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Content Discovery and Caching
in Mobile Networks with Infrastructure

Francesco Malandrino, Student Member, IEEE, Claudio Casetti, Member, IEEE,
and Carla-Fabiana Chiasserini, Senior Member, IEEE

Abstract—We address content discovery in wireless networks with infrastructure, where mobile nodes store, advertise and consume
content while Broker entities running on infrastructure devices let demand and offer meet. We refer to this paradigm as match-making,
highlighting its features within the confines of the standard publish-and-subscribe paradigm. We study its performance in terms of
success probability of a content query, a parameter that we strive to increase by acting as follows. (i) We design a credit-based scheme
that makes it convenient for rational users to provide their content (thus discouraging free-riding behavior), and it guarantees them a
fair treatment. (ii) We increase the availability of either popular or rare content, through an efficient caching scheme. (iii) We counter
malicious nodes whose objective is to disrupt the system performance by not providing the content they advertise. To counter the latter
as well as free riders, we introduce a feedback mechanism that enables a Broker to tell apart well- and mis-behaving nodes in a very
reliable manner, and to ban the latter. The properties of our match-making scheme are analysed through game theory. Furthermore, via
ns-3 simulations, we show its resilience to different attacks by malicious users and its good performance with respect to other existing
solutions.

Index Terms—Architectures and protocols for mobile networks, content discovery, content caching.

1 INTRODUCTION
Since peer-to-peer content sharing took the Internet by storm
a few years ago, there has been a constant drive to export
such an approach to mobile wireless networks. Although 2-
or 3-G cellular connectivity is available, it is undesirable to
use it to transfer large data files. It is often better to use the
cellular network to download (e.g., from the Internet) the data
items of interest to some nodes of the wireless network, and
then use other techniques, e.g., peer-to-peer, to deliver them
to the mobile devices. This approach is especially beneficial
if data access patterns are localized, i.e., some items are more
likely to be requested in a certain area. This is the case of
local news or traffic information, or of several mobile users
simultaneously trying to fetch a multimedia content from the
Internet, as recently happened to AT&T [1] as a consequence
of the introduction of iPhones.

Network dynamics in wireless and wired environments,
however, are fundamentally different. Node churning, for
example, is a common hurdle in peer-to-peer systems for
wireline networks: mobility and variable channel conditions in
wireless networks only exacerbate it. Thus, it is of paramount
importance that the content carried by mobile users is easily,
promptly “discoverable” and that its carriers are reliable when
it comes to providing the content to others.

To this end, an efficient content discovery paradigm for
mobile networks is needed. One possible candidate is the
publish/subscribe (pub/sub) paradigm, which allows an asyn-
chronous content exchange between publishers (providers) and
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subscribers (consumers). Content attributes are specified by
publishers and, through filtering techniques, subscribers are
delivered content whose attributes match constraints defined
by them. However, in pub/sub systems the implication is
usually that content is delivered to subscribers as soon as it
becomes available through one or more publishers. Given the
fleeting connectivity mobile users experience, this behavior
may quickly lead to bandwidth waste and low hit probability.
An alternative is represented by quorum-based replication
schemes, where content update and request operations are
carried out in interacting subsets of nodes, called read quorum
and write quorum. Again, although specifically designed for
distributed systems, quorum schemes are hardly a good choice
in mobile networks, mainly due to the overhead they generate
and the complexity in controlling the topology.

In this work we take a different approach. We present a
content discovery solution, called Figaro, where mobile users
are supported by an infrastructure – a scenario that finds
wide application in the real world. In Figaro, mobile users,
named Agents, request content items of their interest and, in
their turn, make content items available to others. To ease the
information sharing, users advertise, i.e., inform infrastructure
nodes, named Brokers, about which content they are willing
to provide, and Brokers assist requesting Agents in the content
discovery process. Content is assumed to be static, as we leave
content consistency out of the scope of the paper. Without
loss of generality, content updates are considered as merely
other content that Agents may wish to download. Additionally,
we base our system on the transfer of an indivisible content
unit (considering a molteplicity of such units as they represent
different content types). Again, with marginal changes to the
Figaro system, but with considerably heavier notation, content
units could be replaced by pieces, or chunks, of a single unit
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in order to exploit a finer granularity in data dissemination.
To distinguish Figaro from standard pub/sub systems, we

refer to its paradigm as match-making, highlighting its ca-
pability to let demand and offer meet when the need arises,
while arbitrating the information flow between providers and
consumers to account for the specific characteristics of mobile
networks. Also notice that, in contrast with the pub/sub
paradigm, the Agents selected as providers do not have the
possibility to (legitimately) refuse to provide a content. In
Figaro, the underlying assumption is that the Broker “knows
better”, i.e., it has a more reliable knowledge of whether an
Agent has to provide a service.

One of the most important performance metrics we consider
in our system is the query success probability, that is, the
probability that a content query is matched with an Agent
that owns the desired content, is willing to provide it, and
faultlessly sees the transfer through. To ensure high success
probability for content queries as well as a fair treatment to
users, we act as follows.

(i) We associate to each Agent a credit balance, which
increases when the Agent provides a requested content and
decreases when it consumes a content. The same concept has
been previously exploited to favour traffic routing in ad hoc
networks [2]. We revise this approach and apply it to content
discovery, showing that it can make content provisioning
a rational choice for self-interested Agents, hence it can
discourage rational Agents from acting as free riders. Also, by
letting the Agents’ balance depend on the size and popularity
level of the provided/requested content, we guarantee fairness
in spite of the different characteristics of the information items.

(ii) We define a feedback mechanism that allows Brokers to
track the success of a content transfer, identifying and banning
those Agents that do not provide the content they advertise.
They can be either Agents acting as free riders or malicious
users that aim at disrupting the system. We refer to the latter
as disruptors, since, regardless of whether they request content
or not, their main goal is to disrupt the success probability of
queries issued by others. The feedback mechanism is designed
so that Brokers can detect and discard negative feedbacks that
are likely to be part of a bad-mouthing attack.

(iii) To guarantee a fair treatment to Agents providing
content items with different characteristics, as well as to evenly
distribute the load of content provisioning, we exploit Agents’
caching capabilities. We formulate caching as an optimization
problem that aims at maximizing the system fairness and
efficiency, and design a heuristic that closely approximates the
optimal solution while accounting for the system dynamics.

The rest of the paper is organized as follows. Sec. 2 reviews
previous work, while Sec. 3 describes our content discovery
scheme. Sec. 4 introduces the credit, feedback and banning
mechanisms, whose effectiveness is analysed in Sec. 5 through
game theory. The resilience of Figaro to different attacks is
discussed in Sec. 6, and confirmed by the results in Sec. 7,
which however highlights the aforementioned fairness issue
related to different characteristics of the content. In order to
address it, in Sec. 8 we introduce our caching strategy, which
is investigated in Sec. 9. Finally, Sec. 10 concludes the paper.

2 RELATED WORK

Our match-making paradigm draws from the pub/sub ap-
proach, which has been widely investigated in the literature.
We point out from the outset, however, that most works focus
on wired scenarios, or on wireless ad hoc networks without
any infrastructure. The opportunities offered by the presence
of an infrastructure in a wireless environment are investigated
in [3], which, however, does not address fairness, cooperation,
or caching.

Associating network nodes with a balance is an idea that
has been often exploited to enforce cooperation among self-
interested nodes in wireless ad hoc networks, either for traffic
routing [2], [4] or for channel access [5]. Note, however, that
the seminal work in [2] requires the nodes to be equipped
with a tamper-resistant hardware (i.e., a security module
manufactured by a limited number of trusted manufacturers),
in order to prevent attacks. The study in [4], instead, does not
deal with attackers at all. More recent works, e.g., [6], [7], still
rely on the assumption that a security module is available, and
propose a distributed incentive protocol for multi-hop routing
in mobile networks. We point out that in Figaro nodes are not
required to embed any tamper-resistant device; indeed, through
a balance- and feedback-based mechanism, the scheme itself
ensures resilience to both free riders and attackers.

