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Abstract
In this paper we give a semigroup-based definition of the solution

of the Gurtin-Pipkin equation with Dirichlet boundary conditions. It
turns out that the dominant term of the input-to-state map is the
control to displacement operator of the wave equation. This operator is
surjective if the time interval is long enough. We use this observation in
order to prove exact controllability in finite time of the Gurtin-Pipkin
equation.

1 Introduction

The Gurtin-Pipkin equation, proposed in [?], models the temperature evo-
lution in a thermal system with memory:

θt(t, x) =
∫ t

0
b(t− s)∆θ(s, x) ds+ f(t, x) x ∈ Ω , t ≥ 0 . (1)

∗Paper written with partial support of the Italian MURST. This papers fits into the
research program of the GNAMPA.
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We shall study this equation in a bounded region Ω with “regular” boundary
Γ (this assumption is discussed below). We associate an initial condition and
a boundary condition of Dirichlet type to (??):

θ(0, x) = θ0(x) ∈ L2(Ω) , θ(t, s) = u(s) ∈ L2
loc(0,+∞;L2(Γ)) . (2)

Our first goal will be to define the solutions to the problem (??), (??). In
sect. ?? we prove exact controllability. We need several regularity properties
of the solutions of Eq. (??) for this. In order to streamline the presentations,
these properties are proved in the Appendix. As suggested in [?], we shall
use a cosine operator approach. The bonus of this approach is that control-
lability is a direct consequence of the (known) corresponding property of the
wave equation:

wtt(t, x) = ∆w(t, x) in Ω
w(0, x) = w0(x) , wt(0, x) = w1(x) in Ω
w(t, s) = u(s) on Γ.

(3)

The controllability of the Gurtin-Pipkin equation, and of the coupling of
this equation and wave-type equations, has been studied by many authors,
see the references below. However, these previous papers had to study the
equation itself, without relying on previously known controllability results.

Our approach to the controllability of Eq. (??) is suggested by the well
known fact that Eq. (??) displays an hyperbolic behavior (see [?, ?, ?]).

Now we list and discuss the standing assumptions of this paper. The
assumption that we make on the kernel b is:

Assumption 1 The kernel b(t) is twice continuously differentiable and b(0) =
µ > 0.

Controllability will be proved in section ?? under the additional assump-
tion:

• stronger regularity: b ∈ C3;

• stronger positivity condition: b(t) is integrable on [0,+∞) and

b̂(0) =
∫ +∞

0
b(t) dt > 0 .

The assumption that we make on the region Ω is:

Assumption 2 We assume that the region Ω is simply connected, with
boundary of class C2.
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Remark 3 We observe:

• The condition b(0) > 0 is crucial in order to have a hyperbolic type
behavior. In order to simplify the notations we shall put b(0) = 1. This
amount to the choice of a suitable time scale and it is not restrictive.

• The assumption on Ω is stronger then needed: for most of the results
in Sect.s ??, ?? we only need that the Dirichlet map D:

θ = Du ⇔
{

∆θ = 0 in Ω
θ = u on Γ

transform L2(Γ) to H1/2(Ω). Instead Theorem ?? and the control-
lability results in Sect. ?? requires the existence of a suitable regular
vector field on Ω, related to the outer normal to Γ. This is discussed in
details in [?, ?] and, in the wider generality, in [?]. This allows also re-
gions which are not simply connected and control acting on a suitable
part of the boundary. Under this conditions, Eq. (??) is controllable
in finite time. We don’t need to go into these technicalities since the
point of view of our paper is to prove controllability of Eq. (??) on
those regions over which the wave equation (??) is controllable.

• The usual proof of exact controllability uses the “inverse inequality”,
i.e. an abstract trace regularity. This property holds for the problem
under study here and it is proved in Theorem ??, but our proof only
uses the weaker property stated in Lemma ??.

1.1 Comments on the literature

As we said, Eq. (??) was proposed in [?] in order to get a model for heat
transfer with finite signal speed. That Eq. (??) might display hyperbolic
type properties is suggested by the special case b ≡ 1 and u = 0. In this
case Laplace transform gives

λθ̂(λ)− θ0 =
1
λ

∆θ̂(λ) + f̂(λ)

which displays some “hyperbolic look”. This idea has been pursued in [?,
?] to prove hyperbolicity when the kernel b has a strictly proper rational
Laplace transform.

The obvious approach to the solution of Eq. (??) at least when u = 0
is to reduce it, by integration, to a Volterra integral equation with a kernel
which takes values unbounded operators, see for example [?, ?, ?].
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The fact that the Laplacian with homogeneous Dirichlet boundary con-
dition generates a holomorphic semigroup suggests the arguments for exam-
ples in [?, ?, ?] while other papers explicitly used the hyperbolicity of the
problem, see for example [?, ?].

Subsequently, a great number of researchers investigated Eq. (??) and
suitable generalizations. We need not cite them explicitly here. We note
however that they went along the two lines outlined above: the use of ideas
from holomorphic semigroups, as in [?, ?] or ideas from hyperbolic equations,
as in [?, ?].

Several versions of the controllability problem for Eq. (??) have been
studied in recent times.

The paper [?] presents a precise study of exact controllability for Eq. (??)
in one space dimension. The control acts on one side of the boundary.
Remark 1 in [?] notes that the regularity properties of the solutions to
Eq. (??) resembles those derived in [?], a paper which makes explicit use of
the cosine operator theory.

The paper [?] consider the approximate controllability in the “parabolic”
case (i.e. when the memory integral is added as a perturbation to a parabolic
equation) in m space dimensions and an exact controllability problem for
Eq. (??), in one space dimension. The control now acts as a distributed
control on a part of the region, and the results are then used to recover
boundary controllability with the control acting on the entire boundary
of the domain. We note that in the presentation of the problem we also
assumed the control to act on the entire boundary, but this is not really an
assumption in our paper, see Remark ??, since we only use that the wave
equation is controllable.

Controllability of the interconnection of Eq. (??) and a wave equation is
studied in [?].

Further papers on controllability of materials with memory are, for ex-
ample, [?, ?, ?, ?].

