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Abstract 

Recently, 3D landmark extraction has been widely researched and experimented in 

medical field, for both corrective and aesthetic purposes. Automation of these procedures on 

three-dimensional face renderings is something desirable for the specialists who work in this 

field. In this work we propose a new method for accurate landmark localization on facial scans. 

The method relies on geometrical descriptors, such as curvatures and Shape Index, for 

computing candidate and initial points, and on a statistical model based on Procrustes Analysis 

and Principal Component Analysis, which is fitted to candidate points, for extracting the final 

landmarks. The elaborated method is independent on face pose. 

 

Keywords 
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1. Introduction 

Landmarks are body points with a particular biological meaning. In this paper we only 

deal with facial landmarks that lie on the skin, meaning soft-tissue landmarks, which have been 

widely employed in many activities involving various fields such as medical and, above all, 

maxillo-facial surgery. The positioning of these points helps surgeons to study their patients in 

pre-surgery phases both for plastic or corrective purposes, then to decide how to intervene. The 
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landmarking was done firstly by hand, then with tools and algorithms supporting the activity of 

the specialists. 

Experimental studies have been carried out on manual location of lower limb 

landmarks on dry bone models with a group of surgeons and concluded that the variations are 

in the range between 6 and 25 millimetres. It has also been possible to find a manual 

identification procedure for a scanned surface of foot model, guided by curvature values, for 

evaluating tibial torsion. Reproducibility of the results appears to be dependent on user’s 

knowledge of landmarks (Della Croce et al., 1999). Van Sint Jan (Van Sint Jan, 2007) listed a 

comprehensive set of bony landmarks and exposed a localization procedure description on a 

patient by palpation. Other researchers (Yang et al., 2001) diagnosed facial growth 

abnormalities prior to treatment by studying the relationships between bony- and soft-tissue 

landmarks using cephalometric radiographs. Similarly, working with a manual procedure 

(Maudgil et al., 1999), a new methodology has been proposed for extracting anatomical 

landmarks on a three-dimensional model reconstructed from Magnetic Resonance Imaging 

(MRI) images for morphometric analysis. They developed method that classifies each point on 

pre- and post-operative facial surfaces into one of eight surface patch types. This classification is 

based on the Mean and Gaussian curvatures: adjacent points with the same class are grouped 

into the same surface patch.  

Recently, many automatic landmark extraction algorithms have been implemented on 

3D medical images. In their various publications, Alker et al., Frantz et al., and Wörz et al. 

proposed multi-step differential procedures for subvoxel localization of 3D point landmarks, 

addressing the problem of choosing an optimal size for a region-of-interest (ROI) around point 

landmarks (Frantz et al., 1998; Frantz et al., 1999; Frantz et al., 2000; Alker et al., 2001; Frantz, 

et al., 2005; Wörz and Rohr, 2005). Other studies have been carried out on interactive 

landmarking on dry bone models, medical images (Griffin, 2000) or laser digitized data (Liu, 

2004; Yahara, 2005). 

Furthermore, in recent years, face study and landmark localization aimed at different 

purposes ware performed using both Principal Component Analysis (PCA) and Procrustes 

Analysis. Dalal and Phadke (Dalal and Phadke, 2007) used geometric morphometrics to analyze 

face variations of normal individuals and of people with dysmorphic syndromes. They used the 

Morphologika program for Procrustes Analysis and Principal Component Analysis; in 
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particular, face coordinates were subjected to Generalized Procrustes Superimposition (GPS) for 

normalizing for effects of size, rotation, and image position. The obtained Procrustes residuals 

were then subjected to PCA for data reduction. Soft-tissue landmarks were used as reference 

points. Mutsvangwa and Douglas applied Procrustes Analysis and PCA to stereo-

photogrammetrically obtained landmarks for comparing facial features associated with Fetal 

Alcohol Syndrome (FAS) in subjects with FAS and normal controls. They state that 

“application of the Procrustes approach to facial shape analysis is becoming more widespread in 

syndrome diagnosis. The advantage of using PCA in conjunction with Procrustes Analysis is the 

ability to give a comprehensive description of the overall facial shape with a small number of 

landmark measurements that are not conflicting because they are statistically unrelated” 

(Mutsvangwa and Douglas, 2007: 215). Mena-Chalco et al. (Mena-Chalco et al., 2008) described 

a system for three-dimensional face reconstruction from bi-dimensional photographs relying on 

a small set of training facial range images. Principal Component Analysis is used to represent 

facial datasets, thus defining an orthonormal basis of texture and range data. Mahoor and 

Abdel-Mottaleb (Mahoor and Abdel-Mottaleb, 2009) presented a 3D face recognition approach 

from frontal range data based on the ridge lines on facial surface. For the initial alignment of 

ridge points, they utilized the similarity transformation between a set of labelled facial feature 

points on the probe and gallery images. The parameters of this similarity transformation, 

namely scale, rotation, and translation, were estimated using Procrustes Analysis. Nair and 

Cavallaro presented an interesting approach to detect and segment three-dimensional faces, 

extract landmarks, and achieve fine registration of face meshes. Landmark localization is 

performed by finding the model fit which minimizes the model deviation from the mean shape. 

They used Procrustes Analysis to align the training shapes to their mutual mean in a least-

squares sense via similarity transformations. Then, PCA was employed to estimate the 

variations of the shape cloud, providing “an efficient parameterization of the shape model 

through dimensionality reduction” (Nair and Cavallaro, 2009: 614). In their various works, 

Perakis et al. proposed a unified method addressing partial matching problem for face 

recognition. In particular, a new 3D landmark detector and a deformable model framework 

supporting symmetric fitting for detecting face pose are presented (Perakis et al., 2009 [a]). 

Then, they proposed the first three-dimensional landmark detection method working in 

datasets with pose rotations of up to 80° around the y-axis (Perakis et al., 2009 [b]). In both 

works, firstly the method creates an Active Landmark Model (ALM) by aligning the training 
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landmark sets and calculating a mean landmark shape using Procrustes Analysis; then, 

variations of each facial landmark model are computed using PCA. 

Our previous study (Vezzetti and Marcolin) was a geometrically-based formalization of 

soft-tissue landmarks, in which derivatives, Shape and Curvedness Indexes, mean and Gaussian 

curvatures, and geometrical descriptors such as coefficients of the First and Second 

Fundamental Forms e, f, g, E, F, G were employed for performing an efficient landmark 

localization only through Differential Geometry, or at least a precise identification of the zone-

of-interest which the landmark lies in. In this work we present an improvement to our previous 

algorithm, making use of more accurate conditions on geometrical descriptors and of a 

Procrustes- and PCA-based statistical model for extracting landmarks, which is independent on 

the reference system used. Section 2 presents the new method, in particular the statistical 

model and the face pose estimation. In Section 3 results are discussed. 

 

2. The proposed method 

A facial landmark is a point which all faces share and has a particular biological 

meaning. In particular, we may distinguish between two landmark types: 

1. hard-tissue landmarks, which lie on the skeletal and may be identified only through 

lateral cephalometric radiographs; 

2. soft-tissue landmarks, which are on the skin and can be identified on the point clouds 

generated by the scanning. 

Since a radiograph is more invasive (and harmful) than a photogrammetric acquisition system, 

in this paper we considered only soft-tissue landmarks. Although soft-tissue landmarks are 

nearly fifty-nine, in this paper we take into consideration nine identifiable ones (pronasal, 

nasion, subnasal, alae, endocanthions, exocanthions), as shown in Figure 1. The landmarks close to 

the mouth are not taken into consideration due to their pose-dependency, while the ones near 

the face boundaries have been ignored because in those zones the scan is not accurate. 
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Figure 1. (left) the Anthropometric soft-tissue landmarks (g-glabella, n-nasion, en-endocanthion, ex-
exocanthion, or-orbital, prn-pronasal, sn-subnasal, al-alae, ch-cheilion, pg-pogonion, gn-gnathion, go-gonion, 
me-menton) (Calignano, 2009); (right) landmarks detected by our proposed method (PN-pronasal, SN-
subnasal, AL-alae, N-nasion, EN-endocanthions, EX-exocanthions). 

In our previous work (Vezzetti and Marcolin) we made use of some geometric 

descriptors to detect and extract the landmarks. The employed descriptors are presented and 

defined in the following lines. 

The First and the Second Fundamental Forms are employed to measure the distance on 

surfaces and are defined by 

𝐸𝐸𝑑𝑑𝑑𝑑2 + 2𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹 + 𝐺𝐺𝑑𝑑𝐹𝐹2, 

𝑒𝑒𝑑𝑑𝑑𝑑2 + 2𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹 + 𝑔𝑔𝑑𝑑𝐹𝐹2, 

respectively, where 𝐸𝐸, 𝐹𝐹, 𝐺𝐺, 𝑒𝑒, 𝑓𝑓, and 𝑔𝑔 are their coefficients and are calculated by the following 

formulas: 

𝐸𝐸 = ‖𝐷𝐷𝑑𝑑‖2, 

𝐹𝐹 = 〈𝐷𝐷𝑑𝑑 ,𝐷𝐷𝐹𝐹〉, 

𝐺𝐺 = ‖𝐷𝐷𝐹𝐹‖2, 

𝑒𝑒 = 〈𝑁𝑁,𝐷𝐷𝑑𝑑𝑑𝑑 〉, 

𝑓𝑓 = 〈𝑁𝑁,𝐷𝐷𝑑𝑑𝐹𝐹 〉, 

𝑔𝑔 = 〈𝑁𝑁,𝐷𝐷𝐹𝐹𝐹𝐹〉, 
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where 

𝐷𝐷𝑑𝑑 =

⎩
⎪
⎨

⎪
⎧𝑋𝑋𝑑𝑑 = 𝜕𝜕𝑋𝑋 (𝐹𝐹,𝑑𝑑)