As for feedback-based schemes, of particular relevance is
the pioneering work in [8], which introduces a reputation
mechanism to enforce cooperation among rational nodes of
a mobile ad hoc network. Many later studies have focused
on cooperative routing in ad hoc networks [9] and in overlay
networks [10]. Note that the proposed solutions refer to a dif-
ferent type of cooperation with respect to Figaro, i.e., message
forwarding instead of content transfer. Consequently, the attack
they consider is packet dropping, while in Figaro we address
the problem of nodes that do not provide an advertised content
when requested by the Broker. Also, in Figaro there is no
need for sophisticate misbehavior detection and identification
schemes of misbehaving nodes, as the Agents know exactly
when they are victim of either a free rider or a disruptor, and
can notify the Broker of the identity of the attacker (i.e., the
Agent who did not to provide them with a content).

At the application layer, solutions for content provisioning
have been presented in [11], where a reputation-based scheme
is used to reduce the load over a 3G network. Monetary
penalties and incentives are given to non-cooperative and
caching nodes, respectively, while the choice of the content
to cache is left to the Agents and modeled as a market
sharing game. Unlike previous work, our approach is simple,
lightweight and it does not assume that Agents are associated
to a billing account: in Figaro incentives and penalties are
circumscribed to Figaro itself and, since Agents do not directly
choose which peer they will retrieve content from, Figaro has
high resiliency to reputation attacks.

The study in [12] focuses on a mixed pedestrian and vehic-
ular scenario, where users can provide and consume content
items. Queries are opportunistically propagated through the
network, but only within a few hops from the originator. When
one of the nodes receiving the query is aware of another
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providing the desired content, the query is solved. The main
difference with respect to our work is that [12] does not
address the presence of an infrastructure, and how it can be
used. Still in the context of vehicular networks, in [13] the
popularity of content items is taken into account by vehicles
when deciding i) which queries should be answered first and
ii) which contents the vehicles shall retain in their cache. The
overall objective is to enhance the availability of the most
popular items. On the contrary, Figaro aims at providing a fair
service to all users, including the ones requesting or providing
scarcely popular content. Also, similarly to [12], in [13] the
role of the infrastructure is not addressed. Among the works
setting in infrastructured scenarios, [14] envisions roadside
“digital billboards,” pushing location-specific advertisements
to the vehicles passing by. Such information can be further
propagated by vehicles themselves. With respect to [14], we
do not restrict to a specific type of content (i.e., advertisement)
and use the infrastructure for a different purpose (i.e., to
arbitrate the content transfer between users rather than to push
new content to them).

As far as caching is concerned, again most schemes de-
signed for wireless networks, e.g., [15], [16], focus on dis-
tributed, infrastructure-less scenarios. As a result, they imply
a complexity level that is exceedingly high for Figaro, which
leverages the presence of Brokers and their centrality in the
system architecture to simplify the network management.

Finally, we mention BubbleStorm [17], a well-known
scheme for content replication and provisioning, which is
based on a probabilistic exhaustive search paradigm in wired
overlay networks. Unlike Figaro, BubbleStorm assumes the
nodes to be always willing to store a copy of the content. As
soon as it is generated, BubbleStorm propagates the content
on a random graph defined on the overlay network. Queries
are propagated following the same strategy, and they succeed
if at least one copy of the query reaches a node that stores a
copy of the content. In Sec. 9.2, we will use BubbleStorm as
a benchmark for the performance of Figaro.

An early version of this work, sketching the match-making
paradigm for content discovery, can be found in [18].

3 THE FIGARO SYSTEM
Unlike most existing overlay networks, Figaro operates ac-
cording to a match-making paradigm. Its operation and the
relationship among the different entities can be described at a
logical as well as at a physical level.

At a logical level, Figaro features two main types of nodes:
Agents and Brokers. Agents store, advertise and consume
content items, while it is the Brokers’ task to let demand
and offer meet. Agents store either self-produced content
(e.g., own videos one wants to share) or content they have a
specific interest in spreading (e.g., road maintenance vehicles
may advertise an unscheduled road closure). As previously
remarked, content items are assumed to be static with respect
to the system time scale, i.e., they are updated at intervals
that are much longer than any interaction between Agent and
Broker, e.g., once a day.

At a physical level, Agents are mobile devices (either
on-board units or hand-held), while Brokers are middle-end

SREQ

Agent Broker Agent

Check content
matching table

Echo request
Echo replySREP

Ask for content
Provide content

Fig. 1: Basic message exchange between Agents and Broker.

devices, integrated in an roadside infrastructure and intercon-
nected via a reliable wired or wireless backbone. As far as
network connectivity is concerned, each Broker is colocated
with a router and associated to an IP subnet. The router also
features one or more IEEE 802.11 interfaces acting as Access
Points (APs) and providing hot spot connectivity to mobile
devices in the area. Mobile nodes are thus hosts of the router
subnet to which the Broker is associated.

When the mobile device embedding the Agent associates to
an AP, it discovers the Broker that controls it. If the Agent
chooses to register with this Broker, it becomes part of the
Figaro system and starts advertising to the Broker the content
it is willing to share with others. The Broker maintains a
content-based matching table, where it stores the following
information for each Agent: 1) a unique Agent identifier; 2)
its IP address; 3) the MAC addresses of any interface (e.g.,
802.11, Bluetooth) the mobile node carries; 4) the content it
makes available to others. The set of Agents registered to the
same Broker is called Colony. In keeping with our previous
definitions, a Colony corresponds to the hosts of the subnet
associated to the Broker (i.e., at the IP layer, all Agents of a
Colony have the same subnet ID as the Broker).

As illustrated in Fig. 1, a registered Agent can ask the
Broker to identify another Agent carrying the content it needs,
through a Service REQuest (SREQ) message. The Broker
queries its own content-based matching table to identify a
candidate Agent that can provide such content. As detailed
in Sec. 4, these Agents are selected as candidate according
to Colony-wise policies, aimed at pursuing specific objectives
(e.g., high success probability and even load distribution on
Agents). Next, the Broker checks that the candidate provider
Agent is still reachable by a ping at the IP address with the
Colony subnet ID (a simple solution in the spirit of [19]). If
not, it selects another candidate provider from the matching
table1. To avoid unpredictable iterations, the selection does not
account for lower-layer metrics, such as the SNR on the links
between Agents and AP, which can only be established upon
checking the provider Agent’s reachability.

If a candidate provider Agent is found, the Broker returns to
the querying Agent a Service REPly (SREP) message carrying
the IP address and the MAC address(es) of the candidate
provider Agent. A transport-layer connection between the two
Agents for the purpose of content transfer is subsequently

1. Deregistration of an Agent is enforced by a Broker after the Agent is
found unresponsive to a number of consecutive attempts at pinging it.
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established. Such a connection runs within the coverage area
of the APs connected to the router interface.

If, instead, no candidate provider is found or if none of
them replies to the ping, the search is relayed to a higher
hierarchical level. To this end, we introduce an architectural
entity, called Proxy, which is connected to all Brokers via the
backbone. When a Broker receives a request for a content
that is unavailable in its Colony, it forwards the request to the
Proxy, which in turn queries the other Brokers. Also, when an
Agent moves to a different Colony, the new Broker informs the
previous one of the Agent’s migration. For scalability reasons,
a hierarchy of Proxies can be deployed, although we leave it
out of the scope of this paper. The request is successful if
the content is found in any of the Colonies composing Figaro.
In this case, the connection between Agents runs through the
routers colocated with the Brokers that control the Agents.