Remark 4 In the derivation of the formula for the solutions of (??) we
shall assume that the kernel b is of class C2 while exact controllability is
proved under the assumption b ∈ C3. The formula for the definition of
the solutions can be derived also if b is piecewise regular but the formulas
became quite messy. The assumptions we made leads to clean formulas. For
comparison we note that controllability is proved in [?] when Ω is an interval
and b is continuous and piecewise C1, strictly decreasing, bounded by a
negative exponential and with strictly increasing derivative; in [?] under the
assumption that b is completely monotone (in particular of class C∞). Both
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these papers use an extension of D’Alambert formula for the wave equation,
so that this method of proof can only be used in one space dimension.
Boundary controllability in space dimension n is considered in [?]. The
kernel is here assumed positive, of class H2 and the L2 norm of its derivative
should be less then a sufficiently small number ε. Estimates of ε are not
given. Paper [?] is concerned with controllability under distributed control.
In this paper b = b(t, x), subject to suitable assumptions. The regularity
assumption is b ∈ C3([0,+∞],Ω).

2 Cosine operators and the solutions of the Gurtin-
Pipkin equation

Our first step is the definition of the solutions of the Gurtin-Pipkin equa-
tion (??). We shall use the cosine operator theory, as presented in [?, ?] and
used in [?, ?]. We shall use the same notations as in [?].

Let A be the generator of an exponentially stable holomorphic semigroup
on a Hilbert space X. In our application, it will be

X = L2(Ω) , domA = H2(Ω) ∩H1
0 (Ω) , Aθ = ∆θ .

Let moreover A = i(−A)1/2. It is known (see [?]) that eAt is a C0-group of
operator on X. The strongly continuous operator valued function

R+(t) =
1
2

[
eAt + e−At

]
t ∈ IR

is called cosine operator (the cosine operator generated by A.) It is usually
denoted C(t). It is convenient to introduce the operators

R−(t) =
1
2

[
eAt − e−At

]
, S(t) = A−1R−(t) , t ∈ IR .

The operator S(t) is called the sine operator (generated by A.) The follow-
ing properties are known, or easily proved (see [?, ?, ?]):

• S(t)z =
∫ t
0 R+(r)z dr ∀z ∈ X

• S(t) takes values in domA

• R+(t)z = z +A
∫ t
0 rR+(t− r)z dr

• for every z ∈ domA we have d
dt
R+(t)z = AR−(t)z = AS(t)z, d

dt
R−(t)z =

AR+(t)z.
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Consequently:

Lemma 5 Let ξ(s) ∈ C1(0, T ;X). We have∫ t

0
R+(t− s)ξ̇(s) ds = ξ(t)−R+(t)ξ(0) +A

∫ t

0
R−(t− s)ξ(s) ds (4)∫ t

0
R−(t− s)ξ̇(s) ds = −R−(t)ξ(0) +A

∫ t

0
R+(t− s)ξ(s) ds (5)

Proof. We know that∫ t

0
eA(t−s)ξ̇(s) ds = ξ(t)− eAtξ(0) +A

∫ t

0
eA(t−s)ξ(s) ds

(see [?, p. 107]). We use this formula and the definitions of R+(t) and R−(t)
(note that R−(0) = 0.)

Now we make some formal computations. Linearity of the equation
shows that the effect of the distributed input f will be the same as computed
in [?]: ∫ t

0
R+(t− s)f(s) ds . (6)

So, in the following computation we assume f to be zero, and the effect of
f will then be added to the final formulas.

Let D be the Dirichlet map:

θ = Du ⇐⇒
{

∆θ = 0
θ|Γ = u .

We write Eq. (??) as

θt =
∫ t

0
b(t− s)A {θ(s)−Du(s)} ds .

This is clearly legitimate if θ(t, x) is a classical solution of (??). Now, as
in [?], we introduce ξ(t) = θ(t)−Du(t) and, if u is regular and θ is a classical
solution, we see that

ξt =
∫ t

0
b(t− s)Aξ(s) ds−Du′(t) (7)

(dependence on the space variable x will not be indicated unless needed for
clarity and the derivative with respect to time is denoted either with an
index or with an apex).
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The previous formula is not yet justified, since we don’t even know the
existence of the solutions. It will suggest a formula which will then be used
to define the solutions to Eq. (??).

We apply the operator R+(t − s) to both the sides of the equality (??)
and we integrate from 0 to t. A formula for the left hand side is suggested
by (??). Instead, if u is smooth enough, we have the legitimate equality∫ t

0
R+(t− s)Du′(s) ds = Du(t)−R+(t)Du(0) +A

∫ t

0
R−(t− s)Du(s) ds .

We use (??) in order to formally compute∫ t

0
R+(t− s)

∫ s

0
b(s− r)Aξ(r) dr ds

= A
∫ t

0
R+(t− s)

∫ s

0
b(s− r)Aξ(r) dr ds

=
∫ t

0
R−(t− s)

[
Aξ(s) +

∫ s

0
b′(s− r)Aξ(r) dr

]
ds .

We compare the three terms and we find that ξ “solves” the following integral
equation:

ξ(t) = R+(t)ξ(0) +
∫ t

0
R−(t− s)

∫ s

0
b′(s− r)Aξ(r) dr ds

−Du(t) +R+(t)Du(0)−A
∫ t

0
R−(t− s)Du(s) ds .

It is now convenient to introduce a further transformation which, al-
though not essential for the following, simplifies certain formulas. It will be
freely used when needed. We note that we don’t yet have a definition of θ,
hence of ξ, so that the computations are still at a formal level.

We replace ξ with θ −Du and we find

θ(t) = R+(t)θ0 −A
∫ t

0
R−(t− s)D

[
u(s) +

∫ s

0
b′(s− r)u(r) dr

]
ds

+A
∫ t

0
R−(t− s)

∫ s

0
b′(s− r)θ(r) dr ds . (8)

The Volterra equation

v(s) = u(s) +
∫ s

0
b′(s− r)u(r) dr (9)
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admits precisely one solution u ∈ L2(0, T ;L2(Γ)) for every v ∈ L2(0, T ;L2(Γ))
and the transformation from v to u is linear, continuous and with continuous
inverse, for every T > 0. So, we can work with one of the two equivalent
integral equations for θ: Eq. (??) or

θ(t) = R+(t)θ0 −A
∫ t

0
R−(t− s)Dv(s) ds

+A
∫ t

0
R−(t− s)

∫ s

0
b′(s− r)θ(r) dr ds . (10)

Remark 6 Expressions (??), equivalently (??) are not yet in the final form
we want to reach, since the last integral contains unbounded operators. Also
the first integral contains an unbounded operator but it is proved in [?] that

A
∫ t

0
R−(t− s)Du(s) ds = A

∫ t

0
S(t− s)Du(s) ds

defines a linear and continuous transformation from L2(0, T ;L2(Γ)) to C(0, T ;L2(Ω)),
for every T > 0.