𝜕𝜕𝑑𝑑

𝑌𝑌𝑑𝑑 = 𝜕𝜕𝑌𝑌(𝐹𝐹,𝑑𝑑)
𝜕𝜕𝑑𝑑

𝑍𝑍𝑑𝑑 = 𝜕𝜕𝑍𝑍(𝐹𝐹,𝑑𝑑)
𝜕𝜕𝑑𝑑

�, 

𝐷𝐷𝐹𝐹 =

⎩
⎪
⎨

⎪
⎧𝑋𝑋𝐹𝐹 = 𝜕𝜕𝑋𝑋(𝐹𝐹,𝑑𝑑)

𝜕𝜕𝐹𝐹

𝑌𝑌𝐹𝐹 = 𝜕𝜕𝑌𝑌(𝐹𝐹,𝑑𝑑)
𝜕𝜕𝐹𝐹

𝑍𝑍𝐹𝐹 = 𝜕𝜕𝑍𝑍(𝐹𝐹,𝑑𝑑)
𝜕𝜕𝐹𝐹

�, 

𝐷𝐷𝑑𝑑𝑑𝑑 = 𝜕𝜕𝐷𝐷𝑑𝑑
𝜕𝜕𝑑𝑑

, 𝐷𝐷𝑑𝑑𝐹𝐹 = 𝜕𝜕𝐷𝐷𝑑𝑑
𝜕𝜕𝐹𝐹

, 𝐷𝐷𝑑𝑑𝐹𝐹 = 𝜕𝜕𝐷𝐷𝐹𝐹
𝜕𝜕𝐹𝐹

, 𝑁𝑁 = 𝐷𝐷𝑑𝑑  × 𝐷𝐷𝐹𝐹
|𝐷𝐷𝑑𝑑  × 𝐷𝐷𝐹𝐹|

. 

Curvatures are used to measure how a regular surface bends in 𝑅𝑅3. If 𝐷𝐷 is the differential and 

𝑁𝑁 is the normal plane of a surface, then the determinant of 𝐷𝐷𝑁𝑁 will be the product of the 

Principal Curvatures (𝑑𝑑𝑒𝑒𝑑𝑑(𝐷𝐷𝑁𝑁) = (−𝑘𝑘1)(−𝑘𝑘2) = 𝑘𝑘1𝑘𝑘2), and the trace of 𝐷𝐷𝑁𝑁 will be the 

negative of the sum of Principal Curvature (𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝐷𝐷𝑁𝑁) = −(𝑘𝑘1 + 𝑘𝑘2)). In the point 𝑃𝑃, the 

determinant of 𝐷𝐷𝑁𝑁𝑃𝑃  is the Gaussian Curvature (𝐾𝐾) at 𝑃𝑃, while the negative of half of the 𝐷𝐷𝑁𝑁 

trace is called the Mean Curvature (𝐻𝐻) at 𝑃𝑃. In terms of the principal curvatures it can be 

written: 

𝐾𝐾 = 𝑘𝑘1𝑘𝑘2, 

𝐻𝐻 = 𝑘𝑘1+𝑘𝑘2
2

, 

where 𝑘𝑘1 and 𝑘𝑘2 are the Principal Curvatures. Starting from the coefficients of the 

Fundamental Forms, we may calculate the Gaussian and Mean Curvatures with the following 

formulas: 

𝐾𝐾 = 𝑒𝑒𝑔𝑔−𝑓𝑓2

𝐸𝐸𝐺𝐺−𝐹𝐹2, 

𝐻𝐻 = 𝑒𝑒𝐺𝐺−2𝑓𝑓𝐹𝐹+𝑔𝑔𝐸𝐸
2(𝐸𝐸𝐺𝐺−𝐹𝐹2)

. 

Obtained the Gaussian and Mean Curvatures we may calculate the Principal Curvatures in this 

way: 

𝑘𝑘1 = 𝐻𝐻 + √𝐻𝐻2 − 𝐾𝐾2
, 

𝑘𝑘2 = 𝐻𝐻 − √𝐻𝐻2 − 𝐾𝐾2
. 
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The most used descriptors are surely the Shape (𝑆𝑆) and Curvedness (𝐶𝐶) Indexes, introduced by 

Koenderink and Van Doorn (Koenderink and Van Doorn, 1992): 

𝑆𝑆 = − 2
𝜋𝜋

tan−1 𝑘𝑘1+𝑘𝑘2
𝑘𝑘1−𝑘𝑘2

,          𝑆𝑆 ∈ [−1,1],          𝑘𝑘1 ≥ 𝑘𝑘2, 

𝐶𝐶 = �𝑘𝑘1
2+𝑘𝑘2

2

2

2
. 

The only descriptor we did not use in our previous work is the Tangent Map, an index used by 

Perakis et al. (Perakis et al., 2010) to detect the points which have the normal outward with 

respect to the centroid of the surface like nose and chin regions. The Tangent Map is calculated 

by the following formula: 

𝑇𝑇(𝑃𝑃) = 〈𝑁𝑁(𝑃𝑃),𝑅𝑅(𝑃𝑃)〉, 

where 𝑁𝑁 is the normal of the surface at 𝑃𝑃 and 𝑅𝑅 is the straight line passing through the 

centroid of the surface and 𝑃𝑃. 

However, one problem affects the previous algorithm: the geometry-based landmark 

detection is affected by face orientation. In fact, the partial derivatives and the coefficients of 

the First and Second Fundamental Forms depend on the reference system used. This means 

that, if the face is not in the standard pose, the local behaviour of the previous descriptors will 

not be the one described in our previous study. Contrariwise, the curvatures and Shape and 

Curvedness Indexes are intrinsic proprieties of the surface, thus they are independent on the 

reference system used. 

If the input face is not in a standard pose, the ideal algorithm should rotate the face 

until the standard pose is identified. Our previous algorithm does not perform any rotation 

operations. After a brief experimentation phase, we noticed that the old algorithm correctly 

detects the landmarks if the initial rotations of the face around the single axes is in a range 

between −10° and +10°. For instance, the subnasal is the point in the region underlying the 

pronasal that maximizes the Coefficient 𝑔𝑔; but what happens if we rotate the face around the 𝑧𝑧-

axis by 90°? As shown by comparing Figures 2 and 3, there are two problems: 

1. the search region must be to the right of the pronasal; 

2. the behavior of coefficient 𝑔𝑔 coincides with the behavior of the coefficient 𝑒𝑒 and vice 

versa. 
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Figure 2. (left) A face well oriented; in blue the pronasal, while the brightest region is the search area of 
the subnasal; (right) the coefficient 𝑔𝑔 used to extract the subnasal. 

 
Figure 3. (left) A face rotated by 90° around 𝒛𝒛-axis; in blue the pronasal, while the brightest region 
should be the search area of the subnasal, according to our old algorithm; but with this orientation it 
must be to the right of the pronasal; (center) the coefficient 𝒆𝒆: it coincides with the graphical 
representation of coefficient 𝒈𝒈 of the same face non-rotated; (right) the coefficient 𝒈𝒈 of this face. 

To solve this problem, it is necessary to avoid using the descriptors which depend on the 

reference system and to impose strong geometric constrains. So, there will be more candidates 

for each landmark and a new method to choose the landmark will be necessary. In this work we 

use a statistic model to find the real landmarks among the possible candidates. In particular, 

the new method is divided into three phases: 

• firstly the pronasal, the subnasal, and the endocanthions are detected using our previous 

algorithm only with the descriptors which are not dependent on the reference system;  

• subsequently, the mesh is rotated in a standard pose;  

• finally, since the face is in the standard pose, a statistical model, described in the next 

section, is used to detect the remaining landmarks. 
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2.1 The statistical model 

The statistical model here explained intervenes in the last phase of landmark extraction, 

in particular after having geometrically identified the candidate points and the initial points for 

each landmark. It is used twice in this algorithm: firstly during pose estimation, namely for 

identifying pronasal, subnasal, and endocanthions, then in the phase of extraction of the other 

landmarks. To create the statistical model were used faces belonging to 5 persons performing 

different expressions, in order to make the statistical model more accurate and more varied. 

According to Dryden and Mardia (Dryden and Mardia, 1998), “a landmark is a point of 

correspondence on each object that matches between and within populations of the same class 

of objects”, while “a shape is all the geometrical information that remains when location, scale, 

and rotational effects are filtered out from an object”. Shape, in other words, is invariant to 

Euclidean similarity transformations. In this context, the landmark set of each face is called 

“example shape” or “landmark shape”. 

The setting of the statistical model is performed using the same approach used by 

Perakis et al. (Perakis et al., 2009). The main steps to be built it are listed here: 

• a “statistical mean shape” is calculated using Procrustes Analysis; 

• eligible variations of the mean shape are calculated using Principal Component 

Analysis (PCA). 

The Procrustes Analysis is used to analyse the distribution of a set of shapes. To compare the 

shape of two or more objects, the objects must be firstly optimally aligned. Alignment is 

performed by minimizing the Procrustes distance: 

𝐷𝐷𝑝𝑝2 = |𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑖𝑖|2 = ∑ �𝑥𝑥𝑡𝑡𝑟𝑟 − 𝑥𝑥𝑖𝑖𝑟𝑟 �
2𝑘𝑘

𝑟𝑟=1 , 

where 𝑥𝑥𝑖𝑖  is the 𝑖𝑖𝑑𝑑ℎ  among the example shapes 𝑥𝑥𝑖𝑖  that we want to align, 𝑥𝑥𝑡𝑡  is the 

reference shape, while 𝑘𝑘 is the number of landmarks considered. The alignment procedure 

between 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑡𝑡  is performed by the Procrustes function. 

The Procrustes function defines a linear transformation (translation, reflection, 

orthogonal rotation, and scaling) of the points of two shapes. The “goodness-of-fit” criterion is 

the sum of squared errors (MathWorks). In this work, we want to discriminate the left side 

from the right side of the face, thus we do not consider the reflection. Furthermore, the size is 
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also important since it is used like a parameter to find the proper set of candidate points, even 

if the scaling is not considered. 