Agents report to their Broker the outcome of successful and
unsuccessful content transfers with Agents identified as can-
didate providers. The outcome is notified through a feedback
message, which the requesting Agent sends to the Broker after
the content transfer.

4 MATCHING DEMANDS AND OFFERS
We consider a mobile system where Agents are rational and
follow the same behavior in terms of querying activity. Let I
be the number of content items that exist in a Figaro system
composed by C Colonies; the items may differ by size and
popularity. Let Λ be the per-Agent query generation rate.
Upon a query generation, an Agent selects the item to ask for
according to its popularity level, i.e., with probability π(j, t),
1 ≤ j ≤ I (

∑I

j=1 π(j, t) = 1). Consequently, at time t within
Colony k, each content j is requested with rate λk(j, t), which
is equal to Λπ(j, t) multiplied by the number of Agents in
Colony k at time t. We also denote by Pk(j, t) the number of
Agents (either under or out of coverage) advertising item j at
time t in Colony k.

We design our match-making system in order to achieve the
following goals:

1) high query success probability, in spite of the rational
behavior of users and the different characteristics of the
requested content (i.e., size and popularity level);

2) fair treatment of the Agents, i.e., the amount of service
they provide is comparable to the amount of service they
obtain;

3) resilience to Agents who do not provide the content they
advertise (either free riders or disruptors).

To meet these objectives, we associate to each content j a
Colony-wise value, denoted by Gk(j, t), which is expressed in
credits and may vary in time: an Agent that provides (receives)
a content item earns (spends) an amount of credits equal to
the content value. For each Agent i, we can therefore define
a balance b(i, t), expressed again in credits, which reflects
the difference between the value of the content the Agent has
provided and the value of the content it has obtained. Note
that the exact, up-to-date value of each Agent’s balance is
only known by the Broker (although the Agents can compute
their own rough estimate). We stress that since Agents are not

expected to store or advertise any authoritative information
about their balance, there is no need for tamper prevention, or
tamper-resitant equipment.

We define Gk(j, t) so as to take into account both the
different size and popularity level of the content items. More
specifically, for each Colony k we introduce the content burden
metric, Bk(j, t), which is the ratio of the query rate associated
to content j within the Colony to the number Pk(j, t) of
Agents providing it at time t, i.e.,

Bk(j, t) =
λk(j, t)

Pk(j, t)
(1)

Note that, in defining Bk(j, t), we consider the query rate
for content j coming from other Colonies to be negligible.
Also, the burden takes larger values for popular content
(characterized by high values of λk(j, t)) and for rare content
(for which Pk(j, t) is low), while it is smaller for content with
low popularity or that can be easily found in the Colony. By
denoting with s(j) the size of the file representing content
j, we define Gk(j, t) = (g + Bk(j, t))s(j), where gs(j)
represents the baseline value of the content. It follows that
large-sized, highly-popular content items, as well as rare items,
will all be highly valuable. Also, we associate a value of g
credits to each feedback message that an Agent belonging to
Colony k sends to the Broker at time t to notify the outcome
of the transfer of the requested content.

For the sake of clarity, let us first consider the case where
there are no malicious Agents, and assume that Agents start
with a zero balance. The balance of the generic Agent is
updated as described below.

• When an Agent u, belonging to Colony k, requests a
content j by sending an SREQ to the Broker and the
Broker finds a candidate provider:
(i) b(u, t) is decreased by Gk(j, t) + g;
(ii) if Agent u sends a feedback to the Broker, related
to the transfer outcome of a requested content, b(u, t) is
increased by g;
(iii) if Agent u is not satisfied by the transaction (e.g.,
the transfer fails to complete or does not occur at all),
it sends a negative feedback; it is entitled to request the
same content again (provided that the new query is made
within a given time window) without further decreasing
its balance2.

• When an Agent v, belonging to Colony k, is selected as
provider for a content query issued in Colony l (l "= k):
(i) b(v, t) is increased by Gl(j, t);
(ii) if a negative feedback about the data transfer is
received by the Broker, b(v, t) is decreased by G l(j, t).

Note that feedback messages play a very important role in
Figaro’s credit scheme and are therefore awarded additional
credits: by doing so, rational Agents will always provide a
feedback if they can. Also, Agents have no incentive to provide
a falsely negative feedback, as this would not restore their
balance, but only give them the opportunity to request the
same content again – which would be useless if the content

2. Subsequent feedbacks related to the same content do not bring any further
increase in the balance of the issuing Agent.
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has already been successfully received. In case no feedback
is received for a content transfer, the transfer is assumed to
be successful (i.e., the candidate provider is awarded Gk(j, t)
credits). The rationale is the following: since requesting
Agents always have an interest in sending a feedback, connec-
tivity problems likely prevented the Broker from receiving a
feedback. If this were the case, the same connectivity problems
would be the cause of the transfer failure (if any), and taking
actions against the candidate provider would be unnecessary.
Finally, we remark that, unlike voting schemes (e.g., [9]), in
Figaro Agents do not choose their content providers, and thus
whom they give a feedback about. This makes Figaro robust
to attacks by malicious Agents, as discussed later.

Given the above credit scheme, the Broker can exploit the
value of the Agents’ balance to ensure Agents’ cooperation
in providing content. In particular, the Broker can determine
whether a requesting Agent is entitled to receive further service
and which Agent should be selected as candidate provider,
according to the following rules:

• upon receiving an SREQ from Agent u, the Broker
discards the SREQ if b(u, t) < Tr, where Tr is a negative
threshold value (i.e., the requesting Agent has too low a
balance to request a content);

• otherwise, a candidate provider is selected and the Broker
appoints the Agent that has the lowest balance among the
Agents advertising the requested content.

The choice of the lowest-balance Agents as providers may at
first appear questionable and unfair to well-behaving Agents
issuing the query, as such providers may not actually deliver
the content. However, free riders and disruptors are handled by
the banning mechanism about to be introduced. The choice of
the Broker has instead the positive fallout that fairness among
Agents sharing common and rare contents is improved.

The credit system described above makes cooperation, i.e.,
providing a content when requested by the Broker, necessary
for the Agents in order to be able to obtain the content they
need later on. The higher the Tr, the higher the amount of
cooperation required. When all Agents are rational, game-
theoretic methods can be used [4] to assess the value for T r

that yields optimal performance. However, in Figaro we also
take into account the presence of malicious Agents, whose
only purpose is to disrupt the system performance. To counter
them, we introduce a banning mechanism, which changes
the nature of the problem and, as a positive side-effect, also
represents a further incentive for rational Agents to cooperate.

4.1 The banning mechanism
Figaro uses banning to keep malicious Agents out of the
Colony and, thus, impair their actions. Every time the Broker
receives a negative feedback related to an Agent (and it deems
it credible, as described below), that Agent is banned for a
certain period of time. While banned, the SREQs transmitted
by the Agent are dropped by the Broker and the Agent cannot
be selected as a candidate provider. We stress that when a
banned Agent issues a SREQ, its balance is decreased anyway
by the value of the requested content. Recall that Agents
are not aware of their balance. To prevent an Agent from

foreseeing the ban periods and avoiding to request content
items while being banned, ban periods start after a random
time since banning is triggered.

The ban duration grows exponentially: on the n-th time that
an Agent is banned, the duration is computed as T b(n) =
T0an−1, with a ≥ 1, n ≥ 1. T0 is set small enough so as not
to excessively penalize those Agents that occasionally fail to
provide a content, and a large enough so as to rapidly and
effectively exclude malicious Agents from the Colony. The
actual choice of T0 and a depends on the application and,
as shown later in the paper, on the system status; also, the
counter recording the number of bans for each Agent can be
periodically reset.

