallelization strategies of VF are
now analyzed.

A. Parallelization over QR factorizations

In Section III, we have shown that the most relevant part
of the VF scheme in terms of floating points operations is
constituted by the QR factorizations of the matrices[

ϕ1 −Slϕ1

]
(28)

with l = i + (P − 1)j spanning the considered set of
responses ∀(i, j) ∈ Iµ that will share the same poles in
the rational model. Fortunately, each QR factorization can be
computed independently once the matrix (28) is available. This
leads to an obvious parallelization strategy, which introduces
a parallel section that assigns individual QR factorizations to
individual threads, according to some scheduling rule.

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 7

Algorithm 2 VF (QR parallelization, “none” splitting strategy)
Input
T : number of available threads
P : number of ports
N : number of poles
K : number of frequency samples
ωk : frequency points, ∀k ∈ {1, . . . ,K}
Sij,k : frequency samples, ∀i, j ∈ {1, . . . , P},

∀k ∈ {1, . . . ,K}

zn ← starting poles
repeat

pn ← zn

zn ← POLESREF(T, P 2, N,K, I, pn, ωk, Sij,k)

until poles convergence (|pn − zn| < ε)

p̃n ← pn

Find r̃ij,n by solving (5) (dgels)

A pseudo-code corresponding to the parallelized pole relo-
cation, also depicted in the inner loop of Figure 2, is listed in
Algorithm 1. The function POLESREF accepts the set of initial
poles pn and the raw data samples, and provides on output a
new set of relocated poles zn using T computing threads. Since
our implementation is based on the LAPACK libraries [53], we
have also highlighted the relevant LAPACK functions used to
solve the various algebraic problems involved in the algorithm.

The parallel section is introduced in the code by using the
OpenMP directive

#pragma omp parallel for

that informs the compiler, in particular the preprocessor, that
the following for-loop has to be executed in parallel. Following
this directive, the OpenMP environment produces the required
code for the creation and the synchronization of the threads.
This directive allows also to specify the scheduling strategy to
be adopted for the assignment of the various iteration steps
to individual threads. Since in this case all matrices (28)
have the same size, and consequently there are no load
balancing issues since all QR factorizations will require the
same CPU time, a static scheduling is sufficient to achieve the
best performance. The result is as specified in Algorithm 1,
with the t-th thread performing the QR factorization of (28)
for l =

⌊
t
T L
⌋

+ 1,
⌊
t
T L
⌋

+ 2, . . . ,
⌊
t+1
T L

⌋
.

The parallelized code requires more memory than the cor-
responding serial code, since some variables and matrices can
not be shared among the threads and need to be replicated.
This is also highlighted in Algorithm 1, where the super-
script (t) indicates that the corresponding memory location has
to be private for each thread. The amount of memory required
by the parallel QR section of the code is about 32TK(N +1)
bytes.

This type of parallelization is most effective when the
number of responses in each subsystem Iµ is large with respect
to the number of threads, i.e., |Iµ| � T . Therefore, the best
performance of this parallelization is achieved with the “none”
splitting strategy, i.e., when all P 2 responses are considered

as a whole and will share the same pole set in the rational
model. Even in such case, when P 2 is not an integral multiple
of T , a small percentage of parallel efficiency (less than 1%
when P > 40 and M 6 16) is lost due to a slightly unbalanced
workload arising from a different number of QR factorizations
assigned to different threads (this difference is at most one).
This loss is considered to be negligible. A pseudocode for
the QR-parallelized VF scheme, using the “none” splitting
strategy, is summarized in Algorithm 2.

B. Parallelization over responses

When a splitting scheme different from “none” is used,
VF can be applied independently to each subsystem. In this
case, a trivial and efficient way to parallelize the overall
model extraction is to assign these individual VF runs to
individual threads. In case the number of responses in each
subset Iµ is the same, a static scheduling can be applied,
as for the QR parallelization strategy. This leads to the t-
th thread executing a private VF run on the subsets Iµ,
for µ =

⌊
t
TM

⌋
+ 1,

⌊
t
TM

⌋
+ 2, . . . ,

⌊
t+1
T M

⌋
.

The best performance of this method is achieved when the
number of partitions is largest, i.e. for the “all” partitioning
scheme. In this case, the parallel efficiency is practically
ideal, since all phases of VF run concurrently. Therefore, in
comparison with the parallelization over QR factorizations,
the speed-up factors are expected to be superior. This will be
confirmed by the numerical results in Section V. A pseudocode
of the parallelized VF over responses in the “all” splitting case
is provided by Algorithm 3. Note that the POLESREF function
is called on a single response using a single thread, since the
parallelization is performed at a higher hierarchical level.