Given the shapes 𝑋𝑋 and 𝑌𝑌, the transformation is obtained this way: 

1. find the two centroids of the shapes 𝑋𝑋 and 𝑌𝑌 (respectively 𝑡𝑡𝑋𝑋  and 𝑡𝑡𝑌𝑌); 

2. translate the two shapes so that their centroids are at the origin; 

3. sum the squares of each element of the shape 𝑋𝑋 (𝑆𝑆𝑋𝑋) and of the shape 𝑌𝑌 (𝑆𝑆𝑌𝑌), then 

extract their square root (respectively 𝑛𝑛𝑛𝑛𝑡𝑡𝑚𝑚𝑋𝑋  and 𝑛𝑛𝑛𝑛𝑡𝑡𝑚𝑚𝑌𝑌); 

4. scale 𝑋𝑋 with 𝑛𝑛𝑛𝑛𝑡𝑡𝑚𝑚𝑋𝑋  and scale 𝑌𝑌 with 𝑛𝑛𝑛𝑛𝑡𝑡𝑚𝑚𝑌𝑌, to obtain respectively 𝑋𝑋𝑁𝑁  and 𝑌𝑌𝑁𝑁; 

5. compute the singular value decomposition of the 𝑋𝑋𝑁𝑁𝑇𝑇 ∗ 𝑌𝑌𝑁𝑁, to obtain the matrices 𝑈𝑈, 𝑆𝑆, 

and 𝑉𝑉 (𝑋𝑋𝑁𝑁𝑇𝑇 ∗ 𝑌𝑌𝑁𝑁 = 𝑈𝑈 ∗ 𝑆𝑆 ∗ 𝑉𝑉𝑇𝑇); 

6. compute the rotation matrix 𝑅𝑅 = 𝑉𝑉 ∗ 𝑈𝑈𝑇𝑇; 

7. if the determinant of 𝑅𝑅 is equal to −1 (the transformation 𝑅𝑅 includes a reflection), then 

invert the matrices 𝑉𝑉 and 𝑆𝑆 (undo the reflection) and compute again the rotation matrix 

with the previous formula;  

8. the best linear transformation which aligns the shape 𝑌𝑌 to the shape 𝑋𝑋 is: 

𝑍𝑍𝑖𝑖 = 𝑌𝑌𝑖𝑖 ∗ 𝑅𝑅 + 𝑡𝑡𝑋𝑋 , 

where 𝑌𝑌𝑖𝑖  is a point of the shape 𝑌𝑌.  

After the alignment, the Procrustes Analysis, meaning the computation of 𝑥𝑥𝑚𝑚 , could be 

summarized in the following steps: 

1. assign the first example shape to the mean shape 𝑥𝑥𝑚𝑚 ; 

2. assign the mean shape 𝑥𝑥𝑚𝑚  to the reference shape 𝑥𝑥𝑡𝑡 ; 

3. align each example shape 𝑥𝑥𝑖𝑖  to the reference shape 𝑥𝑥𝑡𝑡  with the Procrustes function; 

4. compute the mean shape as an average of the all example shapes; 

5. compute the Procrustes distance between the mean shape 𝑥𝑥𝑚𝑚  and the reference shape 

𝑥𝑥𝑡𝑡 ; 

6. if the Procrustes distance is less than a threshold, then exit; else return at point 2. 

Due to size normalization of Procrustes function, all shape vectors live in a hyper-sphere 

manifold in shape space, which introduces non-linearities if large shape scaling occurs. Since 

PCA is a linear procedure, all aligned shapes are firstly projected onto the tangent space of the 



11 
 

mean shape. So, shape vectors lie in a hyper-plane instead of a hyper-sphere, and non-linearities 

are filtered out. A simple bi-dimensional representation is shown in Figure 4.  

 

Figure 4. A simple two-dimensional representation of the shape dispositions. In the axes origin there is 
the mean shape, while the small polygons are the example shapes. In particular, a) represents example 
shapes which have unit norm, b) represents example shapes which have norm equal to the mean shape 
norm, c) represents example shapes projected in the tangent plane. We can note that the example shapes 
which have unit norm lie on a circle. Extending the concept in three-dimensional space, the circle 
becomes a sphere, while the tangent plane becomes a tangent space. 

The tangent space projection linearizes shapes by scaling them with a factor 𝛼𝛼: 

𝑥𝑥𝑖𝑖𝑑𝑑 = 𝛼𝛼𝑥𝑥𝑖𝑖 = |𝑥𝑥𝑚𝑚 |2

𝑥𝑥𝑚𝑚 ∙𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖 , 

where 𝑥𝑥𝑖𝑖𝑑𝑑  is the tangent space projection of shape 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑚𝑚  is the mean shape. If no size 

normalization is applied, then tangent space projection can be omitted. 

After turning the landmark shapes into a common frame of reference and estimating 

the landmark mean shape, further analysis can be carried out for describing the shape 

variations. This shape decomposition is performed by applying PCA to the aligned shapes. To 

perform PCA, a new representation of shapes may be useful. Each shape is composed by 𝑘𝑘 

landmarks in 𝑑𝑑 dimensions, therefore a new representation could be defined by concatenating 

all point coordinates into a 𝑛𝑛 = 𝑘𝑘 ∗ 𝑑𝑑 vector; in this case, 𝑑𝑑 is equal to 3, thus the 

representation is: 
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𝑠𝑠𝑖𝑖 = [𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2, … , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘]𝑇𝑇, 

where (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) represents each landmark. Aligned shape vectors form a distribution in the 

𝑘𝑘 ∗ 𝑑𝑑 dimensional shape space, where 𝑘𝑘 is the number of landmarks and 𝑑𝑑 the dimension of 

each landmark. If landmark points do not represent a certain class of shapes, then they will be 

totally uncorrelated (i.e., purely random). On the other hand, if landmark points present a 

certain class of shapes, then they will be correlated with some degrees.  

The idea is to estimate a vector of parameters that describes shape deformations (Cootes 

et al., 1995; Cootes et al., 2001; Cootes et al., 2005; Stegman et al., 2002) in a space where 

landmarks coordinates are totally uncorrelated from each other: this will be exploited by 

applying PCA. The correlated space is the space where landmarks coordinates are correlated 

from each other, while the uncorrelated space will be the space where landmarks coordinates 

are totally uncorrelated. Furthermore, we shall indicate with 𝑠𝑠 the generic example shape in the 

correlated space, while 𝑡𝑡 will be the generic example shape in the uncorrelated space. For each 

space, we may determine the covariance matrix of 𝑁𝑁 example shapes according to:  

𝐶𝐶𝑥𝑥 = 1
𝑁𝑁−1

∑ (𝑠𝑠𝑖𝑖 − 𝑥𝑥𝑚𝑚)(𝑠𝑠𝑖𝑖 − 𝑥𝑥𝑚𝑚 )𝑇𝑇𝑁𝑁
𝑖𝑖=1 ,    𝐶𝐶𝑦𝑦 = 1

𝑁𝑁−1
∑ (𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑚𝑚)(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑚𝑚 )𝑇𝑇𝑁𝑁
𝑖𝑖=1 , 

where 𝐶𝐶𝑥𝑥  is the covariance matrix in the correlated space, 𝐶𝐶𝑦𝑦  is the covariance matrix in the 

uncorrelated space (𝐶𝐶𝑦𝑦  will be a diagonal matrix since landmarks coordinate are totally 

uncorrelated), 𝑠𝑠𝑖𝑖  is the 𝑖𝑖𝑑𝑑ℎ  among the example shapes in the correlated space, 𝑡𝑡𝑖𝑖  is the 𝑖𝑖𝑑𝑑ℎ  

among the example shapes in the uncorrelated space, 𝑥𝑥𝑚𝑚  is the mean shape in the correlated 

space, and 𝑦𝑦𝑚𝑚  is the mean shape in the uncorrelated space. Between the two covariance 

matrices exists the following relationship holds: 

𝐶𝐶𝑥𝑥 ∙ 𝐴𝐴 = 𝐴𝐴 ∙ 𝐶𝐶𝑦𝑦 . 

Therefore, 𝐶𝐶𝑦𝑦  can be computed with the following formula:  

𝐶𝐶𝑦𝑦 = 𝐴𝐴𝑇𝑇 ∙ 𝐶𝐶𝑥𝑥 ∙ 𝐴𝐴. 

The resulting transform is known as the Karhunen-Loéve Transform, and achieves our 

original goal of creating mutually uncorrelated features. In fact, 𝐴𝐴 is a matrix that contains (in 

columns) the 𝑛𝑛 = 𝑘𝑘 ∗ 𝑑𝑑 eigenvectors of 𝐶𝐶𝑥𝑥 ; therefore, projecting aligned original example 

shapes to the eigenspace, we uncorrelate them as:  

𝑡𝑡 = 𝐴𝐴𝑇𝑇 ∙ (𝑠𝑠 − 𝑥𝑥𝑚𝑚 ). 
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To back-project uncorrelated shape vectors onto the correlated space, we can use: 

𝑠𝑠 = 𝑥𝑥𝑚𝑚 + 𝐴𝐴 ∙ 𝑡𝑡. 