We stress that the ban mechanism not only allows Brokers
to counteract malicious Agents but it also serves as further
incentive for rational Agents to provide the requested content
when selected as providers. This makes our study significantly
different from the one in [4]. Also, Figaro is immune to the
adverse impact that mobility may have on the effectiveness
of reputation and ban schemes: banned Agents may try to
move to a different Colony to nullify their banning, or newly
arrived Agents may be unable to figure out the trustworthiness
of their neighbors. Indeed, in Figaro (i) Brokers can exploit
the backbone to exchange information about banned Agents
or about the balance of Agents that move from one Colony
to another, and (ii) newcomers (like all other Agents) rely on
Brokers for the selection of the candidate provider.

4.2 Feedback credibility
As is evident from the description above, in Figaro bad-
mouthing attacks, in which attackers assign falsely negative
feedbacks to the Agents that provide them with a content,
would cause a serious malfunctioning. To ensure robustness
to bad-mouthing attacks, each Broker implements a simple,
yet effective, credibility filter, based on the notion of negative
feedback ratio.

We begin by introducing some definitions. Given Agents u
and v, the negative feedback ratio νI(u, v) is the fraction of
negative feedbacks issued by Agent u on Agent v’s behavior.
We then define the following Colony-wise average values:
ν̄I(u) =

1
Nu

∑
v νI(u, v), i.e., the ratio of negative feedbacks

issued by u averaged over the number (Nu) of nodes that
have served as candidate providers for u and belonging to the
same Colony as u; ν̄R(v) = 1

Nv

∑
u νR(u, v), i.e., the ratio

of negative feedbacks received by v averaged over all Agents
belonging to the same Colony as v and for which v has acted
as candidate provider.

Then, let us consider that the Broker receives from Agent u
a feedback on the content provider v, and both u and v belong
to the Broker’s Colony. The Broker deems the feedback to be
not credible if both the conditions below hold:

1) the ratio of negative feedbacks issued by Agent u, ν̄ I(u),
is higher than the average value computed over all
Agents belonging to the same Colony as u (i.e., the
issuer’s view of the Colony is more negative than the
average one);

2) the ratio of negative feedbacks given by u to v is higher
than the average negative feedback ratio received by v:



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH XX 6

νI(u, v) > ν̄R(v) (i.e., the issuer’s view of the provider
Agent v is more negative than the average one).

The ratio behind the above conditions is the following: the
Broker will not deem credible those feedbacks that portrait
the target Agent and its Colony worse than other Agents
do. Assume, for example, that the target Agent v has a
negative feedback ratio of 0.1, and its Colony c has a negative
feedback ratio of 0.05 (these are typical values we found in
our simulations). Now, if an Agent u always issues negative
feedbacks, u is either participating in a bad-mouthing attack,
or experiencing severe connectivity problems: in any case, its
negative feedbacks should not trigger a banishment of v or
decrease v’s balance.

If, instead, the candidate provider v and the Agent u issuing
the feedback belong to different colonies, typically ν I(u, v)
is not statistically meaningful due to a small number of
occurrences. Hence, the Broker of Agent u only evaluates
the first condition and notifies the outcome to the Broker of
Agent v. Based on this condition only, the Broker of Agent v
assesses the feedback credibility. Notice that, when a feedback
is considered not credible, it does not trigger the banning of the
candidate provider and no action is taken against its issuer. The
rationale of the latter choice is that, once the bad-mouthing
Agent is identified and made harmless, the Colony can still
benefit from its presence, as long as it correctly provides its
content when asked. Also, Agents found to issue unreliably
negative feedbacks are not necessarily attackers; they may
simply be Agents whose ability to receive content items is
impaired by some external reason (e.g., connectivity issues):
banning them would be unfair.

In the following, we highlight the ability of the presented
credit scheme and candidate provider selection policy to ensure
a high query success probability, and we discuss the robustness
of Figaro to the possible attacks by malicious Agents.

5 ENSURING COOPERATION IN FIGARO: A
GAME-THEORETIC ANALYSIS
We now adopt a game-theoretic approach to show that our
credit scheme, jointly with the banning mechanism, makes co-
operation (i.e., providing the requested content when selected
by the Broker as a candidate provider) the best choice for
a rational Agent. We therefore focus on rational Agents and
assume that none of them is malicious.

We model the system dynamics as a game, where, when
selected by the Broker as candidate provider, an Agent can
play two possible moves: to provide or not to provide the
content. We first compute the payoffs corresponding to these
moves. Then, we derive the strategic form of the game and
show, by iterated dominance, the condition under which there
is a unique Nash equilibrium, in which all players cooperate.
We show that such an equilibrium is Pareto-optimal and also
attains the maximum efficiency. These results hold in the
homogeneous case, i.e., when content items have the same
characteristics, as well as in the inhomogeneous case.

5.1 Payoffs and game solution
For the sake of simplicity, we first assume homogeneous
conditions, i.e., independently of the considered Colony, all

content items are represented by a file of the same size and
have the same popularity level, and for each content there
is an equal number of Agents storing the content. Hence,
Gk(j, t) = G(t), ∀k, j.

We consider a generic Agent i belonging to Colony k and
assume that, at a generic time t, it is selected as a candidate
provider. Let V (i, t) be the utility that Agent i can expect to
obtain, i.e., the amount of service it will be able to receive in
the future (not considering the possibility to be subsequently
selected as a candidate provider). In Figaro, this corresponds
to having V (i, t) = b(i, t), i.e., the Agent’s current balance.
We denote with V +(i, t) and V −(i, t) the new utilities of
Agent i in case it chooses, respectively, to cooperate and not
to cooperate at time t. Also, let c(j) be the cost of providing
content j. The cost c(j) is assumed to directly reflect the size
s(j) of the file representing content j, e.g., c(j) = Ks(j),
where K is a constant positive value. However, due to the
assumption of homogeneous content, c(j) = c = Ks, ∀j.

Now, if Agent i decides to cooperate, it pays a cost c for
providing the content, and its utility V +(i, t) will change due
to the increase of its balance by G(t). Its payoff will be:

Uc(i, t) = −c+ V +(i, t) = −c+ [G(t) + b(i, t)]. (2)

Conversely, if Agent i decides not to cooperate, it will not
pay any cost. However, its utility V −(i, t) will reflect the fact
that not only will its balance b(i, t) not increase, but the Agent
will also be banned for a time interval, whose duration depends
on the number of bans already received. Let us assume that the
Agent has already been banned (n−1) times; considering that,
during the ban period, it will issue an average of ΛT b(n) SREQ
messages, and a decrement of its balance will correspond to
each of them, its payoff becomes

Unc(i, t) = V −(i, t) = max {[b(i, t)− ΛTb(n)G(t)], 0} .
(3)

Note that, obviously, an Agent cannot retrieve less than 0 items
thus V −(i, t) ≥ 0.

This is a rather peculiar game, as each player’s payoff solely
depends on its own move, and not on the opponent’s one. As
for the equilibrium, we can prove the following result:

Theorem 1. The game described above admits (Cooperate,
Cooperate) as the unique Nash equilibrium if

Tb(n) >
c−G(t)

ΛG(t)
∀t, n. (4)

Proof: The proof can be found in the Appendix.
Thus, if the condition in (4) is met, the game will reach an

equilibrium in which all rational Agents always cooperate, i.e.,
they provide the content the Broker asks them. Condition (4)
must hold for any time instant t and for every n; hence,
considering the expressions of c and G(t), a possible choice
for T0 is given by: T0 > (K − g)/Λg. Such an expression
can be read as: the higher the request rate Λ, the more severe
the penalty that banned Agents receive during the ban period;
thus, the smaller the value of T0 needed to make cooperation
a convenient strategy. Clearly, if K ≤ g, banning is not
necessary to make cooperation a rational choice for the Agents.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH XX 7

5.2 Optimality and efficiency of the equilibrium
When the condition in (4) holds, the strategy profile (Cooper-
ate, Cooperate) is a Nash equilibrium and, since Uc(i, t) >
Unc(i, t) for every Agent i, it is also Pareto optimal, i.e.,
cooperation is the best strategy that an Agent can follow
without making someone else worse off. In order to assess
the efficiency of this equilibrium, we determine the price of
anarchy (PoA), which is defined as the ratio of the payoffs
obtained by the players when the Nash equilibrium holds,
to the payoffs obtained by the players if a globally optimal
solution is enforced [20]. The following theorem holds.