Now we elaborate further: we use the assumption that the kernel b is of
class C2 in order to write

A
∫ t

0
R−(t− s)

∫ s

0
b′(s− r)θ(r) dr ds =∫ t

0
R+(t− s)

[
b′(0)θ(s) +

∫ s

0
b′′(s− r)θ(r) dr

]
ds (11)

−
∫ t

0
b′(t− r)θ(r) dr . (12)

Clearly, this is a formal integration by parts, suggested by (??), since the
existence and properties of θ are not yet known.

We sum up: we formally obtained the following two Volterra integral
equation for θ, which are equivalent (here we insert the effect of the dis-
tributed input f , see (??)):

θ(t) =
{
R+(t)θ0 −A

∫ t

0
R−(t− s)Dv(s) ds

+
∫ t

0
R+(t− s)f(s) ds

}
+
∫ t

0
L(t− s)θ(s) ds , (13)

θ(t) =
{
R+(t)θ0 −A

∫ t

0
R−(t− s)Du(s) ds
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−
∫ t

0
L(t− s)Du(s) ds+

∫ t

0
R+(t− s)f(s) ds

}
+
∫ t

0
L(t− s)θ(s) ds . (14)

Here v and u are related by (??) and

L(t)θ = R+(t)b′(0)θ − b′(t)θ +
∫ t

0
R+(t− ν)b′′(ν)θ dν . (15)

As noted in Remark ??, the braces belong to C(0,+∞;L2(Ω)) and de-
pends continuously on θ0 ∈ L2(Ω) and v ∈ L2(0, T ;L2(Γ)) (equivalently,
on u ∈ L2(0, T ;L2(Γ)).) This is a Volterra integral equation with bounded
operator valued kernel L(t) and, as noted, both the brace and L are con-
tinuous X-valued function. Consequently, there exists a unique continuous
function θ(t) which solves the Volterra equation (??), equivalently (??),
for t ≥ 0. Moreover, for each T > 0, the transformation from θ0 ∈ L2(Ω),
u ∈ L2(0, T ;L2(Γ)), f ∈ L2(0, T ;L2(Ω)) to θ ∈ C(0, T ;L2(Ω)) is continuous.

Definition 7 The solution to Eq. (??) is the solution θ(t) to the Volterra
integral equation (??), equivalently (??) (the functions u and v are related
as in (??).)

Proofs of the global existence of the solutions of a Volterra integral equa-
tions with bounded operator valued kernel are well known. However, we
need to recall the main points of this proof for later use, in Sect. ??: We fix
T0 > 0 and we prove existence of a unique solution on [0, T0]. Let χ > 0 be
a number whose value will be specified later on. Let Φ(t) denote the brace
in (??). We multiply both sides of Eq. (??) by e−χt. It is then sufficient
to prove the existence of the solution e−χtθ(t) ∈ C(0, T ;L2(Ω)) to the new
Volterra equation[

e−χtθ(t)
]

= e−χtΦ(t) +
∫ t

0
Lχ(t− s)

[
e−χsθ(s)

]
ds .

Here,
Lχ(t) = e−χtL(t) .

The operator

θ(t) −→
∫ t

0
Lχ(t− s)θ(s) ds = Lχθ , L = L0 , (16)
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from C([0, T0];X) to itself, has norm less then 1 when χ is so large that∫ T0

0
e−χt||L(t)|| dt < 1 .

We fix χ with this property. Existence of solutions now follows from Banach
fixed point theorem.

Remark 8 The key points to note for later use are:

• the number χ will be nonnegative. Il θ solves Eq. (??) then η(t) =
e−χtθ(t) solves

ηt = −χη +
∫ t

0
e−χ(t−s)b(t− s)∆η(s) ds , η|Γ(t) = e−χtu(t) ;

• for t = T fixed, the subspaces spanned by θ(T ) and η(T ) = e−χT θ(T )
(when u varies in L2(0, T ;L2(Γ))) coincide;

• let θ0 = 0, as in Sect. ?? and let us define

R̃T =
{
A
∫ T

0
R−(T − s)Du(s) ds , u ∈ L2(0, T ;L2(Γ))

}
.

This is a subspace of L2(Ω) which is not changed by the transformation
used above (which, for fixed t = T , is just multiplication by e−χT ).

3 Controllability

Up to know the condition that b has three derivatives has not been used. It
will be used in this section, where we prove ore main result:

Theorem 9 Let f = 0, θ0 = 0 and let our standing assumptions (??)
and (??) hold. There exists T > 0 such that for every θ1 ∈ L2(Ω) there
exists u ∈ L2(G) such that the corresponding solution θ(t;u) of Eq. (??)
(with f = 0) satisfies

θ(T ;u) = θ1 .

In order to prove this theorem we use the known results on the controllability
of the wave equation and a compactness argument, and we prove first that
the reachable space is closed with finite codimension for T large. We then
characterize the orthogonal of the reachable space and we prove that it is 0
(compare [?] for a similar argument.)
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The idea of the proof is as follows: let L be the operator in (??) and S
be the i-o map of the hyperbolic system (defined in (??) below). We have

θ = −Sv + Lθ , θ = − [I − L]−1 Sv .

We compute for t = T and we prove that for T large enough the operator
v(·) → θ(T ) has closed and dense image. Closure is obtained since we prove
that the operator is the sum of a coercive plus a compact operator, and it is
the consequence of the exact controllability of the wave equation. Density
is via a direct verification, based on Lemma ??.

The inverse of I − L is computed from the von Neumann series, i.e.
we track the usual construction of the resolvent operator of the Volterra
equation. Hence we multiply by e−χt in order to have a convergent series.