Now, we want to consider a subspace of the uncorrelated space spanned by the most 

significant eigenvectors of 𝐶𝐶𝑥𝑥  (principal component), neglecting the less significant ones, which 

are used to represent noise (Cootes et al., 2001; Theodoris et al., 2006). The idea is to consider 

the 𝑝𝑝 eigenvectors associated to the 𝑝𝑝 largest eigenvalues, so the mean square error between 𝑠𝑠 

and its approximation 𝑠𝑠’ is minimized. Firstly, the eigenvalues are ordered in descending order; 

secondly, the eigenvalues are summed between them until the following relationship is verified: 

∑ 𝜆𝜆i
𝑝𝑝
𝑖𝑖=1 = 𝑓𝑓 ∗ 𝜆𝜆𝑇𝑇, 

where 𝑝𝑝 is the number of considered eigenvalues, 𝜆𝜆𝑖𝑖  is the 𝑖𝑖𝑑𝑑ℎ  eigenvalue,  𝜆𝜆𝑇𝑇 is the sum of all 

eigenvalues, and factor 𝑓𝑓 is the percentage of total variance incorporated into statistical model. 

In this work 𝑓𝑓 is equal to 0.98.  

Let’s define the matrix 𝜙𝜙 as containing (in columns) the 𝑝𝑝 considered eigenvectors, 

approximating any example shape 𝑠𝑠 using: 

𝑠𝑠′ ≈ 𝑥𝑥𝑚𝑚 + 𝜙𝜙 ∙ 𝑏𝑏, 

where 𝑏𝑏 is a 𝑝𝑝-dimensional vector given by: 

𝑏𝑏 = 𝜙𝜙𝑇𝑇 ∙ (𝑠𝑠 − 𝑥𝑥𝑚𝑚 ). 

The vector 𝑏𝑏 is the projection of 𝑠𝑠 onto the subspace spanned by the 𝑝𝑝 most significant 

eigenvectors of the eigenspace (principal components) and represents the variations in the 

subspace of the uncorrelated space between the shape 𝑠𝑠 and the mean shape. 

So that the shapes generated to be eligible, it is necessary to limit the variation range of 

parameters; it could be useful to estimate from the landmark set the probability density of 𝑏𝑏, so 

that the algorithm will be able to establish if the calculated parameters belong to this 

distribution. We may set that the parameters are eligible if  𝑝𝑝(𝑏𝑏) ≥ 𝑝𝑝𝑑𝑑 , where 𝑝𝑝𝑑𝑑  is a threshold 

we established. A general idea consists in considering all parameters statistically independent of 

each other and to suppose that they have a Gaussian probability distribution. Remembering 

that each parameter 𝑏𝑏𝑖𝑖  has a variance equal to 𝜆𝜆i, the probability density of the vector 𝑏𝑏 is: 

𝑝𝑝(𝑏𝑏) = ∏ 1
�2𝜋𝜋𝜆𝜆𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝑒𝑒

−
𝑏𝑏𝑖𝑖

2

2𝜆𝜆𝑖𝑖 . 
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Under this assumption, a limitation able to ensure that the shape generated do not differ too 

much from those in the landmark set is given by: 

−𝑛𝑛�𝜆𝜆𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 ≤ 𝑛𝑛�𝜆𝜆𝑖𝑖 , 

where 𝑛𝑛 is equal to 2 or 3. As known, a Gaussian probability distribution has the confidence 

interval between 𝜇𝜇 − 3𝜎𝜎 and 𝜇𝜇 + 3𝜎𝜎 (where 𝜇𝜇 is the mean of the distribution and 𝜎𝜎 is the 

standard deviation), which comprises about 99% of the population extracted from itself, so 

𝑛𝑛 = 3 seems to be a good choice since it allows to consider almost all of the landmark set. 

In conclusion, the eligibility of parameters is verified by the condition: 

−3�𝜆𝜆𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 ≤ 3�𝜆𝜆𝑖𝑖 . 

Each parameter which does not satisfy the previous condition is truncated to the nearest 

allowable value. In particular: 

1. if 𝑏𝑏𝑖𝑖 > 3�𝜆𝜆𝑖𝑖  then the value 3�𝜆𝜆𝑖𝑖  will be assigned to 𝑏𝑏𝑖𝑖 ; 

2. if 𝑏𝑏𝑖𝑖 < −3�𝜆𝜆𝑖𝑖  then the value −3�𝜆𝜆𝑖𝑖  will be assigned to 𝑏𝑏𝑖𝑖 . 

In brief, the approach is as follows: 

1. determine the mean shape 𝑥𝑥𝑚𝑚 ; 

2. determine the covariance matrix 𝐶𝐶𝑥𝑥  of the shape vectors 𝑠𝑠𝑖𝑖 ; 

3. compute the eigenvectors 𝐴𝐴𝑖𝑖  and corresponding eigenvalues 𝜆𝜆𝑖𝑖  of the covariance matrix, 

sorted in descending order. 

After applying Procrustes Analysis, the mean shape is determined and example shapes are 

aligned and projected to the tangent space of the mean shape.  

 

2.2 Estimating face orientation  

Face orientation is estimated through the landmarks pronasal, subnasal, and 

endocanthions. Once these landmarks are detected, face could be rotated to the standard pose. 

Since we do not know face orientation, in order to localize these landmarks, we can use only 

the descriptors which do not depend to the reference system used, since they rely on intrinsic 

proprieties of surfaces. These descriptors are the Principal Curvatures (𝑘𝑘1 and 𝑘𝑘2), the Gaussian 

and Mean Curvature (𝐾𝐾 and 𝐻𝐻), the Tangent Map (𝑇𝑇), and Shape and Curvedness Indexes. In 

particular, with these conditions on the geometrical descriptors, in this phase we extract the 
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candidate points and the initial point, i.e. the point at which the subsequent statistical model 

starts its computation. Finally, the statistical model, explained in 2.1, is computed on the four 

landmarks (pronasal, subnasal, and two endocanthions) and iteratively fitted on candidate points, 

in order to have a precise extraction of them. 

Firstly, the algorithm computes a threshold used to cluster the endocanthion candidate 

points. The scope of the threshold is that the close candidate points are related to the same 

landmark, therefore they will not be considered as different landmarks at the same time. Given 

its scope, the threshold depends on face size and is computed with the following formula: 

𝑑𝑑ℎ𝑡𝑡𝑒𝑒𝑠𝑠ℎ𝑛𝑛𝑙𝑙𝑑𝑑 = �(max Z−min Z)2+ (max Y−min Y)2+(max X−min X)2

20
, 

where max Z, min Z, max Y, min Y, max X, and min X are the maximums and minimums of x-, 

y-, and z-coordinates, respectively. In other words, we calculate the diagonal of the face 

bounding box, i.e. the imaginary box in which the face is inscribed (shown in Figure 16), and 

we divide it by twenty.  

Secondly, the algorithm normalizes the descriptors in the range [0,1], so we can express 

the conditions on the descriptors with the form of a probability.  

Thirdly, the sets of the candidate points for each landmark is computed. The sets are 

found filtering out the mesh points out of the through some conditions; in particular: 

1. the pronasal candidate points satisfy these conditions: 

a. very low values of the Shape Index (𝑆𝑆 ≤ 0.1); 

b. high values of the Principal Curvature (𝑘𝑘1 ≥ 0.65 and 𝑘𝑘2 ≥ 0.7); 

2. the subnasal candidate points satisfy these conditions: 

a. very high values of the Tangent Map (𝑇𝑇 > 0.8); 

b. high values of the Shape Index (𝑆𝑆 ≥ 0.4); 

3. the endocanthion candidate points satisfy these conditions: 

a. very high values of the Shape Index (𝑆𝑆 > 0.9); 

b. high values of the Curvedness Index normalized in the range [0,1] in the points 

which satisfy the previous condition (𝐶𝐶𝐸𝐸𝑁𝑁 > 0.5). 

In Figure 5 are shown the candidate points for each landmark. We can note that there are 

many false candidates, therefore the initial choice of the points is very important since the 
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statistical model is fitted in a neighbourhood of the starting points; in fact, if the initial points 

are not close to the real landmarks and the points detected by the algorithm are completely 

wrong.  

             

Figure 5. In the brightest regions there are the pronasal candidate points (left), the subnasal candidate 
points (centre), the endocanthions candidate points (right). 

Then, the initial points are chosen among candidate points. In particular: 

a. the initial pronasal is the point which maximizes the Principal Curvature 𝑘𝑘2; 

b. the initial subnasal is the point closest to the initial pronasal; 

c. the initial endocanthions are found this way: 

1. find the first initial endocanthion maximizing the Shape Index; 

2. the second initial endocanthion is searched maximizing the Shape Index between 

the candidate points having a distance from the first initial endocanthion greater 

than threshold and less than three times the threshold (threshold is the value 

initially computed by the algorithm); 

3. if the second initial endocanthion is not found, then the algorithm deletes from 

the set of endocanthion candidate points the first initial endocanthion and the ones 

which have a distance from it less than the threshold; subsequently, the 

algorithm returns to the step 1. The idea is that the distance between the two 

endocanthions belongs to the range [𝑑𝑑ℎ𝑡𝑡𝑒𝑒𝑠𝑠ℎ𝑛𝑛𝑙𝑙𝑑𝑑; 3 ∗ 𝑑𝑑ℎ𝑡𝑡𝑒𝑒𝑠𝑠ℎ𝑛𝑛𝑙𝑙𝑑𝑑], therefore the 

first initial endocanthion and its neighbours are deleted because they are certainly 

some false candidate points. 

Once the initial points are extracted, it is necessary to define the left and the right endocanthion 

between the two extracted. This operation is performed through Analytic Geometry rules in the 

space. In particular, we consider two oriented straight lines (vectors): 

1. the first vector starts from initial pronasal and ends on the first initial endocanthion; 

2. the second vector starts from initial pronasal and ends on the second initial endocanthion. 
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As shown in Figure 6, the vector cross products between the first and the second vector 

produces two possible vectors, which lie on the same straight line but have opposite directions. 