Theorem 2. The equilibrium (Cooperate, Cooperate) of the
game described in Sec. 5.1 yields the same efficiency as the
globally optimal solution.

Proof: The proof can be found in the Appendix.
Intuitively, when Agents are not free to chose whether to

cooperate or not, an Agent that is selected as a candidate
provider pays the cost c while its balance is increased by
G(t). Thus, Uopt(i, t) = −c+ [G(t) + b(i, t)] = Uc(i, t), i.e.,
PoA = 1. In other words, not only is the equilibrium (reached
when all Agents cooperate) fair and Pareto-optimal, but it
yields the very same efficient behavior as the globally optimal
solution. This is not surprising, since cooperation means that
Agents follow the suggestions of the Broker, which is in an
excellent position to determine the optimal strategy.

5.3 The inhomogeneous case
We generalize the previous analysis to the case where items
have different size, popularity level and availability, and pop-
ularity and availability may depend on the Colony. Thus, we
now consider a cost c(j) = Ks(j) and a content value Gk(j, t)
(1 ≤ k ≤ C, 1 ≤ j ≤ I).

In this setting, the payoffs for a cooperating and not
cooperating Agent i, which belongs to a generic Colony k
and is requested to provide content j at time t, are given by:

Uc(k, j, i, t)=−c(j) + V +(i, t) = −c(j) +Gk(j, t) + b(i, t)

Unc(k, j, i, t)=V −(i, t) =

max

{[
b(i, t)− ΛTb(n)

I∑

h=1

π(h, t)Gk(h, t)

]
, 0

}

where we assumed that i has already received n− 1 bans. In
order for the Agents to cooperate, the condition U c(k, j, i, t) >
Unc(k, j, i, t) has to hold for any k, j, i and time instant t, i.e.,

Tb(n) >
maxj [c(j)−Gk(j, t)]

Λ
∑I

h=1 π(h, t)Gk(h, t)
∀t, n. (5)

Then, considering the expressions of c(j) and Gk(j, t), a
possible choice for T0, so that the condition in (5) is always
satisfied, is given by:

T0 >
(K − g)maxj s(j)

Λgminj s(j)
.

6 RESILIENCE TO ATTACKS

Malicious Agents may try to break Figaro’s balance mech-
anism by performing several types of attacks. In particular,
they may behave as disruptors with the sole purpose of
degrading the system performance. Figaro counteracts this
behavior through the ban mechanism, which leaves out of
the system an Agent for a given period of time, as soon as
it receives a credible negative feedback. The effectiveness of
banning is shown in Sec. 7.1, through ns-3 simulation.

Below, instead, we discuss the resilience of Figaro to the
typical attacks that may be launched (independently or in a
collusive manner) in online trading communities or, more in
general, in reputation-based systems.
Ballot stuffing: a group of Agents collude to give each other
positive feedbacks, in order to get an incorrectly high balance.
In Figaro, Agents cannot freely choose whom they ask for
the content they need, since the selection is performed by the
Broker. Therefore, while it is possible to indiscriminately give
a colluder a positive feedback, a large number of colluders
is needed to make this attack viable (i.e., by increasing the
likelihood that one of the colluders is selected as provider).
Furthermore, an Agent has no practical way to artificially in-
crease the number of feedbacks it is entitled to issue regarding
its own colluders, since the number of requests it can issue is
limited by Tr.
Bad-mouthing: a group of Agents collude to give negative
feedbacks to others, so as to incorrectly lower their balance,
and having them repeatedly banned. Again, the effectiveness
of this attack is dampened by the Broker likely choosing a
different provider for every request.
Negative/positive discrimination: an Agent provides the re-
quested content only to a selection of other Agents, neglecting
those it “does not like”. This behavior will draw bans upon
the Agent and is hardly effective in the long run.
Sybil attack: an Agent uses a large number of pseudonyms,
thus gaining a disproportionately large influence on its own
reputation scores, as well as the other peers’. Agents are
identified via their IEEE 802.11 MAC address. An attacker
could modify its MAC address to assume a new identity, but
in this way its former identity would become unreachable and
would be automatically de-registered from the colony, i.e., an
Agent cannot have multiple contemporary identities, unless
relatively complex hardware and software are used.
Whitewashing: an Agent misbehaves until it is banned and
then assumes a new, clean identity. Whitewashing is normally
impervious to detection attempts. The only protection that
Figaro can deploy is by not letting Agents know they are
banned (hence not letting the attacker know explicitly when it
is time to assume a new identity). Still, Figaro is vulnerable
to whitewashing by knowledgeable attackers who are aware
that a negative feedback will get them banned: they can
stay in the system until they are first requested to provide
a content, ignore it and then assume a clean identity. Thus, in
the case of applications for which resilience to whitewashing
(and Sybil) attacks is highly critical, Agents may be required
to perform a una-tantum, web-based registration (possibly
with a CAPTCHA [21]) before they can register to a colony.
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Furthermore, Agents could be required to have a private key
and sign the messages they send.

7 EVALUATING THE CREDIT AND BANNING
SCHEMES

We provide an evaluation of Figaro’s features described so far
by using ns-3 simulations: firstly, by looking at its resilience
against several types of attacks, and then by establishing to
which extent it can actually enforce cooperation and fairness
among the Agents.

Our investigation focuses on a pedestrian scenario, where
four points of interest (POI) are placed at the corners of a
1000×850 m2 rectangular area. In correspondence to each
POI there is an 802.11 AP, integrating a Broker, all connected
through a backbone. Agents, whose number is fixed to 100
unless otherwise specified, are equipped with an 802.11 inter-
face and roam among the APs. Their movement follows the
Random Trip mobility model, with an average pause time of
100 s and an average speed of 1.8 m/s. The Two-ray Ground
model is used to represent the channel propagation conditions,
and the transmission data rate between Agents and APs is
controlled through the AARF technique [22], so as to adapt
to the perceived channel conditions.

The content items are divided into four classes with different
popularity and size. We consider two possible levels of content
popularity, as well as two possible content sizes. Both the
content sizes and the popularity levels differ by a factor 2.
Specifically, class 1 items have size of 200 kB and popularity
level equal to 1/3, class 2 items have size of 100 kB and
popularity level 1/3, class 3 items have size of 200 kB and
popularity level 1/6, and class 4 items have size of 100 kB and
popularity level 1/6. For the sake of clarity while presenting
the results, we consider I = 4, i.e., one content per class,
and assume that each Agent advertises exactly one content
(chosen with equal probability among the possible four), so
as to associate each Agent to the class of content it provides.
We stress, however, that simulations with a larger number of
content items yielded qualitatively similar results.

An Agent “becomes interested” in a content according to
a Poisson process with rate equal to Λ = 0.02 req/s. The
requested content j is chosen, among those not stored by the
Agent, with probability proportional to the content popularity
level π(j, t). The Agent then issues an SREQ message for
that content, which is periodically refreshed until an SREP is
returned, or until a timeout (set to 30 s) expires. If no reply
ensues before the timeout, the Agent considers the query as
failed. Instead, if a positive reply is received from the Broker,
the requesting Agent asks the providing Agent for the content.
Data are exchanged through a well-known UDP port. Agents
are not required to implement any routing protocol, as the
content is either available in the same Colony (i.e., subnet) or
via the backbone. As for the other parameters, we set: T0 =
60 s, a = 3, K = 1, g = 0.5.