We need some preliminaries: we shall equivalently work with both the
representations (??) and (??) of the solution of Eq. (??) (and θ0 = 0, f = 0).
For definiteness (and with an abuse of language), in the first case the solution
is denoted θ(t;u); in the second case θ(t; v). For every T > 0, we denote

RT =
{
θ(T ; v), v ∈ L2(G)

}
=
{
θ(T ;u), u ∈ L2(G)

}
(implicitly, u and v are related by (??)). Instead, R̃T denotes the L2(Ω)
component of the reachable set of the wave equation:

wtt = ∆η , t > 0 , x ∈ Ω
w(0, x) = 0 , wt(0, x) = 0 x ∈ Ω , w(t, x) = v(t, x) on Γ .

(17)

I.e.
R̃T =

{
w(T ; v) , v ∈ L2(G)

}
.

It is known that for T large we have R̃T = L2(Ω), see [?].
It is proved in [?] that the solution to (??) is

η(t; v) = A
∫ t

0
R−(t− s)D[−v(s)] ds

while we recall

θ(t; v) = A
∫ t

0
R−(t− s)D[−v(s)] ds+

∫ t

0
L(t− s)θ(s) ds

We shall replace v with −v for convenience of notations. The reachable
spaces are not changed. We noted that the operator

v(·) −→ A
∫ t

0
R−(t− s)Dv(s) ds =

(
Sv
)

(t) (18)
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is continuous from L2(G) to C(0, T ;L2(Ω)).
We recall from Remark ?? that we can multiply by e−χt and we obtain

that the operator Lχ: C(0, T, L2(Ω)) to itself has norm less then a fixed
q < 1. In fact we do more: it is convenient to represent L = L1 + L2 where(

L1θ

)
(t) =

∫ t

0

[
b′(t− s)θ(s)−

∫ t−s

0
R+(t− s− ν)b′′(ν)[θ(s)] dν

]
ds(

L2θ

)
(t) = b′(0)

∫ t

0
R+(t− s)θ(s) ds .

Multiplication by e−χt replaces these operators with the operators(
Lχ,1θ

)
(t) =

∫ t

0
e−χ(t−s)

[
b′(t− s)θ(s)−

∫ t−s

0
R+(t− s− ν)b′′(ν)[θ(s)] dν

]
ds

=
∫ t

0
Hχ(t− s)θ(s) ds (19)(

Lχ,2θ

)
(t) = b′(0)

∫ t

0
e−χ(t−s)R+(t− s)θ(s) ds (20)

(we wrote θ(s) instead then e−χsθ(s).) Of course,

Lχ = Lχ,1 + Lχ,2 .

The operator S is transformed to Sχ,

(Sχv) (t) = A
∫ t

0
e−χ(t−s)R−(t− s)Dv(s) ds

(here of course we wrote v(t) instead then e−χtv(t)). We choose χ so to have

||L1|| < q <
1

2M
, ||L2|| < q <

1
2M

M = max{||S|| , 1} . (21)

The crucial lemma that we now prove is:

Lemma 10 For every T > 0 there exists a bounded boundedly invertible
operator JT in L2(G) and a compact operator KT from L2(G) to L2(Ω)
such that

RT = im
{
STJT +KT

}
. (22)

In the proof of this lemma, χ has been fixed so to have (??). In order to
prove this result, T is fixed so that the index “T” is omitted. Conditions (??)
shows that ||Lχ|| < q < 1 so that

θ(T ; v) =
+∞∑
n=0

(
Ln

χSv
)

(T ) . (23)
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We examine the individual terms of the series. We note first that for T given∣∣∣∣∣∣Ln
χS
∣∣∣∣∣∣ ≤Mqn

n∑
i=0

(
n
k

)
=

1
Mn−1

(24)

and we can reorder the terms in the series which is obtained after replacing
Lχ = Lχ,1 + Lχ,2 in (??).

We recall that Hχ is defined in (??) and we prove:

Lemma 11 Let b ∈ C3(0, T ). For every T > 0 the transformation

v(·) −→
(
Lχ,1Sχv

)
(T )

from L2(G) to L2(Ω) is compact.

Proof. In fact,(
Lχ,1Sχv

)
(T ) =

∫ T

0
Hχ(T − s)A

∫ s

0
R−(s− r)Dv(r) dr ds

=
∫ T

0
A
∫ T

r
R−(s− r)Hχ(T − s)[Dv(r)] ds dr . (25)

The function s → Hχ(T − s)[Dv] is continuously differentiable so that we
can use (??) to integrate by parts the inner integral in (??). We find∫ T−r

0
R+(T − r − ν)H ′

χ(ν)[Dv(r)] dν −Hχ(T − r)[Dv(r)]

+R+(T − r)Hχ(0)[Dv(r)] .

Now we observe that imD ⊆ H1/2(Ω) = domA1/2 is invariant under R±(t)

so that
(
Lχ,1Sχv

)
(T ) takes values in H1/2(Ω), compactly embedded in

L2(Ω).

We recapitulate:
(
Ln

χ,1Sχ ·
)

(T ) is a compact operator for every k > 0.

Hence, in a special case we soon get the results we are looking for (with
J = I):

Corollary 12 If b′(0) = 0 then the representation (??) holds.

We consider now the case b′(0) 6= 0. In order to study the possibly non
compact operators appearing in (??) we must study the operators Ln

χ,2Sχ.
The first observation is∣∣∣∣∣∣Ln

χ,2Sχ

∣∣∣∣∣∣ < ||S|| qn , q < 1/(2M) , M = max{||S|| , 1} (26)
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(note that ||Sχ|| ≤ ||S|| because χ ≤ 0.) We shall use the following equality:

R+(t− s)R−(s− r) =
1
2

[
R−(t− r)−R−(t− 2s+ r)

]
(27)

so that for 0 ≤ t ≤ T we have(
Lχ,2Sχv

)
(t) =

1
2
b′(0)A

∫ t

0

∫ s

0
e−χ(t−r)R−(t− r)Dv(r) dr ds

−1
2
b′(0)A

∫ t

0

∫ s

0
e−χ(t−r)R−(t− 2s+ r)Dv(r) dr ds .

The last double integral can be written as∫ t

0
e−χ(t−r)

∫ t−r

r−t
R−(ν)[Dv(r)] dν dr .

It is zero because R−(ν) = −R−(−ν). So,(
Lχ,2Sχv

)
(t) =

1
2
b′(0)A

∫ t

0
R−(t− r)

[
e−χ(t−r)(t− r)Dv(r)

]
dr .