C. Mixed parallelization

Both QR-based and response-based parallelization schemes
can be applied in case the adopted splitting strategy is such
that 1 < |J | < P 2. The “column” partitioning scheme
described in Section II-D is one such example, corresponding
to a number P of independent subsystems, each requiring P
independent QR factorizations. When the number of ports is
much larger than the number of available threads P � T ,
good performance can be obtained by directly applying the
parallel schemes described in Sections IV-A and IV-B. In
the QR-based parallelization, each subsystem is processed
sequentially, with all QR decompositions being computed
by a multi-threaded run of the poles refinement stage. The
corresponding pseudo-code is detailed in Algorithm 4. For the
response-based parallelization, instead, blocks of multiple T
different subsystems are analyzed concurrently by independent
threads, which perform the required QR decompositions of the
poles refinement step sequentially. The corresponding pseudo-
code is detailed in Algorithm 5. The level of performance and
parallel efficiency of these two alternative schemes is expected
to be intermediate between the QR-based parallelization in the
“none” splitting case and the response-based parallelization in
the “all” splitting case.

A more advanced approach is conceivable for massively
parallel model extraction of large-scale systems with several

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 8

Algorithm 3 VF (split parallelization, “all” splitting strategy)
Input
T : number of available threads
P : number of ports
N : number of poles
K : number of frequency samples
ωk : frequency points, ∀k ∈ {1, . . . ,K}
Sij,k : frequency samples, ∀i, j ∈ {1, . . . , P},

∀k ∈ {1, . . . ,K}

parallel region
t← thread number

for µ←
⌊
t
T P

2
⌋

+ 1 to
⌊
t+1
T P 2

⌋
Iµ ← {(i, j)}, µ = i+ (P − 1)j

z
(t)
n ← starting poles

repeat
p
(t)
n ← z

(t)
n

z
(t)
n ← POLESREF(1, 1, N,K, Iµ, p(t)n , ωk, Sij,k)

until poles convergence (|p(t)n − z(t)n | < ε)

Find r̃ij,n by solving (5) (with (i, j) ∈ Iµ) (dgels)

end for
end parallel region

Algorithm 4 VF (QR parallelization, “column” splitting strat-
egy)
Input
T : number of available threads
P : number of ports
N : number of poles
K : number of frequency samples
ωk : frequency points, ∀k ∈ {1, . . . ,K}
Sij,k : frequency samples, ∀i, j ∈ {1, . . . , P},

∀k ∈ {1, . . . ,K}
for µ← 1 to P
Iµ ← {(1, µ), . . . , (P, µ)}
zn ← starting poles
repeat

pn ← zn

zn ← POLESREF(T, P,N,K, Iµ, pn, ωk, Sij,k)

until poles convergence (|pn − zn| < ε)

p̃n ← pn

Find r̃ij,n by solving (5) (with (i, j) ∈ Iµ) (dgels)
end for

hundred ports. Since the response-based and the QR-based
parallelizations operate on different hierarchical levels, it is
possible to nest the two parallelizations in a hybrid imple-
mentation, where the inner level will perform QR factoriza-
tions and the outer level will parallelize over subsystems.
This mixed strategy is suitable for a hierarchical hardware
architecture, e.g. a cluster of multi-core machines. Different

Algorithm 5 VF (split parallelization, “column” splitting
strategy)
Input
T : number of available threads
P : number of ports
N : number of poles
K : number of frequency samples
ωk : frequency points, ∀k ∈ {1, . . . ,K}
Sij,k : frequency samples, ∀i, j ∈ {1, . . . , P},

∀k ∈ {1, . . . ,K}

parallel region
t← thread number

for µ←
⌊
t
T P
⌋

+ 1 to
⌊
t+1
T P

⌋
Iµ ← {(1, µ), . . . , (P, µ)}
z
(t)
n ← starting poles

repeat
p
(t)
n ← z

(t)
n

z
(t)
n ← POLESREF(1, P,N,K, Iµ, p(t)n , ωk, Sij,k)

until poles convergence (|p(t)n − z(t)n | < ε)

Find r̃ij,n by solving (5) (with (i, j) ∈ Iµ) (dgels)

end for
end parallel region

subsystems may be assigned to different machines, whereas
individual machines will perform parallel QR decompositions
on individual subsystems. A hybrid MPI-OpenMP software ar-
chitecture is desirable for such an implementation. The results
of this hybrid scheme will be documented in a forthcoming
report.

V. NUMERICAL RESULTS

We report in this section a set of numerical results in terms
of speed-up and parallel efficiency of the various PVF formula-
tions presented in Section IV. These results are discussed with
reference to the benchmarks of Table I in different subsections,
according to the adopted splitting strategy. In order to draw
meaningful conclusions on a fair comparison between different
implementations, a fixed number H = 3 of iterations is used in
the poles relocation loop. In all cases, this number of iterations
combined with the fixed order N (see the 4-th column of
Table I) guarantees the final RMS error between extracted
model and original data to be less than 10−3. As a further
evidence, Figure 4 depicts the model vs data responses for
case 1, showing excellent correlation and no visible difference.
The same level of accuracy was obtained for all cases.