All plots have been obtained by averaging 10 independent
simulation runs, so as to obtain a 95% confidence level.
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Fig. 2: Resilience to disruptors: (a) time evolution of the
success probability for well-behaving Agents and disruptors,
with/without banning; (b) success probability vs. balance for
well-behaving Agents and disruptors, with banning enabled.

7.1 Counteracting disruptors, bad-mouthers and
liars
When our credit-based scheme is implemented, we have
proved that all rational users have interest in cooperating,
hence they will provide the content when they are asked for.
Here, we are interested in evaluating to which extent Figaro
can (1) protect well-behaving Agents from disruptors; (2)
detect and discard falsely negative feedbacks, i.e., the ones
issued by Agents taking part in a bad-mouthing attack; (3)
make it disadvantageous for Agents to lie about the content
they share in the Colony. Note that the plots presented here
do not show the class of the content the Agents provide, as
this is not significant for the aspects being taken into account.

We start by considering a scenario in which 50% Agents
are willing to cooperate while the rest are disruptors. In our
simulations, we consider that disruptors also issue content
requests and that their behavior is unaffected by the credit
and ban mechanisms, and we set Tr = −5 (the impact of Tr

will be evaluated later).
First, to show the effectiveness of our banning mechanism,

Fig. 2a presents the time evolution of the query success proba-
bility of well-behaving rational Agents and of disruptors, with
and without banning. In absence of banning, well-behaving
Agents and disruptors experience about the same success
probability: the success probability decreases over time till a
saturation value (namely, about 0.4), which is determined by
the presence of a large percentage of disruptors. Conversely,
with banning, the Broker can tell apart well-behaving nodes
and disruptors in a very reliable manner, and the gap in
performance between the two types of Agents widens. Indeed,
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Fig. 3: Resilience to bad-mouthing: (a) time evolution of
the success probability of well-behaving Agents, with/without
bad-mouthing. The cases with and without feedback credibility
check are shown; (b) query success probability vs. balance, for
well-behaving, bad-mouthing and disruptor Agents, and with
feedback credibility check.

with the passing of time, more and more disruptors are
discovered and banned, hence made harmless. Consequently,
over time the probability that a disruptor is elected as candidate
provider decreases while the success probability of well-
behaving Agents grows. However, the success probability of
well-behaving Agents does not reach 1 and, similarly, the
success probability of disruptors does not drop to 0. This is
due to the following reasons: (i) the ban period of disruptors is
limited, thus, at any time instant there may be still disruptors
active in the Colony (although they will be detected and
banned again); (ii) as studied in the next section, the balance
of the Agents providing lower-value items (classes 3-4) may
drop below the threshold Tr (i.e., they cannot gain as many
credits as they would need to obtain the desired content).

Fig. 2b shows that, when the banning is enabled, disruptors
have lower query success probability and lower balance (most
of the times below Tr) than well-behaving Agents. Indeed,
requests that come from banned Agents are discarded by the
Broker but do trigger a balance decrease.

Next, we consider an even more challenging scenario, where
20% Agents are disruptors and other 20% take part in a bad-
mouthing attack. Fig. 3 shows the time evolution of the query
success probability for well-behaving Agents in presence of
bad-mouthing attackers, in both the cases where the feedback
credibility check (described in Sec. 4) is enabled and disabled.
Results are compared also with the case where no Agent takes
part in the bad-mouthing attack. We first observe that when
the credibility check on negative feedbacks is disabled, bad-

mouthing Agents slowly but steadily erode into the query
success probability of well-behaving users, having them re-
peatedly banned. Conversely, enabling the credibility check
allows well-behaving Agents to achieve the same performance
as in the case where no bad-mouthing attack is launched.
This behavior highlights two important facts: not only does
the credibility check neutralize bad-mouthing (i.e., it has very
few false negatives), but it also has very few false positives,
i.e., it does not erroneously discard truly negative feedbacks.
Indeed, if the feedbacks against real disruptors were discarded,
a decrease in the well-behaving Agents’ performance would
occur, similarly to what is shown in Fig. 2a.

These observations are confirmed by the results in Fig. 3b,
detailing the success probability of well-behaving, bad-
mouthing and disruptor Agents, versus their balance values.
Disruptors still have a lower balance and query success prob-
ability than the Agents (either bad-mouthing or well-behaving)
that do provide the content they advertise. Recall that, as
explained in Sec. 4.1, no action is taken against bad-mouthing
Agents, once they are discovered and made harmless.

In addition to disruption and bad-mouthing, there is a further
subtle, unfair behavior that Agents may follow: they omit, at
registration time, to declare to the Broker which content they
wish to share within the Colony, i.e., they pretend they have
none. The Broker has no way to find out which content Agents
have in their memory, thus these lying Agents will never be
selected to provide a content. Also, since there is no evidence
of unfair behavior, they will not be banned. However, Figaro
effectively tackles this issue: lying Agents do not provide any
content and, thus, their balance will soon reach Tr. From
then on, they cannot obtain any service, which is the same
effect banning would obtain. A similar effect occurs if Agents
declare fewer content items than they have.

The benefit of setting Tr to a slightly negative value
(namely, −5), as opposed to using a larger negative threshold
(namely, −20) is evident from Fig. 4. When Tr = −20, lying
Agents achieve almost the same success probability as well-
behaving Agents. Conversely, when Tr = −5, the balance and
success probability of liars severely degrades, i.e., lying about
the stored content is not a good choice for rational users.

As a conclusion, a small negative value for Tr makes Figaro
highly resilient to both disruption and lying about one’s ability
to contribute to the Colony.

7.2 Cooperation and fairness
We assess the performance of Figaro in terms of fairness,
by focusing on the query success probability obtained by the
Agents providing the different types of content items, as listed
in Sec. 7. In particular, we aim at investigating the relationship
between balance and query success probability, and how the
threshold Tr affects both.

Table 1 presents, for each of the four classes of content, the
success probability of a query issued by an Agent requesting
that content as well as the success probability experienced
by an Agent that advertises that content and provides it upon
Broker’s request. The results refer to three different settings of
the request threshold, namely Tr = −1,−5,−20. Recall that
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TABLE 1: Query success probability for different content classes and values of T r

Class Requester success probability Provider success probability
Tr = −20 Tr = −5 Tr = −1 Tr = −20 Tr = −5 Tr = −1

1 0.910 0.801 0.431 0.937 0.935 0.882
2 0.912 0.820 0.522 0.935 0.922 0.661
3 0.959 0.826 0.532 0.919 0.899 0.441
4 0.966 0.925 0.655 0.904 0.695 0.260
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Fig. 4: Resilience to lying Agents: (a) success probability for
well-behaving and liars, Tr = −20,−5; (b) success probability
vs. balance for well-behaving and liars, Tr = −5.

the higher the content value (i.e., its popularity level and/or
size), the higher the number of credits needed to request the
content. It follows that the lower the Tr, the more likely it is
that an Agent has enough credits to request a content, even
if highly valuable, hence the higher its success probability.
Consistently, providing a content that is either popular or large-
sized, results in a higher gain, hence in better performance for

the Agent storing that content.