We elaborate analogously and we find(
L2

χ,2Sχv

)
(t)

=
1
22
b′(0)2A

∫ t

0
R−(t− r)

[
e−χ(t−r) (t− r)2

2
Dv(r)

]
dr (28)

+
b′(0)2

2 · 22

∫ t

0
e−χ(t−r)

{∫ t−r

0
R+(t− r − 2ν)[Dv(r)] dν

−R+(r − t)(t− r)Dv(r)
}

dr
(29)

(The integration by parts needed in this computations are justified by using
the definition of R−(t) and [?, p. 107]. This is possible because eAt is a
C0–group of operators.)

The operator (??) for t = T takes values inH1/2(Ω). Hence it is compact.
The norm of the operator obtained from (??) when t = T as a transfor-

mation from L2(0, T ;L2(Γ)) to L2(Ω) is less then

||S||
[
b′(0)

2

]2 T 2

2!
.

14



Hence, the norm of the compact operator (??) is less then

||S||
{[

b′(0)
2

]2 T 2

2!
+ q2

}

see (??).
Now we iterate the previous computation in order to elaborate

(
Ln

χ,2Sχv
)

(t) .
It turns out that this is the sum of two operators. When evaluated at T one
of them is a compact operator, say Kn and the second one is

A
∫ T

0
R−(T − r)

[
e−χ(T−r)

(
b′(0)

2

)n (T − r)n

n!
Dv(r)

]
dr . (30)

The norm of this noncompact operator is less then

||S|| ·
[ |b′(0)|

2
T

]n 1
n!

and so the norm of Kn is less then

||S|| ·
{[ |b′(0)|

2
T

]n 1
n!

+ qn

}
,

see (??). This shows uniform convergence of the series, in particular of the
series of the compact operators, and we find the representation (??) with
JT the multiplication by exp{−(χ− b′(0)/2)(T − r)}.

What we know on the controllability of the wave equation now implies:

Theorem 13 There exists T > 0 such that the reachable set RT is closed
with finite codimension.

We noted that the reachable set does not depend on χ. Hence, once this
result has been proved, we can proceed in the computation without making
use of the multiplication by e−χt.

Lemma 14 The reachable set R(T ) increases with time.

Proof. The proof is easy and expected, but it must be explicitly checked
because L2(Ω) is not the state space of Eq. (??). We introduce the resolvent
operator KL(t) of the kernel L(t) and we see that

θ(t; v) = A
∫ t

0
R−(t−s)Dv(s) ds+

∫ t

0
A
∫ t

r
KL(t−s)R−(s−r)[Dv(r)] ds dr .

15



It is now easily checked that if θ1 is reached at time T using the input v(·)
then it is also reached at time T + τ using the input which is zero for t ≤ τ ,
v(t− τ) on (τ, T + τ).

Consequently,
R∞ =

⋃
T>0

RT =
⋃
n

Rn

and Baire Theorem implies:

Lemma 15 There exists T such that RT = L2(Ω) if and only if R∞ =
L2(Ω).

Now we use Lemma ?? in order to characterize the elements of [R∞]⊥

(a finite dimensional subspace of L2(Ω)) by using the adjoint equation

ξt = −
∫ T

t
b(s− t)∆ξ(s) ds , ξ|Γ = 0 , ξ(T ) = ξ0 . (31)

We observe that the substitution

ξ(t) = y(T − t)

shows that y(t) solves

yt =
∫ t

0
b(t− s)∆y(s) ds , y|Γ = 0 , y(0) = ξ0 . (32)

So, it is equivalent to work with (??) or (??).
In order to prove the next crucial theorem, it is more convenient to work

with the original input u and to indicate explicitly dependence on the space
variable x. So, θ is now θ(t, x;u) simply denoted θ(t, x).

Theorem 16 The vector ξ0 ∈ L2(Ω) belongs to [RT ]⊥ if and only if the
solution ξ(t) of equation (??) satisfies

γ1

∫ T

t
b(r − t)ξ(r, x) dr = 0 0 ≤ t ≤ T . (33)

equivalently if the solution y(t) to Eq. (??) satisfies

γ1

∫ t

0
b(t− s)y(s, x) ds = 0 0 ≤ t ≤ T . (34)
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Proof. We observe that in order to characterize [RT ]⊥ we can assume that
u is a smooth control both in space and time variables. If it happens that
ξ0 ∈ domAk, k large enough, then the next computation is justified:∫

Ω
ξ0(x)θ(T, x) dx =

∫ T

0

d
dt

∫
Ω
ξ(t, x)θ(t, x) dx dt

= −
∫ T

0

∫
Ω

∫ T

t
b(r − t)∆ξ(r, x) dr θ(t, x) dx dt

+
∫ T

0

∫
Ω
ξ(t, x)

∫ t

0
b(t− s)∆θ(s, x) ds dx dt

= −
∫ T

0

∫
Γ
γ1

[∫ T

t
b(r − t)ξ(r, x) dr

]
u(t, x) dx dt .

The previous computation is only justified if ξ0 is regular, which needs
not be. Otherwise we approximate ξ0 with a sequence ξn ∈ domAk . We
intend the exterior double integral as the pairing of H−1(0, T ;L2(Ω)) and
H1

0 (0, T ;L2(Ω)) and pass to the limit. We obtain the equality∫
Ω
ξ0(x)θ(T, x) dx = −

∫ T

0

∫
Γ
γ1

[∫ T

t
b(r − t)ξ(r, x) dr

]
u(t, x) dx dt

thanks to Lemma ??.
Arbitrary varying u(·) within the smooth elements of H1

0 (0, T ;L2(Ω)) we
see that ξ0 ∈ [RT ]⊥ if and only if

γ1

∫ T

t
b(r−t)ξ(r, x) dr = 0 i.e. γ1

∫ T−t

0
b(T−t−s)y(s, x) ds = 0 .

(35)
We now prove that [R∞]⊥ is invariant under the action of the equa-

tion (??):

Lemma 17 Let ξ0 ∈ [R∞]⊥ and let t0 > 0 be fixed. Let y solve (??). Then,
y(t0) ∈ [R∞]⊥ .

Proof. It is sufficient to prove that y(t0) ⊥ RN for every N . We note that
y(t0) = ξ(T − t0) (and ξ solves (??)) and T can be arbitrarily fixed. We fix
T so large that T − t0 > N .