All tests were performed on a IBM BladeCenter LS42
server with four quad-core AMD Opteron processors (2.3 GHz
clock), summing to 16 cores, and 32 GB of RAM. A full
scalability test was performed by running the algorithms with a
variable number of threads T = 1, . . . , 16. Moreover, in order
to obtain meaningful statistical results, each run was repeated
10 times, and the mean CPU time τ̄ (T) was recorded.

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 9

0 2 4 6 8 10 12 14 16 18 20
−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency, GHz

M
ag

ni
tu

de
, d

B

Data
Model

Fig. 4. Comparison between some model responses and the corresponding
raw data for case 1.

A. “None” splitting strategy

Table III summarizes the results for the “none” splitting
strategy. We recall that, in this case, only the parallelization
over QR decompositions can be performed, since all responses
are dealt with concurrently and share a common pole set. The
table includes two sections. Columns 2–4 report the average
CPU time (1 and 16 threads) required by the parallel section
of the poles relocation phase, and the corresponding speedup
factor. This section highlights that for the large-scale cases a
nearly ideal speedup is achieved in the part of the code that
is actually parallel. Some deviation from the ideal speedup
is observed only for those cases that require less than 2–3
seconds for the single-thread run. The multi-threaded run for
these cases requires fraction of a second, so that the speedup
factor is masked by additional overheads related to memory
management and operating system functioning.

Columns 5–7 of Table III report the overall (average)
runtime and corresponding speedup factors for the complete
model extraction, including also the VF modules that cannot
be parallelized efficiently. Some additional small overhead is
observed, but the overall performance of the PVF code is
quite satisfactory, since the parallel efficiency for the most
challenging cases (1–5) is in the range 70%–80%. All other
cases, although characterized by a medium to large port count,
require either a small order N or have few frequency samples
K, so that the overall workload is smaller. For those cases,
the important result is the total runtime of the parallel code
(column 6), which is significantly less than one second in most
cases.

Figure 5 shows a detailed scalability study for the largest
examples, by reporting the speedup achieved by the parallel
section and by the overall PVF run for a varying number of
threads. These results confirm the nearly ideal speedup of the
parallel section and the quite acceptable overall efficiency.

B. “All” splitting strategy

We report in Table IV the results of the parallelization
in the “all” splitting case, i.e., when the P 2 responses are
modeled independently by separate VF runs, which execute in
blocks of T parallel instances. The table reports the average
runtime achieved using 1 and 16 threads, respectively, and

TABLE III
CPU TIME (SECONDS) AND SPEED-UP, “NONE” SPLITTING STRATEGY

APPLIED TO EACH BENCHMARK CASE OF TABLE I.

Id τ̄
(1)
QR τ̄

(16)
QR Speedup τ̄ (1) τ̄ (16) Speedup

1 127.79 8.42 15.17 133.78 10.79 12.40
2 160.66 10.15 15.82 167.59 12.89 13.00
3 106.84 6.72 15.90 122.16 11.31 10.80
4 39.48 2.53 15.62 41.90 3.47 12.08
5 23.97 1.53 15.64 25.32 1.96 12.93
6 6.26 0.41 15.35 7.68 0.77 10.00
7 6.58 0.43 15.12 7.32 0.64 11.47
8 2.22 0.16 14.14 2.62 0.27 9.70
9 4.76 0.32 14.98 5.30 0.48 10.99
10 4.12 0.28 14.62 5.15 0.56 9.18
11 3.88 0.28 13.72 4.33 0.62 7.01
12 4.16 0.30 14.10 5.09 0.83 6.15
13 2.78 0.22 12.91 3.09 0.45 6.93
14 2.98 0.23 13.15 3.27 0.45 7.18
15 1.58 0.13 11.87 1.66 0.19 8.81
16 1.00 0.10 10.41 1.07 0.15 7.16
17 0.86 0.09 9.62 0.90 0.12 7.41
18 0.60 0.07 8.72 0.75 0.15 5.09
19 0.56 0.07 8.20 0.68 0.18 3.75
20 0.47 0.06 7.56 0.57 0.17 3.46
21 0.30 0.05 5.68 0.34 0.09 3.94
22 0.70 0.07 9.80 0.86 0.15 5.52
23 0.13 0.03 4.07 0.15 0.05 2.93
24 0.07 0.03 2.09 0.08 0.04 1.82

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 1

Ideal
QR block
Overall

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 2

Ideal
QR block
Overall

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 3

Ideal
QR block
Overall

Fig. 5. Speed-up diagrams for the first 3 cases of Table I (“none” splitting
strategy).