           

Figure 6. (left) the black lines are the vectors which link each endocanthion with the pronasal; in yellow 
the surface normal to the pronasal point, while the green and blue vectors are the result of the vector 
cross products between the black vectors; naming 𝒓𝒓𝟏𝟏the vector which links the pronasal with the left 
endocanthion and 𝒓𝒓𝟐𝟐 the vector which links the pronasal with the right endocanthion, the blue vector is the 
result of the vector cross product between 𝒓𝒓𝟏𝟏 and 𝒓𝒓𝟐𝟐, while the green vector is the result of the vector 
cross product between 𝒓𝒓𝟐𝟐 and 𝒓𝒓𝟏𝟏. The green and yellow vectors have nearly the same direction, while 
blue and yellow vectors have nearly opposite directions; (right) the same situation happens on the 
rotated face, therefore this method is invariant with respect to face orientation. 

The general idea is to perform the vector cross product between the first and the second vector 

and to compute the vector inner product between the surface normal at the pronasal and the 

result of the previous operation. There are two cases: 

1. if the vector inner product is negative, then the first initial endocanthion will be the left 

one; 

2. if the vector inner product is positive, then the first initial endocanthion will be the right 

one. 

Now it is possible to perform the fitting procedure, i.e. applying the statistical model 

introduced in section 2.1. The procedure consists in a serial steps repeated until it converges. 

The convergence is reached when the landmarks detected at the 𝑖𝑖𝑑𝑑ℎ -iteration are very close to 

the landmarks detected at the (𝑖𝑖𝑑𝑑ℎ − 1)-iteration. Considering that the landmark shape 𝑥𝑥𝑙𝑙  is 

composed by the initial point extracted previously, the following steps are: 

1. assign the mean shape of the statistical model to the reference shape 𝑥𝑥𝑡𝑡 ; 

2. align the landmark shape 𝑥𝑥𝑙𝑙  to the reference shape 𝑥𝑥𝑡𝑡  with the Procrustes function, to 

obtain the linear transformation 𝑇𝑇; 
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3. compute the vector 𝑏𝑏 using the formula: 𝑏𝑏 = 𝜙𝜙𝑇𝑇 ∙ (𝑠𝑠 − 𝑥𝑥𝑚𝑚); 

4. verify if the vector 𝑏𝑏 is eligible: if the condition is not verified, then make the vector 𝑏𝑏 

eligible, how said previously; 

5. compute the new reference shape 𝑥𝑥𝑡𝑡  through the formula: 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 + Φ ∙ 𝑏𝑏; 

6. transform the reference shape 𝑥𝑥𝑡𝑡  using the linear transformation 𝑇𝑇−1, to obtain the 

new landmark shape 𝑥𝑥𝑙𝑙1; 

7. for each landmark in the shape 𝑥𝑥𝑙𝑙1 search in its candidate points the closest point, 

which will be the new landmark in the shape 𝑥𝑥𝑙𝑙1; 

8. if the landmarks in the shape 𝑥𝑥𝑙𝑙1 are very close to the landmarks in the shape 𝑥𝑥𝑙𝑙  then 

exit; else assign the shape 𝑥𝑥𝑙𝑙1 to the landmark shape 𝑥𝑥𝑙𝑙  and return to the step 2. 

Some results of this step are shown in Figure 7. 

             

Figure 7. Some results of the fitting phase. 

Once the fitting procedure is done, the pronasal, the subnasal, and the two endocanthions 

are detected. At this point, the algorithm rotates the face in a specific pose through Analytic 

Geometry. In this work we use a reference system like the one shown in the Figure 8. 
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Figure 8. The new reference system used. The plane defined by the pronasal and the two endocanthions is 
rotated around 𝒙𝒙-axis of 𝜽𝜽𝒙𝒙; the 𝒚𝒚-axis is a vector parallel to the vector which starts from pronasal and 
finishes to the midpoint between the two endocanthions; the 𝒙𝒙-axis is a vector whose direction is toward 
the right side of the face; the 𝒛𝒛-axis is a vector which completes the frame; the axes origin coincides with 
the mesh centroid. 

In order to find the transformation matrix which rotates the face into standard pose, we use 

Analytic Geometry. Firstly, we have to define a reference value to 𝜃𝜃𝑥𝑥  that could be: 

𝜃𝜃𝑥𝑥 =  −0,8573578984258491 𝑡𝑡𝑡𝑡𝑑𝑑. 

Subsequently, we compute these steps: 

1. translate the mesh so that its centroid coincides with the origin of axes; 

2. compute the unit normal of the plane defined by the pronasal and the two endocanthions 

(𝑛𝑛 = 𝑡𝑡2×𝑡𝑡1
|𝑡𝑡2×𝑡𝑡1|

); 

3. compute the unit vector (𝑚𝑚) which starts from the pronasal and finishes to the midpoint 

of the two endocanthions; 

4. compute a third vector (𝑙𝑙) that is perpendicular to the vectors 𝑛𝑛 and 𝑚𝑚 using the 

formula: 𝑙𝑙 = 𝑚𝑚 × 𝑛𝑛; 

5. define the rotation matrix in this way: 

𝑅𝑅 = [ 𝑙𝑙 | 𝑚𝑚 | 𝑛𝑛 ]−1; 

6. the rotation matrix R rotates the face in a new reference system where the plane defined 

by the pronasal and the two endocanthions is parallel with the 𝑥𝑥𝑦𝑦-plane; therefore, it is 

necessary to rotate the face around 𝑥𝑥-axis of 𝜃𝜃𝑥𝑥 ; 
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7. the final rotation matrix is defined in this way: 

𝑅𝑅𝑓𝑓 = �
1 0 0
0 cos 𝜃𝜃𝑥𝑥 − sin𝜃𝜃𝑥𝑥
0 sin𝜃𝜃𝑥𝑥 cos 𝜃𝜃𝑥𝑥

� ∗ 𝑅𝑅. 

So, face is rotated to the standard pose and we can proceed with the detection of the remaining 

landmarks. 

 

2.3 Detecting all landmarks 

The detection of the other landmarks is performed through the use of a statistical 

model computed on all landmarks and, since the face is in a standard pose, with the aid of the 

other geometrical descriptors, such as the derivatives and 𝐸𝐸, 𝐹𝐹, 𝐺𝐺, 𝑒𝑒, 𝑓𝑓, 𝑔𝑔. In this phase the 

Tangent Map, the Shape Index, and the Principal Curvature 𝑘𝑘2, which are used to choose the 

candidate points, have been normalized in the range [0,1]. 

Firstly the algorithm finds the parametric coordinates (𝑑𝑑 and 𝐹𝐹) of the landmarks 

previously detected and computes the sets of the candidate points for each landmark. In 

particular: 

1. the pronasal candidate points are the points which have parametric coordinates in the 

ranges:  

𝑑𝑑 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 − 3,𝑑𝑑𝑃𝑃𝑁𝑁 + 3], 𝐹𝐹 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 − 3, 𝐹𝐹𝑃𝑃𝑁𝑁 + 3], 

where 𝑑𝑑𝑃𝑃𝑁𝑁  and 𝐹𝐹𝑃𝑃𝑁𝑁  are the pronasal parametric coordinates; 

2. the subnasal candidate points are the points which have parametric coordinates in the 

ranges:  

𝑑𝑑 ∈ [𝑑𝑑𝑆𝑆𝑁𝑁 − 3,𝑑𝑑𝑆𝑆𝑁𝑁 + 3], 𝐹𝐹 ∈ [𝑑𝑑𝑆𝑆𝑁𝑁 − 3, 𝐹𝐹𝑆𝑆𝑁𝑁 + 3], 

where 𝑑𝑑𝑆𝑆𝑁𝑁  and 𝐹𝐹𝑆𝑆𝑁𝑁  are the subnasal parametric coordinates; 

3. the left endocanthion candidate points are the points which have parametric coordinates 

in the ranges:  

𝑑𝑑 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 − 6,𝑑𝑑𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 + 6], 𝐹𝐹 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 − 6, 𝐹𝐹𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 + 6], 

where 𝑑𝑑𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥  and 𝐹𝐹𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥  are the left endocanthion parametric coordinates; 

4. the right endocanthion candidate points are the points which have parametric 

coordinates in the ranges:  

𝑑𝑑 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 − 6,𝑑𝑑𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 + 6], 𝐹𝐹 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 − 6, 𝐹𝐹𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 + 6], 

where 𝑑𝑑𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥  and 𝐹𝐹𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥  are the right endocanthion parametric coordinates; 
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5. the nasion candidate points are the points which have parametric coordinates in the 

ranges:  

                   𝑑𝑑 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 + 6,𝑑𝑑𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 − 6],  

𝐹𝐹 ∈ [min(𝐹𝐹𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 ,𝐹𝐹𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 ) − 15, max(𝐹𝐹𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 , 𝐹𝐹𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 ) + 15];  

furthermore, these points are filtered with the following conditions: 

a. low values of the Shape Index (𝑆𝑆 < 0.5); 

b. the Mean Curvature satisfies the condition: 𝐻𝐻 ∈ (−0.5, +0.5); 

6. the left alae candidate points are the points which have parametric coordinates in the 

ranges:  

𝑑𝑑 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 − 40,𝑑𝑑𝑃𝑃𝑁𝑁 − 10], 𝐹𝐹 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 − 8, 𝐹𝐹𝑃𝑃𝑁𝑁 + 8]; 

7. the right alae candidate points are the points which have parametric coordinates in the 

ranges:  

𝑑𝑑 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 + 10,𝑑𝑑𝑃𝑃𝑁𝑁 + 40], 𝐹𝐹 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 − 8, 𝐹𝐹𝑃𝑃𝑁𝑁 + 8]; 

8. the left exocanthion candidate points are the points which have parametric coordinates in 

the ranges:  