Next, Fig. 5 shows how changing Tr impacts on the rela-
tionship between the amount of service (expressed in credits)
that Agents provide and obtain from the system. The different
markers denote Agents that provide content belonging to
different classes. From a fairness viewpoint, we make the
following observations. First, in each plot, points lying on the
bisectrix y = x correspond to Agents enjoying as much service
as the amount they give to the Colony, while points above and
below the bisectrix represent Agents that, respectively, obtain
and provide more than what they should. Secondly, we would
like all Agents to experience the same quality of service, i.e.,
they can access the same amount of content, independently of
what they store.

Looking at the figure, we note that the closer Tr to 0, the
more points lie on the bisectrix. However, considering the
results in Table 1, it is clear that query success probability and
fairness are diverging objectives and that properly selecting
Tr helps in establishing a tradeoff between the two trends.
Specifically, Tr = −5 appears to be a good choice, as it both
provides high success probability and ensures that each Agent
receives about the same amount of service it obtains from the
system. However, the content sharing system by itself cannot
solve the second issue related to fairness: as shown by Fig. 5,
Agents storing low-value items (e.g., class 4) both provide and
enjoy little amount of service, with respect to Agents offering
more valuable items.

It is clear that additional capabilities are to be bestowed
on Figaro, in order to restore fairness. In the following two
sections, we will discuss how to exploit the cooperation
inherent in a Colony of the Figaro system, by introducing
Agent caching. We will then return to the above scenario in
order to assess its benefit.
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Fig. 5: Amount of service (in credits) given and obtained by Agents providing different classes of content, when (a) T r = −1,
(b) Tr = −5 and (c) Tr = −20.
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8 EXPLOITING CACHING CAPABILITIES
To lessen the effect noted in Fig. 5 and increase the content
availability in the system (i.e., the query success probability),
we enhance our match-making paradigm by letting Agents
have caching capabilities, i.e., the possibility to store content
items they are not directly interested in, with the sole purpose
of helping the Colony (and get a reward for that). They may
use such capabilities following the Broker’s directions. In other
words, some of the Agents that obtain a content can be asked
by the Broker to retain it in their cache. Those Agents will
then be able to provide the cached content to others.

Below, we formulate our problem and devise a solution that
promotes caching Colony-wise. For clarity, we presently leave
disruptors and other attackers out of the picture.

8.1 Problem formulation
Without loss of generality, we assume that if an Agent has
caching capabilities, its cache size is equal to σ. We focus
on Colony k and denote by Rk(j, t) the number of Agents in
the Colony that advertised content j when they registered, and
by Lk(j, t) the number of Agents caching content j at time t
within the Colony, because asked to do so by the Broker. Note
that the latter did not advertise content j during registration,
but acquired it through a query. Since the two behaviors are
mutually exclusive, Pk(j, t) = Rk(j, t) + Lk(j, t).

Let us first compute the query success probability condi-
tioned to the fact that an Agent issuing the query has enough
budget to request a desired content. By restricting our attention
to well-behaving Agents, this is given by the joint probability
of the following events: (i) neither SREQ nor SREP are lost;
(ii) in the Colony there is at least one Agent under coverage
advertising the requested content. Since it can be assumed
that these events are independent and the number of Agents
advertising a content does not vary during an SREQ/SREP
exchange, the success probability of the query generated by
the generic Agent, for content j in Colony k, is given by

Sk(j, t) = (1− q)2
[
1− (1− ρ)Rk(j,t)+Lk(j,t)

]
. (6)

In (6), we assumed that SREQ and SREP transfers fail with
equal probability q, while ping packets (which are very short)
are always successfully delivered; ρ is the probability that a
generic Agent in the network is under the network coverage.

The following Lemma shows that increasing Sk(j, t) corre-
sponds to increasing the number of Agents providing content
j in Colony k.

Lemma 1. The expression in (6) increases monotonically as
Rk(j, t) + Lk(j, t) increases.

Proof: The proof can be found in the Appendix.
However, just increasing the number of Agents providing

any content leads to a waste of caching resources. Our caching
strategy, instead, needs to adapt the number of copies of the
content to the query rate associated to it. To this end, we
resort to the content burden metric introduced in (1) and define
Ak(t) as the number of Agents in the Colony that have caching
capabilities (i.e., they can cache some content according to
the Broker’s directions). Assuming that Ak(t) is known by

the Broker and that content popularity is negligibly affected
by the change in number of providers due to caching, we are
in a position to formulate our goal as minimizing the largest
content burden, or, equivalently, as

maxmin
j

1

Bk(j, t)
(7)

s.t. Lk(j, t) ≤ Ak(t)−Rk(j, t) ∀j (7.1)
I∑

j=1

s(j)Lk(j, t) ≤ σ · Ak(t) (7.2)

Lk(j, t) ∈ N ∀j (7.3)

Note that such a formulation is an ILP (Integer Linear
Programming) problem with I decision variables (Lk(j, t),
j = 1, . . . , I). Constraint (7.1) forces the number of cached
copies for content j to be not greater than the number of
caching-capable Agents not advertising that content, while
Constraint (7.2) ensures that the total number of cached
items does not exceed the cache capacity available in the
system. Constraint (7.3) forces the decision variables to take
non-negative integer values. Unfortunately, a polynomial or
pseudo-polynomial time solution to the above problem does
not exist [23]. Additionally, the system dynamics require the
problem to be solved every time Agents enter/leave the system,
or they are banned/unbanned (Rk(j, t) changes), or if the
content of an Agent’s cache is modified (Lk(j, t) changes).
Thus, we devise a heuristic to handle the problem solution,
and evaluate its performance in Sec. 9.1.

8.2 A heuristic caching strategy
Since Brokers are in a good position to classify content based
on its rarity and popularity (knowing number of providers and
content query rate), it is at the Broker that our heuristic is
implemented. Additionally, Brokers can use SREP messages
to inform Agents that they should add to their cache a content
they are retrieving. In turn, Agents can inform the Broker
via feedback packets whether they followed its directions and
which content, if any, they discarded to make room for the
new content. Brokers can thus integrate their knowledge of
the number Rk(j, t) of initial providers advertising the content,
with that of the number Lk(j, t) of caching Agents.

The Broker considers that a content j is worth to be cached
(hereinafter said to be cacheworthy) if the content burden,
Bk(j, t), outweighs the average value (computed over all
content items available in the Colony) by a factor φ > 1.
As an Agent in the Colony issues a query for a cacheworthy
content, the Broker asks the Agent to cache it if its balance is
smaller or equal to the average. Also, it returns to the Agent the
burden of the content items, to provide a discard priority for
different items if the cache overflows (i.e., content associated
to lower burden is more likely to be discarded).

From the Agent’s viewpoint, we define the benefit/cost ratio
of providing a content j as Gk(j,t)

c(j) = g+Bk(j,t)
K . This metric

represents how much an Agent’s balance increases per unit of
effort (i.e., for a unitary amount of transferred data). Then, we
prove that rational Agents will follow the Broker’s suggestion
to cache a content, whenever such a content is cacheworthy.
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Theorem 3. Given a rational Agent currently storing the set
of content items S, the Agent always finds it convenient to
cache a new content w, upon Broker’s suggestion.

Proof: The proof can be found in the Appendix.
Based on the above theorem, we conclude that the proposed

heuristic can be successfully implemented: rational Agents
will follow the Broker’s suggestions, as it allows them to
become providers of a content with higher benefit/cost ratio
and, thus, increase their expected reward.

9 EVALUATING FIGARO WITH CACHING
We now evaluate the effectiveness of Figaro’s caching mech-
anism and compare the performance of Figaro against other
existing solutions. Except for the caching capabilities at the
Agents, the results below have been obtained for the same
network scenario and system parameters introduced in Sec. 7.