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 10

TABLE IV
CPU TIME (SECONDS) AND SPEED-UP, “ALL” SPLITTING STRATEGY

APPLIED TO EACH BENCHMARK CASE OF TABLE I.

Id τ̄ (1) τ̄ (16) Speedup
1 155.46 10.26 15.15
2 216.21 14.23 15.19
3 194.30 12.88 15.09
4 57.15 3.84 14.89
5 34.66 2.31 15.02
6 15.64 1.04 15.07
7 9.97 0.67 14.82
8 5.43 0.36 15.08
9 7.19 0.48 14.83

10 14.46 1.00 14.48
11 6.04 0.41 14.74
12 10.47 0.76 13.87
13 4.68 0.42 11.22
14 4.47 0.38 11.67
15 2.97 0.25 11.70
16 1.87 0.18 10.54
17 1.61 0.14 11.28
18 1.16 0.13 8.92
19 1.04 0.12 8.70
20 0.88 0.11 8.30
21 0.90 0.09 10.17
22 3.76 0.46 8.10
23 0.72 0.11 6.49
24 0.38 0.08 4.53

the corresponding speedup factor. Figure 6 depicts a complete
scalability study on a varying number of threads for the largest
cases. These results collectively show that
• the total runtime is slightly larger in the “all” with

respect to the “none” splitting case, thus confirming the
theoretical analysis of Section III;

• the overall speedup factors are better than for the “none”
splitting case. This is also expected, since the fraction of
code that is parallelized in the “all” case is larger.

Despite the embarrassingly parallel implementation, some
small overhead remains also for the largest cases. This can be
explained noting that system calls for memory management
need in some cases exclusive access. This is achieved by
imposing implicit barriers that may block the execution of
some threads until memory access is released. In any case,
this overhead can be considered to be negligible given the
very small overall runtime.

C. “Column” splitting strategies

In the “column” splitting case, both QR- and response-based
parallelization schemes can be applied. The results of these
two approaches are presented in Tables V and VI, respectively,
and compared for the largest cases in Fig. 7. The QR-based
parallelization is the least efficient, both in terms of speedup
and total runtime, with respect to the “none” and the “all”
splitting cases. This is readily explained by noting that only
P parallel instances are available (compared to P 2 of the
other schemes). The subdivision of these P instances into
T threads is therefore more likely to be unbalanced. This
fact is demonstrated by the typical staircase behavior of the
corresponding speedup factors in Fig. 7. This behavior arises
since some threads will execute bPT c runs, and some other
threads will run bPT c + 1 runs whenever P is not an integral

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 1

Ideal
Split parallelization

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 2

Ideal
Split parallelization

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 3

Ideal
Split parallelization

Fig. 6. Speed-up diagrams for the first 3 cases of Table I (“all” splitting
strategy).

multiple of T . The result is an unbalanced load which depends
on the number of concurrent threads T .

Let us consider now the performance of the response-
based parallelization in the “column” splitting case. The
parallel efficiency and the speedup factors are significantly
improved with respect to the QR-based parallelization. This
is reasonable, since the entire VF scheme is run concurrently
for each subset of responses, in an embarrassingly parallel
way. The same granularity issues affect the speedup factors,
see Fig. 7, since only P instances are available. Therefore,
as expected, the speedup factors are not as good as for the
“none” and “all” splitting cases. Nevertheless, the total runtime
(over 16 threads) is the best among all implementations,
as demonstrated by Table VII. This is justified by noting
that each transfer matrix column is assigned to a dedicated
computing thread, which processes all individual blocks of the
VF algorithm. Therefore, a much larger fraction of the code
is parallelized, including not only the QR part (14), but also
the LSP problems (15) and (5).

VI. CONCLUSIONS

This paper introduced a number of different Parallel Vector
Fitting (PVF) schemes for the extraction of rational macro-
models from tabulated frequency responses of linear time-
invariant systems. The various schemes are different for what

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 11

TABLE V
CPU TIME (SECONDS) AND SPEED-UP, “COLUMN” SPLITTING STRATEGY

WITH QR PARALLELIZATION APPLIED TO EACH BENCHMARK CASE OF
TABLE I.