We repeat the same computation as in the proof of Theorem ?? but we
integrate on [T − t0, T ] instead then on [0, T ]. The conditions

γ1

∫ T

t
b(r − t)ξ(r, x) dr = 0 and

∫
Ω
ξ0(x)θ(T, x) dx = 0

17



now hold by assumption because ξ0 ∈ [R∞]⊥ and we get∫
Ω
ξ(T − t0, x)θ(T − t0, x;u) dx = 0

for every u ∈ H1
0 (0, T ;L2(Ω)). Hence, ξ(T − t0) = y(t0) ∈ [RN ]⊥, as

wanted.

We shall now use the Laplace transform of y(t) in order to prove the
following theorem. We find

ŷ(λ) = [λI − b̂(λ)A]−1ξ0 (36)

The fact that b(t) ∈ L1(0, T ) and

b̂(0) =
∫ +∞

0
b(s) ds > 0

show that b̂(λ) is well defined and positive in a right neighborhood of λ = 0,
on the real axis. Hence, the inverse operator in (??) exists and depends
continuously on λ. This justifies the previous computation when ξ0 is regular
so that y(t) is a differentiable solution of (??). Equality is then extended by
continuity to every ξ0 ∈ L2(Ω). Alternatively, we can obtain formula (??)
from the Volterra integral equation (??) (with f = 0 and u = 0.)

Lemma 18 The subspace [R∞]⊥ is invariant under A−1.

Proof. Let ξ0 ∈ [R∞]⊥ so that y(t) ∈ [R∞]⊥ for every t. We compute
the Laplace transform of y(t). This takes values in the finite dimensional
subspace [R∞]⊥ i.e. [

λI − b̂(λ)A
]−1

ξ0 ∈ [R∞]⊥ .

Our assumption is that b̂(0) > 0. We compute with λ = 0 and we see that
A−1ξ0 ∈ [R∞]⊥.

The fact that [R∞]⊥ is a finite dimensional invariant subspace of A−1

shows the existence of an eigenvector of A−1 in [R∞]⊥:

A−1ξ0 = µξ0 , µ 6= 0 , i.e. Aξ0 = λξ0 .

And, ξ0 ∈ [R∞]⊥. Moreover,

ξ0 ∈ domA i.e. ξ0 ∈ H2(Ω) ∩H1
0 (Ω) .
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Let now φ solve the scalar integrodifferential equation

φ′(t) = λ

∫ t

0
b(t− s)φ(s) ds , φ(0) = 1 .

Note that φ(t) is continuous not identically zero. Then, y(t) = φ(t)ξ0
solves (??) with an initial condition which belongs to [R∞]⊥. Hence,

0 = γ1

([∫ t

0
b(t− s)φ(s) ds

]
ξ0

)
=
(∫ t

0
b(t− s)φ(s) ds

)
γ1ξ0 .

Using that φ is not identically zero we see that its convolution with b is not
identically zero so that ξ0 = ξ0(x) solves

∆ξ0 = λξ0 , ξ0|Γ = 0 ,
∂

∂n
ξ0|Γ = 0 .

This implies that ξ0 = 0, see [?, Cap. I, Cor. 5.1]; i.e., [R∞]⊥ = 0 and
R∞ = L2(Ω), as wanted.

Remark 19 We note:

• In the previous results we assumed θ0 = 0. In fact, the addition of a
nonzero initial condition results in an additive constant added to θ(T ).
Hence it is also true that the reachable set from every θ0 ∈ L2(Ω) is
L2(Ω). Analogous observation if f 6= 0. The case f 6= 0 is important
since f might contain information on the evolution of the temperature
θ before the initial time t = 0.

• We noted that the positivity condition b(0) > 0 is needed in order
to have a hyperbolic type behavior. Instead, the positivity condition
b̂(0) > 0 is more subtle. Once we have reachability at a given T , we can
arbitrarily change b(t) for t > T and this does not affect the reachable
set. Hence, we could change b so to “destroy” the condition b̂(0) > 0.
However, this can be done once the reachable time T is known. It
seems that in order to have controllability in a still unspecified time T
a global positivity condition must be imposed, see for example [?].

4 Conclusion

In this paper we gave an alternative definition of the solution of the Gurtin-
Pipkin equation with L2(0, T ;L2(Γ)) Dirichlet boundary condition. Of course,
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previous paper already defined the solutions, see for example [?]. In con-
trast with the previous papers, the definitions presented here follows the
ideas in [?] and it shows a formula for the solution which immediately sug-
gest that the controllability of Eq. (??) could be a consequence of the known
controllability properties of the wave equation. Using this observation, con-
trollability was proved for the Gurtin-Pipkin equation on multidimensional
domains: controllability holds on those domains over which the wave equa-
tion is controllable.

Appendix: Regularity properties of the solutions

In order to study the regularity properties of the solution θ(t) to Eq. (??),
it is convenient to use the more direct formula (??).

We already noted time continuity of θ. Now we prove further regularity
properties, which extend to the case of boundary inputs results which are
known in the case of distributed inputs.

The solution of the Volterra integral equation (??) will be denoted θ(·; θ0, f, u)
or, simply, θ(t). Moreover, we use also the shorter notations L2(Q) =
L2(0, T ;L2(Ω)), L2(G) = L2(0, T ;L2(Γ)).

We already noted:

Theorem 20 The transformation (θ0, f, u) → θ(·; θ0, f, u) is linear and
continuous from L2(Ω)× L2(Q)× L2(G) to C(0, T ;L2(Ω)).