𝑑𝑑 ∈ [10,𝑑𝑑𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 − 25],       𝐹𝐹 ∈ [𝐹𝐹𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 − 8, 𝐹𝐹𝐸𝐸𝑁𝑁𝑠𝑠𝑥𝑥 + 6]; 

furthermore, these points are filtered with the following conditions: 

a. the Tangent Map 𝑇𝑇 must be in the range between 0.6 and 0.9 (𝑇𝑇 ∈ [0.6,0.9]); 

b. the Shape Index must be equal or less than 0.75 (𝑆𝑆 ≤ 0.75); 

c. the Coefficient 𝑒𝑒 must be in the range between -0.3 and 0.3 (−0.3 ≤ 𝑒𝑒 ≤ 0.3); 

d. the Coefficient 𝐸𝐸 must be in the range between 1.5 and 3.5 (1.5 ≤ 𝐸𝐸 ≤ 1.5); 

9. the right exocanthion candidate points are the points which have parametric coordinates 

in the ranges:  

𝑑𝑑 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 + 25,140],       𝐹𝐹 ∈ [𝐹𝐹𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 − 8, 𝐹𝐹𝐸𝐸𝑁𝑁𝑑𝑑𝑥𝑥 + 6]; 

furthermore, these points are filtered with the following conditions: 

a. the Tangent Map 𝑇𝑇 must be in the range between 0.6 and 0.9 (𝑇𝑇 ∈ [0.6,0.9]); 

b. the Shape Index must be equal or less than 0.75 (𝑆𝑆 ≤ 0.75); 

c. the Coefficient 𝑒𝑒 must be in the range between -0.3 and 0.3 (−0.3 ≤ 𝑒𝑒 ≤ 0.3); 

d. the Coefficient 𝐸𝐸 must be in the range between 1.5 and 3.5 (1.5 ≤ 𝐸𝐸 ≤ 1.5); 

Subsequently, the initial points must be extracted. Initial points for pronasal, subnasal, 

and endocanthions  are the same detected in section 2.2, while the others are extracted this way: 
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1. the initial alae (one for side) are the two points which maximize the Coefficient 𝑒𝑒 

between their candidate points; 

2. the initial endocanthions (one for side) are the two centroids of their candidate points; 

3. the initial nasion is the centroid of its candidate points. 

Figures 9, 10, 11, 12 show the regions-of-interest of each landmark. 

   

Figure 9. In the brightest regions there are the pronasal candidate points (left), the subnasal candidate 
points (center), the nasion candidate points (right). 

  

Figure 10. In the brightest regions there are the left endocanthion candidate points (left) and the right 
endocanthion candidate points (right). 

 

  

Figure 11. In the brightest regions there are the left alae candidate points (left) and the right alae 
candidate points (right). 
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Figure 12. In the brightest regions there are the left exocanthion candidate points (left) and the right 
exocanthion candidate points (right). 

Once the initial points are extracted, the statistical model intervenes and the fitting 

phase begins. It is similar to the fitting procedure previously described, but it differs from the 

previous one in one point: when the statistical model is fitted to the mesh, the algorithm now 

searches among the candidate points not the closest points to the initial ones, but the points 

which satisfy some geometrical conditions. These conditions are: 

1. the pronasal is the point which maximizes 𝑍𝑍 in the range: 

𝑑𝑑 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 − 2,𝑑𝑑𝑃𝑃𝑁𝑁 + 2], 𝐹𝐹 ∈ [𝑑𝑑𝑃𝑃𝑁𝑁 − 2, 𝐹𝐹𝑃𝑃𝑁𝑁 + 2],𝑤𝑤𝑖𝑖𝑑𝑑ℎ (𝑑𝑑, 𝐹𝐹) ∈ 𝐶𝐶𝑃𝑃(𝑃𝑃𝑁𝑁),  

where 𝑑𝑑𝑃𝑃𝑁𝑁  and 𝐹𝐹𝑃𝑃𝑁𝑁  are the parametric coordinates of the pronasal extracted and 

𝐶𝐶𝑃𝑃(𝑃𝑃𝑁𝑁) is the set of the its candidate points; 

2. the subnasal is the point which maximizes the Coefficient 𝑔𝑔 between the five points (one 

for each 𝐹𝐹-parameter) which maximize 𝑍𝑍 in the range: 

𝑑𝑑 ∈ [𝑑𝑑𝑆𝑆𝑁𝑁 − 2,𝑑𝑑𝑆𝑆𝑁𝑁 + 2], 𝐹𝐹 ∈ [𝑑𝑑𝑆𝑆𝑁𝑁 − 2, 𝐹𝐹𝑆𝑆𝑁𝑁 + 2],𝑤𝑤𝑖𝑖𝑑𝑑ℎ (𝑑𝑑, 𝐹𝐹) ∈ 𝐶𝐶𝑃𝑃(𝑆𝑆𝑁𝑁), 

where 𝑑𝑑𝑆𝑆𝑁𝑁  and 𝐹𝐹𝑆𝑆𝑁𝑁  are the parametric coordinates of the subnasal extracted and 

𝐶𝐶𝑃𝑃(𝑆𝑆𝑁𝑁) is the set of the its candidate points; 

3. the two alae are the two points which maximize the Coefficient 𝑒𝑒 between the five 

points (one for each 𝑑𝑑-parameter) which maximize 𝑍𝑍 in the range: 

𝑑𝑑 ∈ [𝑑𝑑𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒 − 2,𝑑𝑑𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒 + 2], 𝐹𝐹 ∈ [𝑑𝑑𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒 − 2, 𝐹𝐹𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒 + 2], 𝑤𝑤𝑖𝑖𝑑𝑑ℎ (𝑑𝑑, 𝐹𝐹) ∈ 𝐶𝐶𝑃𝑃(𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒), 

where 𝑑𝑑𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒  and 𝐹𝐹𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒  are the parametric coordinates of the left or right alae extracted 

and 𝐶𝐶𝑃𝑃(𝐴𝐴𝑙𝑙𝑡𝑡𝑒𝑒) is the sets (one for side) of the their candidate points; 

4. the two endocanthions are the two points which maximize the Coefficient 𝑔𝑔 between the 

three points (one for each 𝑑𝑑-parameter) which minimize 𝑍𝑍 in the range: 

𝑑𝑑 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁 − 1,𝑑𝑑𝐸𝐸𝑁𝑁 + 1], 𝐹𝐹 ∈ [𝑑𝑑𝐸𝐸𝑁𝑁 − 1, 𝐹𝐹𝐸𝐸𝑁𝑁 + 1],𝑤𝑤𝑖𝑖𝑑𝑑ℎ (𝑑𝑑, 𝐹𝐹) ∈ 𝐶𝐶𝑃𝑃(𝐸𝐸𝑁𝑁), 

where 𝑑𝑑𝐸𝐸𝑁𝑁  and 𝐹𝐹𝐸𝐸𝑁𝑁  are the parametric coordinates of the left or right endocanthion 

extracted and 𝐶𝐶𝑃𝑃(𝐸𝐸𝑁𝑁) is the sets (one for side) of the their candidate points; 
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5. the two exocanthions are the two midpoints between two points which maximize the 

Coefficient 𝑔𝑔 and minimize the Shape Index in the range: 

𝑑𝑑 ∈ [𝑑𝑑𝐸𝐸𝑋𝑋 − 2,𝑑𝑑𝐸𝐸𝑋𝑋 + 2], 𝐹𝐹 ∈ [𝑑𝑑𝐸𝐸𝑋𝑋 − 2, 𝐹𝐹𝐸𝐸𝑋𝑋 + 2], 𝑤𝑤𝑖𝑖𝑑𝑑ℎ (𝑑𝑑, 𝐹𝐹) ∈ 𝐶𝐶𝑃𝑃(𝐸𝐸𝑋𝑋) 

where 𝑑𝑑𝐸𝐸𝑋𝑋  and 𝐹𝐹𝐸𝐸𝑋𝑋  are the parametric coordinates of the left or right exocanthion 

extracted and 𝐶𝐶𝑃𝑃(𝐸𝐸𝑋𝑋) is the sets (one for side) of the their candidate points; 

6. the nasion is the point which minimizes the Coefficient 𝑔𝑔 between the seven points (one 

for each 𝐹𝐹-parameter) which maximize 𝑍𝑍 in the range: 

𝑑𝑑 ∈ [𝑑𝑑𝑁𝑁 − 3,𝑑𝑑𝑁𝑁 + 3], 𝐹𝐹 ∈ [𝑑𝑑𝑁𝑁 − 3, 𝐹𝐹𝑁𝑁 + 3],𝑤𝑤𝑖𝑖𝑑𝑑ℎ (𝑑𝑑, 𝐹𝐹) ∈ 𝐶𝐶𝑃𝑃(𝑁𝑁),  

where 𝑑𝑑𝑁𝑁 and 𝐹𝐹𝑁𝑁  are the parametric coordinates of the nasion extracted and 𝐶𝐶𝑃𝑃(𝑁𝑁) is 

the set of the its candidate points. 

In summary, the fitting procedure performs the following steps: 

1. the landmark shape 𝑥𝑥𝑙𝑙  is composed by the initial point extracted previously;  

2. assign the mean shape of the statistical model to the reference shape 𝑥𝑥𝑡𝑡 ; 

3. searches in small neighborhoods of the points in the landmark shape 𝑥𝑥𝑙𝑙  the points (one 

for landmark) which have some typical features of a landmark; 

4. align the landmark shape 𝑥𝑥𝑙𝑙  to the reference shape 𝑥𝑥𝑡𝑡  with the Procrustes Function, to 

obtain the linear transformation 𝑇𝑇; 

5. compute the vector 𝑏𝑏 using the formula: 𝑏𝑏 = 𝜙𝜙𝑇𝑇 ∙ (𝑠𝑠 − 𝑥𝑥𝑚𝑚); 

6. verify if the vector 𝑏𝑏 is eligible; if the conditions is not verified, then make the vector 𝑏𝑏 

eligible, how said previously; 

7. compute the new reference shape 𝑥𝑥𝑡𝑡  through the formula: 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 + Φ ∙ 𝑏𝑏; 

8. transform the reference shape 𝑥𝑥𝑡𝑡  using the linear transformation 𝑇𝑇−1, to obtain the 

new landmark shape 𝑥𝑥𝑙𝑙1; 

9. for each landmark in the shape 𝑥𝑥𝑙𝑙1 search in its candidate points the closest point, 

which will be the new landmark in the shape 𝑥𝑥𝑙𝑙1; 

10. if the landmarks in the shape 𝑥𝑥𝑙𝑙1 are very close to the landmarks in the shape 𝑥𝑥𝑙𝑙  then 

exit; else assign the shape 𝑥𝑥𝑙𝑙1 to the landmark shape 𝑥𝑥𝑙𝑙  and return to the step 3. 