Id τ̄
(1)
QR τ̄

(16)
QR Speedup τ̄ (1) τ̄ (16) Speedup

1 127.97 11.84 10.81 133.07 14.08 9.45
2 159.39 13.96 11.42 163.84 17.01 9.63
3 106.05 7.98 13.28 109.83 10.92 10.06
4 39.71 4.24 9.38 41.90 6.34 6.61
5 23.88 2.34 10.23 24.46 3.81 6.42
6 6.16 0.57 10.88 6.50 1.23 5.29
7 6.62 0.82 8.08 6.94 1.59 4.36
8 2.21 0.25 8.99 2.38 0.64 3.73
9 4.76 0.64 7.48 4.99 1.20 4.14

10 4.17 0.32 13.23 4.41 0.83 5.34
11 3.89 0.44 8.79 4.07 0.79 5.18
12 4.11 0.32 12.98 4.41 0.67 6.55
13 2.78 0.41 6.78 2.91 0.81 3.58
14 2.95 0.46 6.37 3.09 1.26 2.45
15 1.57 0.25 6.30 1.65 0.45 3.70
16 1.01 0.24 4.25 1.07 0.47 2.25
17 0.86 0.13 6.86 0.91 0.21 4.40
18 0.60 0.08 7.13 0.66 0.19 3.54
19 0.55 0.09 5.95 0.61 0.18 3.46
20 0.47 0.08 6.03 0.52 0.17 3.08
21 0.30 0.05 6.28 0.33 0.11 3.00
22 0.73 0.10 7.45 0.80 0.22 3.65
23 0.13 0.32 0.40 0.15 0.39 0.37
24 0.07 0.23 0.31 0.08 0.29 0.29

TABLE VI
CPU TIME (SECONDS) AND SPEED-UP, “COLUMN” SPLITTING STRATEGY,

RESPONSE-BASED PARALLELIZATION APPLIED TO EACH BENCHMARK
CASE OF TABLE I.

Id τ̄ (1) τ̄ (16) Speedup
1 134.45 10.16 13.23
2 164.53 12.23 13.45
3 112.29 7.30 15.39
4 42.21 3.74 11.28
5 24.63 1.60 15.40
6 6.90 0.46 14.90
7 6.95 0.55 12.64
8 2.53 0.20 12.70
9 5.00 0.46 10.87

10 4.54 0.31 14.85
11 4.07 0.33 12.17
12 4.46 0.32 13.80
13 2.93 0.22 13.13
14 3.11 0.28 11.04
15 1.70 0.16 10.77
16 1.09 0.11 9.58
17 0.93 0.10 9.49
18 0.66 0.08 8.44
19 0.61 0.07 9.10
20 0.52 0.06 8.94
21 0.35 0.04 9.38
22 0.84 0.06 13.80
23 0.15 0.04 4.33
24 0.09 0.01 5.85

concerns the choice of parallelization strategy. Yet, their per-
formance is comparable with minor differences. We can safely
conclude that the parallel efficiency and speedup factors for
the code fragments that have been parallelized are close to
ideal for medium- and large-scale structures. As expected, the
speedup generally degrades when the problem size decreases.
For small-scale structures, a parallel implementation is not
needed at all, since total runtime of standard (serial) VF is
negligible. The proposed parallel schemes thus result most ef-

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 1

Ideal
QR parallelization
Split parallelization

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 2

Ideal
QR parallelization
Split parallelization

0 2 4 6 8 10 12 14 16
0

4

8

12

16

No. of threads

S
pe

ed
−

up

Case 3

Ideal
QR parallelization
Split parallelization

Fig. 7. Speed-up diagrams for the first 3 cases of Table I (“column” splitting
strategy).

TABLE VII
CPU TIME (SECONDS) OF ALL PARALLEL IMPLEMENTATIONS OF THE VF

ALGORITHM (16 THREADS) FOR THE BENCHMARK CASES OF TABLE I.

Id None Col-QR Col-Resp. All
1 10.79 14.08 10.16 10.26
2 12.89 17.01 12.23 14.23
3 11.31 10.92 7.30 12.88
4 3.47 6.34 3.74 3.84
5 1.96 3.81 1.60 2.31
6 0.77 1.23 0.46 1.04
7 0.64 1.59 0.55 0.67
8 0.27 0.64 0.20 0.36
9 0.48 1.20 0.46 0.48

10 0.56 0.83 0.31 1.00
11 0.62 0.79 0.33 0.41
12 0.83 0.67 0.32 0.76
13 0.45 0.81 0.22 0.42
14 0.45 1.26 0.28 0.38
15 0.19 0.45 0.16 0.25
16 0.15 0.47 0.11 0.18
17 0.12 0.21 0.10 0.14
18 0.15 0.19 0.08 0.13
19 0.18 0.18 0.07 0.12
20 0.17 0.17 0.06 0.11
21 0.09 0.11 0.04 0.09
22 0.15 0.22 0.06 0.46
23 0.05 0.39 0.04 0.11
24 0.04 0.29 0.01 0.08

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 12

ficient for large-size models, for which nearly ideal efficiency
and scalability is achieved.