We recall that domA = H2(Ω) ∩H1
0 (Ω) so that domA = H1

0 (Ω).
We have the following result which completely justifies the definition we

chose for the solution:

Theorem 21 1) If f ∈ C1(0, T ;L2(Ω)), u ∈ C2(0, T ;L2(Γ)) and if θ0 −
Du(0) ∈ domA then ξ(t) = θ(t) − Du(t) belongs to C1(0, T ;L2(Ω)) ∩
C(0, T ; domA).
2) if furthermore θ0−Du(0) ∈ domA, f(0)−Du′(0) = 0, f ∈ C2(0, T ;L2(Ω))
and u ∈ C3(0, T ;L2(Γ)) then: a) if f ′′(t) and u′′′(t) are exponentially bounded,
the function ξ(t), ξ′(t), Aξ(t) are continuous and exponentially bounded; b)
θ(t) solves Eq. (??) in the sense that ξ(t) is continuously differentiable, takes
values in domA and for every t ≥ 0 we have

ξt =
∫ t

0
b(t− s)Aξ(s) ds−Du′(t) + f(t) .
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Proof. We replace ξ = θ − Du in (??). We use (??) (and u ∈ C1) to
represent

ξ(t) = R+(t)ξ(0)+A
∫ t

0
R+(t−s)A−1 [f(s)−Du′(s)

]
ds+

∫ t

0
L(t−s)ξ(s) ds .

(37)
We use now (??) (and f ∈ C1, u ∈ C2) to represent

ξ(t) =
{
R+(t)ξ(0) +

∫ t

0
R−(t− s)A−1 [f ′(s)−Du′′(s)

]
ds

+R−(t)A−1[f(0)−Du′(0)]
}

+
∫ t

0
L(t− s)ξ(s) ds .

(38)

Our assumptions imply that the brace belong to domA, which is invariant
under L(t). Hence, the previous Volterra integral equation can be solved
not only in L2(0, T ;L2(Ω)) but also in L2(0, T ; domA). Moreover, the brace
belongs to C(0, T ; domA), so that the solution ξ(t) is a continuous, domA
valued function. the brace belongs to C1(0, T ;L2(Ω)) and the last integral
can now be written ∫ t

0
L(t− s)A−1[Aξ(s)] ds .

Hence it belongs to C1(0, T ;L2(Ω)) so that ξ(t) is differentiable too.
Now we consider the more stringent set of assumptions 2). We use (??)

to represent∫ t

0
R−(t− s)A−1 [f ′(s)−Du′′(s)

]
ds =∫ t

0
R+(t− s)A−1 [f ′′(s)−Du′′′(s)

]
ds−A−1[f ′(t)−Du′′(t)]

+R+(t)A−1[f ′(0)−Du′′(0)] ∈ domA .

So we can solve the Volterra equation in domA, i.e. ξ(t) is a continuous
domA valued function.

The exponential bound on ξ(t) follows directly from (??) and Gronwall
inequality. The exponential bound on ξ′(t) is obtained because we already
know the existence of ξ′(t) so that differentiation of both sides of (??) gives
an integral equation for ξ′(t).

In order to obtain the exponential bound of Aξ(t) we proceed as follows:
we apply A = A2 to both the sides of (??) and we use the regularity of u
and f in order to represent

A

∫ t

0
R+(t− s)[f(s)−Du′(s)]) ds = R+(t)[f ′(0)−Du′′(0)]
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−[f ′(t)− u′′(t)] +
∫ t

0
R+(t− s)[f ′′(s)−Du′′′(s)] ds .

Moreover we already know that ξ(t) ∈ domA so that we can exchange A
and L(t). We obtain a Volterra integral equation for Aξ(t), from which the
exponential bound follows.

Now we go back to the formula (??). The regularity of ξ(t) already noted
shows that

∫ t

0
L(t−s)ξ(s) ds =

∫ t

0
R+(t−s)

∫ s

0
b(s−r)Aξ(r) dr ds−

∫ t

0
R−(t−s)Aξ(s) ds .

Hence, ξ(t) solves

ξ(t)−R+(t)ξ(0) +A
∫ t

0
R−(t− s)ξ(s) ds =

∫ t

0
R+(t− s)f(s) ds

+
∫ t

0
R+(t− s)

∫ s

0
b(s− r)Aξ(r) dr ds−

∫ t

0
R+(t− s)Du′(s) ds .

We use (??) and we see that∫ t

0
R+(t− s)

{
ξ′(s) +Du′(s)− f(s)−

∫ s

0
b(s− r)Aξ(r) dr

}
ds = 0

For every t ∈ [0, T ]; Now, T is arbitrary so that equality to zero holds on
[0,+∞). Fix any value of T and change the definition of f(t) and u(t)
for t > 0 so to have regular functions with bounded support. This does
not change ξ(t) on [0, T ]. Laplace transformation shows that the brace is
identically zero on [0, T ] for every T > 0. This completes the proof.

Lemma 22 If f = 0, u = 0 and θ0 ∈ domAk then θ(t) ∈ C(0, T ; domAk).

Proof. If k = 0 this is a special case of Theorem ??. In general, it is
deduced from formula (??), i.e. (??), with f = 0 and u = 0, and unicity of
the solution, because

AKL(t)θ = L(t)Akθ ∀θ ∈ domAk .

The results that most interest us concern normal derivatives. Let us
introduce the trace operator

γ1θ =
∂

∂n
θ|Γ
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We now use the notation b ? θ to denote the convolution,

(b ? θ)(t) =
∫ t

0
b(t− s)θ(s) ds .

Lemma 23 Let u = 0, f = 0. We have:

γ1 (b ? θ) ∈ H−1(0, T ;L2(Γ))

and the transformation from θ0 ∈ L2(Ω) to γ1 (b ? θ) ∈ H−1(0, T ;L2(Γ)) is
continuous.

Proof. The trace is well defined if θ0 is “regular”, i.e. θ0 ∈ domAk with
k large. We prove continuity (in the stated sense) of the transformation,
which is then extended by continuity to every θ0 ∈ L2(Ω).

It is known from [?] that

γ1θ = −D∗Aθ , θ ∈ domA .

For “regular” data and zero boundary condition and affine term we have

θ′(t; θ0) = b ? (Aθ(·; θ0)) = A(b ? θ(·; θ0)) .

Hence,

b ? θ(·; θ0) = A−1(θ′(t; θ0)) , γ1(b ? θ(·; θ0)) = D∗θ′(t; θ0) .

Let now {θn} be a sequence of “regular” initial data, θn → θ0 in L2(Ω). We
proved that the solutions converge in C(0, T ;L2(Ω)) so that

θ′(t; θn) → θ′(t; θ0) in H−1(0, T ;L2(Ω)) .

Hence, it is sufficient to prove that D∗ has a continuous extension as an
operator from H−1(0, T ;L2(Ω)) to H−1(0, T ;L2(Γ)). Let for this

D̃ : (D̃u(·) )(t) = Du(t) .