9.1 Benefits of caching
We now consider that a certain percentage of Agents have
caching capabilities, and, for clarity of presentation, that there
are no disruptors. We want to address the following questions:

(i) is caching effective in improving Figaro’s performance?
(ii) how many caching-capable Agents are needed for

caching to work?
(iii) how does caching impact on the balance distribution in

the Colony?
To this end, we set Tr = −5, σ = 200 kB, and φ = 1.5,
and show the performance of the proposed heuristic caching
strategy as the percentage of caching-capable Agents varies.

Figs. 6a and 6b show, respectively, the query success
probability and the number of copies cached in the system,
for the different content classes. As expected, as the number
of caching-capable Agents increases, the success probability
increases as well. However, a query for highly popular, large-
sized content (class 1) has lower chances to succeed than
others, unless all Agents can cache additional content items.
Indeed, less requested or smaller items are less valuable (in
terms of credits), hence they are easier to obtain. Nevertheless,
Figaro significantly reduces the query success probability
gap between the different content classes, already with 40%
caching-capable Agents. Interestingly, Fig. 6b shows that what
matters for a content to be cacheworthy is mostly its popularity
level: most of the cached content items are the popular ones
(i.e., classes 1 and 2). However, as the popular items become
widely available in the system, room can be devoted to less
requested items, especially the large-sized ones (i.e., class 3).

Next, we fix the percentage of caching-capable Agents to
50% and present in Fig. 6c the balance cumulative distribution
function (CDF), for caching-capable and not caching-capable
Agents. Caching-capable Agents have a significantly higher
balance, due to the higher burden (hence value) of the content
they provide. Also, notice that with extremely high probability
caching-capable Agents have a balance greater than T r, show-
ing that caching has also the positive effect of distributing
more evenly the load among Agents.

This is confirmed by Fig. 7a: caching improves not only
the query success probability, but also the system fairness.

In contrast to Fig. 5b, the amount of service provided and
obtained by Agents does not depend any longer on the class
of the content Agents originally advertised: all Agents receive
from the Colony a level of service that is close to the one
they provide and, very likely, they have a balance greater than
the threshold Tr. In other words, caching is an effective way
to achieve both a very high success probability and fairness
guarantees among the Agents.

Next, for the different content classes, we compare the
number of copies cached in the system as obtained through
our heuristic (implemented in simulation), with the solution
to the optimization problem in (7). The latter is computed
by assuming that: (i) conditions are stationary (i.e., Agents
are static with probability ρ = 0.75 to be under coverage,
which is in agreement with the network scenario under study),
and (ii) the Broker has knowledge of the number of caching-
capable Agents as well as of the status of all Agent caches.
The agreement between the results, shown in Fig. 7b, proves
the good performance of Figaro, even compared to the case
where global knowledge is assumed at the Broker.

Finally, caching also has the positive effect of reducing the
usage of the backbone. Indeed, caching increases the content
availability inside the Colony and, consequently, reduces the
need to search for it outside (i.e., asking the Proxy). Fig. 7c
confirms this statement, and suggests that, when used, the
backbone is mainly employed to retrieve popular content. This
is of particular importance when the backbone is not wired
but implemented with cellular technologies such as 3G. In
those cases, reducing its usage results in significant monetary
savings, and may represent a strong motivation to deploy a
peer-to-peer content discovery system like Figaro.

9.2 Benchmarking against other schemes
We finally evaluate Figaro by comparing it with other schemes
in terms of query success probability and overhead. In Figaro,
we assume that 50% of the Agents have caching capabilities.
Since the results above showed that Figaro with caching
greatly mitigates the differences in performance among Agents
advertising content items with different characteristics, we now
show results averaged over the different content classes.

Figaro is compared with a simple content-retrieval mech-
anism, referred to as Flat Flooding, and the BubbleStorm
scheme, adapted to our wireless scenario from its wireline
version [17].

Flat Flooding hinges on a flat peer-to-peer exchange in ad
hoc mode connectivity (i.e., without infrastructure). The query
propagation range is spatially limited by a Time To Live value
(set to 10 hops), and the rebroadcasting of already solved
queries is avoided by means of a query lag time (set to 1 s):
if an Agent detects responses to a query it has just received, it
refrains from forwarding it any further. In this scenario, Agents
implement a routing protocol for ad hoc networks (we chose
OLSR) and act as relay nodes when needed.

As mentioned in Sec. 2, BubbleStorm [17] is based on a
probabilistic exhaustive search paradigm in a overlay network.
In our scenario, given the topological constraints, the random
graph structure used by BubbleStorm to propagate a content
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Fig. 6: (a) Query success probability and (b) number of cached copies for the different content classes and as the percentage
of Agents with caching capability varies; (c) CDF of the balance for Agents able/unable to cache.
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Fig. 7: (a) Service given and obtained by Agents and (b) heuristic caching strategy vs. optimal solution, for 50% caching-capable
Agents; (c) Backbone usage as the percentage of caching-capable Agents varies.

is built as a subset of the tree already provided by the infras-
tructure. Also, our implementation of BubbleStorm provides
for nodes to replicate, broadcast and cache content in such a
way that the average fraction of Agents storing a content in
BubbleStorm is equal to the one set up for Figaro.

While deriving the results, in Figaro Agents are assumed to
be rational, i.e., to cooperate only if it is beneficial to them;
in the case of the other schemes, instead, an ideal behavior is
assumed, i.e., Agents are always willing to cooperate.

The query success probability is reported in Fig. 8a, as
the number of Agents varies. Figaro outperforms the other
solutions, especially when the number of Agents is low. While
the comparison against Flat Flooding (which does not exploit
any infrastructure) is not surprising, the improvement with
respect to BubbleStorm is less obvious. Indeed, in the wireless
scenario under study, BubbleStorm performs slightly worse
than its wireline version, whose success probability exceeds
0.99. Figaro, instead, is more suitable for wireless, dynamic
scenarios due to the match-making capabilities of the Brokers.
The role of the Broker in arbitrating content sharing within a
Colony also explains why the performance of Figaro does not
deteriorate as the number of Agents grows, as instead happens
when BubbleStorm’s statistical matching is used.

An area where Figaro provides performance unmatched by
BubbleStorm is message overhead. Fig. 8b shows that Figaro
exhibits an overhead that is nearly inversely proportional to
the query success probability, as a higher success probability
implies that very likely (i) a query is satisfied within the
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Fig. 8: (a) Success probability averaged over the different items and
(b) message overhead, as functions of the number of Agents.

Colony where it has been generated and (ii) fewer SREQs
are issued. In particular, it is shown that the Figaro overhead
stabilizes below 30% of the total traffic. BubbleStorm instead
exhibits a significantly higher overhead, due to its proactive
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content (and query) propagation over the network. Finally,
with Flat Flooding the overhead increases as the number of
Agents grows, due to the increased network congestion: large
numbers of Agents trigger an overwhelming number of replies
to a single query.

We stress that a low overhead implies a low energy con-
sumption: this, along with the very limited amount of status
information that Agents are required to store and process,
makes Figaro particularly suitable for energy-limited, hand-
held devices.

10 CONCLUSIONS
We presented Figaro, a match-making content discovery so-
lution for wireless networks with infrastructure. In Figaro,
mobile users (a.k.a. Agents) provide and request content items,
while fixed Brokers help Agents in identifying who owns a
desired content. A balance system ensures that Agents are
treated in a fair way. Contributing to the effectiveness of Figaro
is its feedback mechanism, that allows Brokers to zero in on
free riders as well as attackers, and ban them to limit their
negative impact. Also, Figaro complements its design with a
caching scheme in which the Brokers suggest to the Agents
what content to cache, in order to increase the query success
probability (global and Agent’s) and ensure fairness among
Agents. Finally, we proved that it is rationally convenient for
Agents to cooperate and to follow the Broker’s caching advice.
Simulation results showed the resilience of Figaro against
different types of attacks, as well as its effectiveness, also
with respect to other existing solutions.
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