Despite some small overheads that are intrinsic in the basic
VF algorithm structure, the overall runtime is drastically re-
duced. As a result, very large scale structures can be processed
by the proposed PVF schemes, leading to model extractions
in few seconds even for the most challenging cases. Future
work will address hybrid MPI-OpenMP software architectures,
for massively parallel deployment on clusters of multi-core
machines. Another direction with enormous potential will be
porting the parallel VF code to GPU-based architectures, to
investigate on scalability of VF schemes on much larger num-
ber of cores/threads than currently available on commodity
hardware.

VII. ACKNOWLEDGMENTS

The Authors are grateful to Dr. Katopis and Dr. Becker
(IBM) for supporting this activity through an IBM Shared
University Research (SUR) Grant. This work was supported
in part by the Italian Ministry of University (MIUR) under a
Program for the Development of Research of National Interest
(PRIN grant #2008W5P2K) and in part by IdemWorks s.r.l.

REFERENCES

[1] W. H. Schilders, H. A. van der Vorst, J. Rommes (Eds.), Model Order
Reduction: Theory, Research Aspects and Applications, Springer-Verlag,
2008.

[2] A. C. Antoulas, Approximation of large-scale dynamical systems, SIAM,
Philadelphia, 2005.

[3] B. C. Moore, “Principal component analysis in linear systems,” IEEE
Trans. Automat. Contr., vol. AC-26, pp. 17-32, Feb. 1981.

[4] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Pade
approximation via the Lanczos process,” IEEE Trans. Computer-Aided
Design, vol. 14, no. 5, pp. 639-649, May 1995.

[5] L. M. Silveira, M. Kamon, I. Elfadel and J. White, “A coordinate trans-
formed Arnoldi algorithm for generating stable reduced-order models of
arbitrary RLC circuits,” in IEEE/ACM Proc. ICCAD, Nov. 1996, pp. 288-
294.

[6] A. Odabasioglu, M. Celik and L. T. Pileggi, “PRIMA: Passive reduced-
order interconnect macromodeling algorithm,” IEEE Trans. Computer-
Aided Design, vol. 17, no. 8, pp. 645–654, Aug. 1998.

[7] G. Shi and C. J. R. Shi, “Model order reduction by dominant subspace
projection: error bound, subspace computation and circuit application,”
IEEE Trans. Circuits Syst. I, vol. 52, no. 5, pp. 975–993, May 2005.

[8] J. R. Phillips and L. M. Silveira, “Poor Mans TBR: a simple model
reduction scheme,” IEEE Trans. Comput.-Aided Design, vol. 24, no. 1,
pp. 43–55, Jan 2005.

[9] D. Li, S. X.-D. Tan, and B. McGaughy, “ETBR: Extended truncated
balanced realization method for on-chip power grid network analysis,”
in Proc. European Design and Test Conf., 2008, pp. 432–437.

[10] P. Feldman, “Model order reduction techniques for linear systems with
large number of terminals,” in Proc. European Design and Test Conf.,
2004, pp. 944–947.

[11] P. Li and W. Shi, “Model order reduction of linear networks with massive
ports via frequency-dependent port packing,” in Proc. Design Autom.
Conf., 2006, pp. 267–272.

[12] B. Yan, L. Zhou, S. X.-D. Tan, J. Chen, and B. McGaughy, “DeMOR:
decentralized model order reduction of linear networks with passive
ports,” in Proc. Design Autom. Conf., 2008, pp. 409–414.

[13] I. M. Elfadel and D. L. Ling, “A block rational Arnoldi algorithm for
multipoint passive model order reduction of multiport RLC networks,”
in Proc. Int. Conf. Computer Aided Design, Nov. 1997, pp. 66–71.

[14] B. Gustavsen, A. Semlyen, “Rational approximation of frequency re-
sponses by vector fitting,” IEEE Trans. Power Delivery, Vol. 14, N. 3,
July 1999, pp. 1052–1061.

[15] B. Gustavsen, “Computer code for rational approximation of frequency
dependent admittance matrices,” IEEE Trans. Power Delivery, Vol. 17,
N. 4, October 2002, pp. 1093–1098.

[16] B. Gustavsen, A. Semlyen, “A robust approach for system identification
in the frequency domain,” IEEE Trans. Power Delivery, Vol. 19, N. 3,
July 2004, pp. 1167–1173.

[17] B. Gustavsen, “Improving the pole relocating properties of vector fit-
ting,” IEEE Trans. Power Delivery, Vol. 21, N. 3, Aug. 2006, pp. 1587–
1592.

[18] D. Deschrijver, B. Haegeman, T. Dhaene, “Orthonormal Vector Fit-
ting: A Robust Macromodeling Tool for Rational Approximation of
Frequency Domain Responses,” IEEE Trans. Adv. Packaging, vol. 30,
pp. 216–225, May 2007.