Let φ ∈ H1
0 (0, T ;L2(Γ)), ψ ∈ H−1(0, T ;L2(Ω)). The operator D̃∗ is defined

by
〈〈D̃φ, ψ〉〉 = 〈〈φ, D̃∗ψ〉〉

(where 〈〈·, ·〉〉 denotes the proper pairing). This operator D̃∗ is the required
extension by continuity of D∗ since, for ψ = ψ(t) a smooth function, equality
of the pairings is equivalent to∫ T

0
〈D̃φ(t, x), ψ(t, x)〉 dt =

∫ T

0
〈Dφ(t, x), ψ(t, x)〉 dt

=
∫ T

0
〈φ(t, x), D∗ψ(t, x)〉 dt
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where 〈·, ·〉 is the inner product in L2(Ω).

Let us consider now the wave equation

wtt = ∆w , w(0) = w0 , w′(0) = 0 in Ω , wΓ = 0 . (39)

It is known that
w(t) = R+(t)w0 , t ∈ IR

and if w0 ∈ H1
0 (Ω) then γ1w(t) exists as an element of L2(−T, T ;L2(Γ)).

Moreover,
w0 −→ γ1w(t) = γ1[R+(t)w0] (40)

is continuous from w0 ∈ H1
0 (Ω) to L2(−T, T ;L2(Γ)) for every T > 0, see [?,

?, ?]. Here the full strength of the assumption made on Ω is needed.
The sense in which the trace exists is as follows: it exists for the “regular”

vectors w0. It is proved the stated continuous dependence, so that the trace
operator is extended by continuity to every initial condition in H1

0 (Ω).
We prove an analogous property of θ(t) but, instead then proving it

directly, with a computation that mimics, for example, that in [?], we deduce
it from the property of the solution of the wave equation just recalled.

Theorem 24 Let f and u be zero. The transformation

θ0 → γ1θ

is continuous from H1
0 (Ω) to L2(0, T ;L2(Γ)) for every T > 0.

Proof. We proved (Lemma (??)) that if θ0 ∈ domAk then θ(t) ∈ domAk

for every t so that the trace γ1θ(t) exists in the usual sense, provided that
k is large enough. We prove continuity from H1

0 (Ω) to L2(G) so that the
transformation θ0 → γ1θ(t) can be extended to every initial condition θ0 ∈
H1

0 (Ω).
Let w(t) = R+(t)θ0 be the solution of problem (??) (with now w0 = θ0).

Then, θ(t) is the solution of the Volterra integral equation

θ(t) = w(t) +
∫ t

0

[
R+(t− s)b′(0)θ(s) +

∫ t−s

0
R+(t− s− ν)b′′(ν)[θ(s)] dν

]
ds

−
∫ t

0
b′(t− s)θ(s) ds . (41)

Let T > 0 be fixed. The properties of the wave equation recalled above
show that for every fixed s, the function

t −→ γ1 [R+(t− s)θ(s)]
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is square integrable, hence it is integrable. We now proceed in two steps.
Step 1) we prove that s→ γ1 [R+(t− s)θ(s)] exists and belongs to L2(G)

for a.e. t.
We shall prove below that the function of s

s→
∫ T

0
γ1 [R+(t− s)θ(s)] dt (42)

is continuous, hence square integrable. Granted this we can integrate,∫ T

0

∣∣∣∣∣∣∣∣∫ T

0
γ1 [R+(t− s)θ(s)] dt

∣∣∣∣∣∣∣∣2 ds

≤
∫ T

0

{
T ·
∫ T

0

∣∣∣∣∣∣∣∣γ1 [R+(t− s)θ(s)]
∣∣∣∣∣∣∣∣2 dt

}
ds < +∞ . (43)

Now, Fubini theorem shows that the function

s −→ γ1 [R+(t− s)θ(s)]

exists a.e. and belongs to L2(G). Moreover,∫ T

0

∫ T

0
||γ1R+(t− s)θ(s)||2 dt ds =

∫ T

0

∫ T−s

−s
||γ1R+(r)θ(s)||2 dr ds

≤M ||θ||2L2(0,T ;H1
0 (Ω)) ≤ M̃ ||θ0||2H1

0 (Ω) . (44)

Inequalities (??) and (??) show that the function

t −→
∫ t

0
γ1[R+(t− s)θ(s)] ds ,

as an element of L2(Q), depends continuously on θ0 ∈ H1
0 (Ω).

In order to complete this argument we prove continuity of the function
in (??). We represent∫ T

0

[
γ1R+(t− s)θ(s)− γ1R+(t− s′)θ(s′)

]
dt

=
∫ T

0

[
γ1R+(t− s)θ(s)− γ1R+(t− s)θ(s′)

]
dt (45)

+
∫ T

0

[
γ1R+(t− s)θ(s′)− γ1R+(t− s′)θ(s′)

]
dt (46)

We know from Theorem ?? point 1) that if θ0 ∈ H1
0 (Ω) = domA then the

solution θ(s) is continuous from s to H1
0 (Ω). Hence,

lim
s′→s

||θ(s)− θ(s′)||H1
0 (Ω) = 0 .
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This shows that the integral in (??) tends to zero, thanks to the regularity
of the trace operator of the wave equation.

The integral in (??) is represented as∫ T

0

[
γ1R+(t− s′ + (s′ − s))θ(s′)− γ1R+(t− s′)θ(s′)

]
dt .

This tends to zero for s − s′ → 0, thanks to the Lebesgue theorem on the
continuity of the shift.

We recapitulate: we have now proved that γ1R+(t−s)θ(s) is well defined,
as an element of L2, both as a function of t and as a function of s. In order
to complete the proof:

Step 2) we prove that the trace γ1θ(s) exists in L2(G) and depends
continuously on θ0 ∈ H1

0 (Ω). We go back to the equation (??) that we now
represent as

θ(t) = F (t) +
∫ t

0
b′(t− s)θ(s) ds .

Here

F (t) = y(t)+
∫ t

0

[
R+(t− s)b′(0)θ(s) +

∫ t−s

0
R+(t− s− ν)b′′(ν)[θ(s)] dν

]
ds

and we proved that γ1F (t) ∈ L2(G) is a continuous function of θ0 ∈ H1
0 (Ω).

The function b′(t) is scalar, so that for θ0 ∈ domAk, k large enough, we
have

γ1θ(t) = γ1F (t) +
∫ t

0
k(t− s)γ1F (s) ds

where k(t) is the resolvent kernel of b′(t). The required continuity property of
γ1θ(t) now follows because the right hand side of this equality is a continuous
function of γ1F (t) ∈ L2(G).
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