In Figure 13 we can see the intermediate steps of the fitting procedure. In general, after six 

iterations, the landmarks extracted are very close to the real landmarks; in fact, the landmarks 

shown in the centre figures and in the right figures are nearly in the same position. 
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Figure 13. The intermediate steps of the fitting procedure. In particular: (left) the initial state, where the 
nasion extracted is wrong; (center) the intermediate state, where the landmarks are very close to the real 
landmarks; (right) the landmarks extracted. 

 

3. Results 

The method was elaborated and implemented in Matlab®. Thirty-three faces of nine 

people with different facial expressions were scanned through a Minolta Vivid 910 and used for 

the experimentation. For each person, 7 facial expressions were taken, namely a straight 

expression and the 6 main emotional expressions, meaning anger, disgust, enjoyment, fear, 

sadness, and surprise, according to the theory of “basic emotions” of Ekman (Ekman, 1970; 

Ekman and Keltner, 1997). The scanned people were all Caucasian, male and female, from 20 

to 40 years old. 

After the scanning, the facial shells have been triangulated with a square mesh. The 

method was directly run on matrices collecting three-dimensional coordinates of the 

triangulated facial point clouds. The computing times could be divided in two types: 

1. the computing time of the algorithm, which is about 15 seconds; 

2. the processing time of the parametric surface fitting on the point cloud, which is about 

10 seconds. 

The results of the algorithm on nine faces belonging to different people are shown in Figure 14, 

while in Figure 15 there are the results of the algorithm on three faces of the same person 

performing three different facial expressions. 
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Figure 14. The extracted landmarks for nine of the thirty-three faces; the faces belong to different 
people. 

   

Figure 15. The extracted landmarks from faces belonging to the same person but with different 
expressions. In particular, the face expressions are sadness (left), fear (center), and surprise (right). 

To verify the goodness of the extracted landmarks, a brief statistical study was 

performed. Firstly, the landmarks of thirty-three faces were hand-detected from a plastic 

surgeon, so that we could compare them with the extracted ones. Subsequently, Euclidean 

distances between the correct landmarks and the respective points given by the new algorithm 

and the previous one are computed. However, in order to compare them, a normalizing 

operation is necessary; the idea was to normalize the distances by dividing them by the diagonal 

of the face bounding box. A bounding box is an invisible rectangular 3D box in which the face 

is somehow inscribed, as Figure 16 shows. 



27 
 

 

Figure 16. The measures of the bounding box of a face; face width is about 12 cm, height is about 15 
cm and depth is about 7 cm. Applying the theorem of Pythagoras we can compute the diagonal of the 
bounding box (𝑫𝑫 ≈ 𝟐𝟐𝟐𝟐 cm). 

As shown in Figure 16, the sides of this box have a standard length, therefore, through a simple 

proportion, a normalization could be performed. The proportion is the following: 

𝑒𝑒 ∶ 𝑑𝑑𝑙𝑙 = 𝐷𝐷:𝑑𝑑𝑓𝑓 , 

where 𝑑𝑑𝑙𝑙  is the distance between the correct landmark and the detected landmark, 𝑒𝑒 is the 

normalized distance which must be computed  (we can call it error), 𝐷𝐷 is the diagonal of the 

bounding box of the face standard and 𝑑𝑑𝑓𝑓  is the diagonal of the bounding box of the face 

where the landmarks are detected. 

Once the normalized distances were computed, the sample mean 𝜇𝜇 and sample variance 

𝜎𝜎 of these errors 𝑒𝑒𝑖𝑖  were calculated: 

𝜇𝜇 = 1
𝑁𝑁
∑ 𝑒𝑒𝑖𝑖 ,𝑁𝑁
𝑖𝑖=1                 𝜎𝜎 =  1

𝑁𝑁−1
∑ (𝑒𝑒𝑖𝑖 − 𝜇𝜇)2𝑁𝑁
𝑖𝑖=1 . 

Since the diagonal of the bounding box of the standard face is given in centimetres, the errors 

and the mean will be in centimetres, while the variance will be in square centimetres. 

Table 1 shows the errors on the detected landmarks with our previous geometric method, while 

Table 2 shows the errors on the detected landmarks with the statistical method. 

 

Face PN SN 
Left 
alae 

Right 
alae 

N Left EN  Left EX  
Right 
EN 

Right 
EX  

A disgust 0,000000 0,462384 1,377968 2,136248 4,781825 0,822180 2,965512 0,000000 3,198966 

A 0,092863 0,273609 0,800119 1,107198 4,995738 0,189145 2,773832 0,387509 3,526048 
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enjoyment 

A fear 5,302633 6,037101 1,618077 2,046464 2,769072 nd  1,174162 2,095775 0,879138 

A anger 0,000000 0,614204 0,831798 1,579049 5,792273 0,198926 3,301386 0,394830 3,251960 

A straight 5,578411 6,032036 1,501161 1,220283 3,734194 nd  0,723541 nd  1,478767 

A surprise 0,096215 0,690938 1,215083 1,814219 1,148803 0,000000 1,938825 0,812242 1,345096 

A sadness 0,091621 0,660839 0,639964 1,342685 5,193155 0,854284 3,191624 0,000000 3,183644 

B disgust 0,000000 0,095451 1,222273 1,429403 5,487973 0,552146 0,000000 0,415520 3,545822 

B 
enjoyment 

0,000000 0,000000 1,562388 1,411442 1,870658 0,406317 0,000000 0,407503 0,000000 

B fear 0,000000 0,093815 1,385636 1,694579 1,083590 0,966525 0,160395 0,898588 0,699424 

B straight 0,000000 0,159025 1,513443 1,529998 1,320302 0,565691 3,827539 0,627688 3,646372 

B surprise 0,097797 0,000000 1,509481 1,420211 2,265855 0,837827 0,310812 0,655393 0,598336 

C straight 3,404893 2,625729 1,084339 1,497613 1,197322 0,000000 0,836250 0,000000 0,523755 

D disgust 0,000000 0,000000 1,247381 1,552350 0,267925 0,000000 0,778690 0,000000 0,554704 

D 
enjoyment 

0,000000 0,000000 1,046686 1,115114 0,682151 0,135822 0,949677 0,000000 1,516129 

D fear 0,000000 0,094580 1,325889 1,374958 0,678932 0,000000 0,894567 0,000000 1,296277 

D anger 0,136921 0,094441 1,400497 1,567730 0,703805 0,688054 0,897806 0,000000 0,950379 

D straight 0,000000 0,000000 1,116347 1,298311 1,250866 0,419763 1,201163 0,138033 1,021320 

D surprise 0,000000 0,000000 1,144163 1,439502 0,819671 0,000000 0,967131 0,000000 0,818975 

E straight 0,192742 0,283780 1,142788 1,406316 1,128696 0,261565 1,390415 0,326844 0,763752 

G straight 1,992700 1,088195 nd  nd  5,804329 0,000000 3,331233 2,548691 3,158839 

H straight 1,553049 0,573259 nd  nd  5,060891 0,948022 4,051764 0,788119 2,902754 

I disgust 0,000000 0,980362 2,150249 0,594056 nd  0,464803 0,827523 0,630289 3,688349 

I enjoyment 5,644865 4,960352 2,043826 1,871001 2,727443 nd  1,717792 nd  1,196462 

I fear 0,157299 0,572124 1,408674 2,035180 5,903441 0,764994 3,350541 0,264345 3,417757 

I anger 0,000000 0,478551 2,066248 2,241016 nd  0,359521 3,467147 0,258844 3,494618 

I straight 0,000000 0,429635 1,781803 2,035776 5,781285 0,615706 2,989192 0,498771 2,695455 

I surprise 5,777090 6,386505 1,828581 1,971882 3,518407 nd  nd  nd  nd  

I sadness 0,000000 1,035113 2,079713 2,111924 nd  0,376088 3,420194 0,484326 2,318734 

L disgust 0,000000 0,000000 3,268479 1,530134 2,397277 0,648415 2,235085 0,263401 2,435169 

L 
enjoyment 

0,102192 0,000000 0,628435 1,014100 1,336682 0,481138 1,094927 0,847771 0,801169 

L fear 0,000000 0,493908 0,789340 1,640910 2,978528 0,254219 2,673390 0,463005 2,472777 

L anger 0,000000 0,109172 0,977452 1,861438 3,010985 2,500448 2,857788 0,576667 2,422708 

L straight 5,298176 5,910212 1,922673 3,373614 3,174130 1,431659 1,294068 nd  3,776546 

L surprise 0,000000 0,857835 0,914187 1,821694 nd  0,240388 3,943875 0,612449 3,007881 

L sadness 0,210671 0,326624 0,963366 1,458054 2,512631 0,603883 2,793119 0,255596 2,287509 

Mean 0,992504 1,178327 1,397309 1,633660 2,855589 0,518360 1,952313 0,489131 2,082160 

Variance 3,863761 3,919188 0,286411 0,224900 3,474020 0,252777 1,596996 0,313147 1,410543 

Table 1: the errors on the detected landmarks with the geometric method, their mean and variance. 
Expression “nd” means “non-detected”. 