[19] S. Grivet-Talocia, M. Bandinu, “Improving the Convergence of Vector
Fitting in Presence of Noise”, IEEE Transactions on Electromagnetic
Compatibility, vol. 48, n. 1, pp. 104-120, February, 2006.

[20] F. Ferranti, Y. Rolain, L. Knockaert, and T. Dhaene, “Variance Weighted
Vector Fitting for Noisy Frequency Responses,” in IEEE Microwave and
Wireless Components Letters, vol. 20, no. 4, pp. 187–189, April 2010.

[21] S. Grivet-Talocia, “Package macromodeling via Time-Domain Vector
Fitting,” IEEE Microwave Wireless Comp. Lett., Vol. 13, No. 11, 2003.

[22] Y. S. Mekonnen, J. Schutt-Ainé, “Broadband macromodeling of sam-
pled frequency data using z-domain vector-fitting method,” em IEEE
Workshop on Signal Propagation on Interconnects, 13-16 May 2007,
pp. 45–48.

[23] A. Chinea, P. Triverio, S. Grivet-Talocia, “Delay-Based Macromodeling
of Long Interconnects from Frequency-Domain Terminal Responses,”
IEEE Transactions on Advanced Packaging, Vol. 33, No. 1, pp. 246–
256, Feb. 2010.

[24] D. Deschrijver, M. Mrozowski, T. Dhaene, D. De Zutter, “Macromod-
eling of Multiport Systems Using a Fast Implementation of the Vector
Fitting Method,” IEEE Microwave and Wireless Components Letters,
Vol. 18, N. 6, June 2008, pp.383–385.

[25] S. Lefteriu, A. C. Antoulas, “A New Approach to Modeling Multi-
port Systems From Frequency-Domain Data,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 1, pp. 14–27, Jan. 2010

[26] A. Chinea and S. Grivet-Talocia, “A parallel vector fitting implemen-
tation for fast macromodeling of highly complex interconnects,” in
IEEE 19th Topical Meeting on Electrical Performance of Electronic
Packaging and Systems (EPEPS 2010), Austin, TX, October 24–27, 2010.

[27] M. R. Wohlers, Lumped and Distributed Passive Networks, Academic
Press, 1969.

[28] B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and Synthe-
sis, Prentice-Hall, Englewood Cliffs, NJ, 1973.

[29] P. Triverio, S. Grivet-Talocia, M. S. Nakhla, F. Canavero, R. Achar,
“Stability, Causality, and Passivity in Electrical Interconnect Models,”
IEEE Transactions on Advanced Packaging, Vol. 30, No. 4, pp. 795–
808, Nov. 2007.

[30] S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamil-
tonian matrices”, IEEE Trans. CAS-I, pp. 1755-1769, vol. 51, n. 9,
September, 2004

[31] S. Grivet-Talocia, A. Ubolli “On the Generation of Large Passive
Macromodels for Complex Interconnect Structures”, IEEE Trans. Adv.
Packaging, vol. 29, No. 1, pp. 39–54, Feb. 2006

[32] D. Saraswat, R. Achar and M. Nakhla, ”Global Passivity Enforcement
Algorithm for Macromodels of Interconnect Subnetworks Characterized
by Tabulated Data”, IEEE Transactions on VLSI Systems, Vol. 13, No. 7,
pp. 819–832, July 2005.

[33] C. P. Coelho, J. Phillips, L. M. Silveira, “A Convex Programming Ap-
proach for Generating Guaranteed Passive Approximations to Tabulated
Frequency-Data”, IEEE Trans. Computed-Aided Design of Integrated
Circuits and Systems, Vol. 23, No. 2, February 2004, pp. 293–301.

[34] H. Chen, J. Fang, “Enforcing Bounded Realness of S parameter through
trace parameterization”, in 12th IEEE Topical Meeting on Electrical
Performance of Electronic Packaging, October 27–29, 2003, Princeton,
NJ, pp. 291–294.

[35] B. Gustavsen, A. Semlyen, “Enforcing passivity for admittance matri-
ces approximated by rational functions”, IEEE Trans. Power Systems,
Vol. 16, N. 1, Feb. 2001, pp. 97–104.

[36] B. Gustavsen, “Computer Code for Passivity Enforcement of Rational
Macromodels by Residue Perturbation,” IEEE Trans. Adv. Packaging,
vol. 30, pp. 209–215, May 2007.

[37] D. Saraswat, R. Achar and M. Nakhla, ”A Fast Algorithm and Practical
Considerations For Passive Macromodeling Of Measured/Simulated
Data”, IEEE Transactions on Components, Packaging and Manufactur-
ing Technology, Vol. 27, N. 1, pp. 57–70, Feb. 2004.

[38] S. Grivet-Talocia, “An adaptive sampling technique for passivity char-
acterization and enforcement of large interconnect macromodels,” IEEE
Trans. Adv. Packaging, vol. 30, pp. 226–237, May 2007.

TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 13

[39] A Lamecki and M. Mrozowski, “Equivalent SPICE Circuits With
Guaranteed Passivity From Nonpassive Models,” IEEE Transactions
on Microwave Theory And Techniques, Vol. 55, No. 3, March 2007,
pp. 526–532.

[40] S. Grivet-Talocia, A. Ubolli “Passivity Enforcement with Relative Error
Control”, IEEE Trans. on Microwave Theory and Techniques, vol. 55,
No. 11, November 2007, pp. 2374–2383.

[41] Z. Ye, L. M. Silveira, and J. R. Phillips, “Fast and Reliable Passivity
Assessment and Enforcement with Extended Hamiltonian Pencil,” in
International Conference on Computer Aided Design, 2009, pp. 774–
778.

[42] Z. Ye, L. M. Silveira, and J. R. Phillips, “Extended Hamiltonian Pencil
for Passivity Assessment and Enforcement for S-parameter Systems,” in
DATE 2010 Conference, pp. 1148–1152.

[43] Z. Zhang, C. U. Lei, and N. Wong, “GHM: A generalized Hamiltonian
method for passivity test of impedance/admittance descriptor systems,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, Nov. 2009,
pp. 767–773.

[44] Z. Zhang and N. Wong, “Passivity test of immittance descriptor systems
based on generalized Hamiltonian methods,” IEEE Trans. Circuits Syst.
II: Express Briefs, vol. 57, no. 1, pp. 61–65, Jan. 2010.

[45] L. Gobbato, A. Chinea, S. Grivet-Talocia, “A Parallel Hamiltonian
Eigensolver for Passivity Characterization and Enforcement of Large
Interconnect Macromodels,” DATE 2011 Conference, to appear.

[46] P. Stoica, T. Soderstrom,“The Steiglitz-McBride identification algorithm
revisited–Convergence analysis and accuracy aspects,” IEEE Trans.
Automatic Control, vol. 26, no. 3, pp. 712- 717, Jun 1981.

[47] G. H. Golub, C. F. Van Loan, Matrix Computations. The Johns Hopkins
University Press, 3rd edition, 1996.

[48] R. Achar, M. Nakhla, “Minimum realization of reduced-order high-speed
interconnect macromodels,” in Signal Propagation on Interconnects,
H. Grabinski and P. Nordholz Eds., Kluwer, 1998.

[49] F. Ebert, T. Stykel, “Rational interpolation, minimal realization and
model reduction,” Research Center MATHEON, Berlin, Germany, Tech.
Rep. 371-2007, 2007.

[50] HSPICE Applications Manual, Available: www.synopsys.com
[51] OpenMP Architecture Review Board, OpenMP C and C++ Ap-

plication Program Interface - Version 2.0, Mar. 2002. Available:
www.openmp.org/mp-documents/cspec20.pdf.

[52] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir, M. Snir, MPI: The Complete Reference, Sep. 1998, Available:
www.netlib.org/utk/papers/mpi-book/mpi-book.html

[53] LAPACK Users’ Guide - Third edition, Aug. 1999, Available:
www.netlib.org/lapack/lug

Alessandro Chinea received the Laurea Specialis-
tica (M.Sc.) and Ph.D. degrees in electronic engi-
neering from Politecnico di Torino, Italy in 2006
and 2010, respectively. Since 2007, he joined the
EMC group where he is currently a research assis-
tant. In 2009 he spent a period at the Department
of Information Technology (INTEC) of the Ghent
University, Belgium, working under the supervision
of the professors T. Dhaene and L. Knockaert. His
research interests concern passive macromodeling of
electrical interconnects for electromagnetic compat-

ibility and signal/power integrity problems. Dr. Chinea received the Optime
Award from the Unione Industriale di Torino and he was selected for the IBM
EMEA Best Student Recognition Event 2006.

Stefano Grivet-Talocia (M’98–SM’07) received the
Laurea and the Ph.D. degrees in electronic engineer-
ing from Politecnico di Torino, Italy. From 1994
to 1996, he was with the NASA/Goddard Space
Flight Center, Greenbelt, MD, USA. Currently, he
is an Associate Professor of Circuit Theory with
Politecnico di Torino. His research interests are in
passive macromodeling of lumped and distributed
interconnect structures, modeling and simulation of
fields, circuits, and their interaction, wavelets, time-
frequency transforms, and their applications. He is

author of more than 120 journal and conference papers. He is co-recipient
of the 2007 Best Paper Award of the IEEE Trans. Advanced Packaging.
He received the IBM Shared University Research (SUR) Award in 2007,
2008 and 2009. Dr. Grivet-Talocia served as Associate Editor for the IEEE
TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY from 1999 to
2001.