 
Face PN SN Left 

alae 
Right 
alae 

N Left EN  Left EX  Right 
EN 

Right 
EX  

A disgust 0.119912 0.069305 0.272232 0.145103 0.562062 0.198433 0.638396 0.221982 1.368039 

A 
enjoyment 

0.115224 0.000000 0.330383 0.128060 0.691479 0.280069 0.609055 0.239248 0.937778 
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A fear 0.000000 0.261754 0.285558 0.167483 0.283187 0.118895 0.814031 0.223069 0.875557 

A anger 0.068019 0.067840 0.317425 0.127756 0.373065 0.121045 1.048911 0.198529 0.354305 

A straight 0.070978 0.142837 0.249122 0.092028 0.350696 0.295314 0.786398 0.072137 0.373377 

A surprise 0.069216 0.178347 0.225010 0.000000 0.293966 0.069466 0.830696 0.166457 0.660707 

A sadness 0.189888 0.316459 0.170815 0.276928 0.745121 0.225297 1.764005 0.120606 0.115695 

B disgust 0.074126 0.127731 0.303298 0.185031 0.214433 0.451646 0.403834 0.465039 0.471244 

B 
enjoyment 

0.101334 0.146723 0.309229 0.000000 0.722083 0.371147 0.175087 0.478155 0.280046 

B fear 0.000000 0.121855 0.104388 0.105569 0.630785 0.375556 0.169223 0.356599 0.289186 

B straight 0.096023 0.078173 0.287198 0.126602 0.497605 0.772505 1.452381 0.679804 0.970747 

B surprise 0.104497 0.074759 0.231582 0.000000 0.311847 0.607073 0.730034 0.454929 0.810364 

C straight nd nd nd nd nd nd nd nd nd 

D disgust 0.113053 0.206538 0.206485 0.000000 0.857784 0.356454 0.828676 0.453860 0.972222 

D 
enjoyment 

0.000000 0.070892 0.170826 0.172387 0.436631 0.113006 0.739948 0.070688 1.348366 

D fear 0.071371 0.000000 0.305307 0.122839 0.442739 0.241222 1.285168 0.237685 1.255865 

D anger 0.111832 0.136028 0.301369 0.000000 1.158026 0.514454 1.398116 0.651338 1.536640 

D straight 0.143417 0.140926 0.104247 0.000000 0.728403 0.227235 0.690899 0.432799 1.096160 

D surprise 0.073178 0.131339 0.224683 0.134657 0.358332 0.185365 0.605188 0.105499 0.680972 

E straight 0.073169 0.244127 0.196156 0.099137 1.148158 0.402856 0.967758 0.256571 1.497062 

G straight 0.068192 0.597205 0.341056 0.000000 0.509181 0.000000 0.226649 0.304350 1.012444 

H straight 0.085970 0.707965 0.288289 0.086060 0.869624 0.070986 0.377199 0.292100 0.676612 

I disgust 0.000000 0.150083 0.185107 0.154308 0.368813 0.096839 0.342839 0.234596 0.480783 

I enjoyment 0.223603 0.000000 0.277093 0.143357 0.339257 0.151070 0.516459 0.084974 1.132872 

I fear 0.092795 0.142259 0.180820 0.000000 0.170914 0.197647 0.753700 0.183487 1.348624 

I anger 0.000000 0.159891 0.176740 0.000000 0.849104 0.403738 0.154000 0.420008 0.183185 

I straight 0.088433 0.156265 0.374561 0.159684 0.437838 0.217423 0.357316 0.244613 1.247267 

I surprise 0.070314 0.237623 0.365620 0.000000 0.730362 0.313089 0.304874 0.293685 0.487215 

I sadness 0.089571 0.264788 0.310307 0.000000 0.558094 0.115472 0.460715 0.226056 1.031738 

L disgust 0.000000 0.076241 0.180025 0.162794 0.389798 0.656511 1.587377 0.297684 0.790354 

L 
enjoyment 

0.000000 0.078773 0.284515 0.000000 0.576306 0.313976 1.014045 0.245200 0.872978 

L fear 0.000000 0.301959 0.250947 0.294727 0.401598 0.470922 0.988432 0.457919 0.184601 

L anger 0.116365 0.119067 0.416612 0.197801 0.330016 0.384196 1.179574 0.600284 1.432810 

L straight 0.000000 0.403928 0.183385 0.209943 0.728083 0.849994 1.359453 0.797295 0.884264 

L surprise 0.067935 0.533888 0.324656 0.117573 0.903614 0.683912 1.361990 0.532576 1.290946 

L sadness 0.000000 0.120888 0.433828 0.148644 0.167776 0.404452 1.049219 0.267900 1.249883 

Mean 0.071383 0.187613 0.261968 0.101671 0.546765 0.321636 0.799190 0.324792 0.862883 

Variance 0.003146 0.025970 0.006400 0.007327 0.066118 0.043483 0.188688 0.032514 0.175168 

Table 2. Errors on the detected landmarks with the statistical method, their mean and variance. 
Expression “nd” means “non-detected”. 

In Figures 17, 18, and 19 are shown the graphs of sample mean and standard deviation (±√𝜎𝜎) 

for both the methods. 
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Figure 17. Graph of sample mean 𝝁𝝁 for the previous geometric method and the new statistical method 
here proposed.  

 

Figure 18. Graph of sample mean (blue line in the middle) and standard deviation (lilac and green lines 
above and below), equal to ±√𝝈𝝈 for our previous geometrically-based method.  
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Figure 19. Graphs of sample mean (blue line in the middle) and standard deviation (lilac and green 
lines above and below), equal to ±√𝝈𝝈, for the new statistical method. In the figure above the axis unit is 
kept equal to the Figure 16, in order to have a visual comparison between the two methods, while the 
figure below shows the same behavior with an axis unit more suitable for the numerical values of this 
method. 

The graphical representations show that in the new statistical method the overall sample 

mean is always lower than the mean of the previous method. The lowest sample mean values 

concern the right endocanthion (0.489131 cm) for the previous method and the pronasal 
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(0.090042 cm) for the statistical one; the highest values are reached for the extraction of the 

nasion (2.855589 cm) in the geometrical method and for the left exocanthion (0.870817 cm) in 

the new one. This global behavior of the sample mean shows that the new geometrically- and 

statistically-based method is an improvement of the previous method, which only relies on 

Differential Geometry. 

Another result feature to point out is that, while in the previous method the double and 

symmetrical landmarks, i.e. alae, endocanthions, and exocanthions, gained similar results, meaning 

the right and left alae, right and left endocanthions, and right and left exocanthions reached 

comparable sample mean numerical values, the same cannot be said for the statistically-based 

method, in which results of the double landmarks are not so comparable. 

Finally, it can be seen from both Figures 18 and 19 that for alae and endocanthions the 

numerical value of the standard deviation is kept low. This is a behaviour which concerns both 

the methods, although in the statistical method the numerical values are lower. Since it was a 

good result for the previous method, it is important that this trend is maintained also in the 

new one. 

The quality of results could also be recorded with other graphical representations of the 

results, i.e. scatter plots and distribution functions for both the methods, shown in Figures 20, 

21, 22, and 23. The scatter plot is a by-points representation on the Cartesian plane of the 

positions of the obtained landmarks. It is likely to put the found points in the same reference 

system, where the origin stands for the correct landmark position. The scattered points on the 

plane pretend to show the position of the points obtained by our algorithms, in particular the 

direction and the distance from the correct landmark. 

The distribution function shows how many landmarks (𝑛𝑛, on the ordinate axis) takes a 

particular distance value (|𝑒𝑒|, on the abscissa axis). For simplicity sake, the distribution is not 

continuous, but discrete. To obtain it, we discretized the set of error distances splitting them up 

into 50 short ranges for both the old and the new method results. A minimum and a maximum 

distance has been chosen: the minimum is equal to 0 and concerns the landmarks obtained by 

the algorithms which are in the same position of the correct landmarks; the maximum is equal 

to 5 cm and concerns the points whose distances from the correct landmark is equal or greater 

than 5 cm. Then, we subdivided the range between 0 and 5 in short intervals all equal to 0.1 

cm, thus obtaining a discretization of the range of distances in 50 short ranges. Then, a 
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graphical representation was done with the split-up distance range from 0 to 5 on the abscissa 

axis and the number of occurrences of the distance ranges on the ordinate. 

 

Figure 20. Scatter plot of the previous method results. The origin of the axis represents the correct 
location of every landmark. The scattered points are the positions of the landmarks obtained with the 
previous geometrically-based algorithm. In this representation, the direction of the positioning of the 
obtained landmark is kept equal to the real one, while the absolute value of the distance the bi-
dimensional distance on x and y axis, namely an approximation of the 3D distance. 

 

Figure 21. Scatter plot of the new statistical method results. The origin of the axis represents the correct 
location of every landmark. The scattered points are the positions of the landmarks obtained with our 
new algorithm.  
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Figure 22. Distribution function for the results of the old method. The discrete distribution function 
shows how many landmarks (𝒏𝒏, on the ordinate axis) takes a particular distance value (|𝒆𝒆|, on the 
abscissa axis). 

 

Figure 23. Distribution function for the results of the statistical method. 
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give clarification of the number of landmarks whose distance “between true and obtained” is 
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in the range  0 ≤ |𝑒𝑒| ≤ 2, with a peak in correspondence of 0,1 cm, whose related number of 

landmark is 48. This means that most of the obtained landmarks are approximately very close 

to the real ones. 

 

4. Conclusions 

In this study we proposed a new statistical and geometrically-based landmarking method 

for 3D facial scans. In particular, we improved the geometrical conditions on descriptors taken 

from Differential Geometry that we used in our previous work for building up a new pose-

independent algorithm for computing candidate points. Then, we fitted a statistical model 

based on Procrustes Analysis and PCA on the candidate points for a precise landmark 

extraction. Due to its structure, this method can be considered as both geometrical and 

statistical. The correctness of results was confirmed by a plastic surgeon and discussed through a 

brief statistical study. 
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