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GRASP with Path Relinking for the
Two-Echelon Vehicle Routing Problem

Teodor Gabriel Crainic, Simona Mancini, Guido Perboli, and Roberto Tadei

Abstract We propose a meta-heuristic based on GRASP combined with Path Re-
linking to address the Two-Echelon Vehicle Routing Problem, an extension of the
Capacitated Vehicle Routing Problem in which the delivery from a single depot to
customers is achieved by routing and consolidating the freight through intermediate
depots called satellites. The problem is treated by separating the depot-to-satellite
transfer and the satellite-to-customer delivery, and iteratively solving the two re-
sulting routing subproblems, while adjusting the satellite workloads that link them.
The meta-heuristic scheme consists of applying a GRASP and a local search pro-
cedures in sequence. Then, the resulting solution is linked to an elite solution by
means of a Path Relinking procedure. To escape from infeasible solutions, which
are quite common in this kind of problem, a feasibility search procedure is applied
within Path Relinking. Extensive computational results on instances with up to 50
customers and 5 satellites show that the meta-heuristic is able to improve literature
results, both in efficiency and accuracy.

1 Introduction

The aim of this paper is to present an efficient meta-heuristic to address the Two-
Echelon Vehicle Routing Problem (2E-VRP), named GRASP-PR. The 2E-VRP is a
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variant of the Capacitated Vehicle Routing Problem (CVRP), characterized by a sin-
gle depot and a given number of secondary facilities named satellites. The first level
routing problem addresses depot-to-satellite delivery, while the satellite-to-customer
delivery routes are built at the second level. The goal is to ensure an efficient and
efficient operation of the system, where the demand is satisfied and the total cost of
the traffic within the overall transportation network is minimized.

This problem is frequently faced in real-life applications, both at the strategic and
tactical planning levels, and in day-to-day operations. Methods that can be applied
at both levels must be accurate and fast. Thus, for planning, the 2E-VRP is usu-
ally part of larger optimization frameworks, meaning that it must be solved many
times during the optimization process, and computational times need to be limited.
On the other hand, good feasible solutions are needed in a very short time when
optimization problems are to be used at the operational level. Solution quality is
crucial in all cases, because it directly impacts the revenues and service quality of
the transportation company.

The meta-heuristic introduced in this paper is based on hybridizing GRASP and
Path Relinking. More precisely, GRASP is used to generate solutions, which are
post-optimized by means of a local search procedure. In order to improve the solu-
tion quality, a path between the current solution obtained by GRASP with the local
search procedure and the best solution found so far is built by means of a Path Re-
linking procedure. The meta-heuristic is tested on medium-sized instances with 50
customers and 5 satellites, showing that the new method is able to improve existing
state-of-the-art results.

The paper is organized as follows. The 2E-VRP and the main literature results are
presented in Section 2. Section 3 is dedicated to the GRASP-PR general framework,
while computational tests and result analysis are reported in Section 4. Conclusions
are drawn in Section 5.

2 Problem Definition and Literature Review

In the 2E-VRP, the distribution of freight cannot be managed by direct shipping from
the depot to the customers. Instead, freight must be consolidated from the depot to a
satellite and then delivered from the satellite to the desired customer. This implicitly
defines a two-echelon transportation system: the 1st level connecting the depot to
the satellites and the 2nd one, the satellites to the customers.

We define the depot with v0, the set of satellites, with Vs, and the set of customers
with Vc. Let ns be the number of satellites, and nc the number of customers. The
customers are the destinations of the freight shipments and each customer i has an
associated demand di representing the quantity of freight that has to be delivered to
it. The demand of each customer cannot be split among different vehicles at the 2nd
level. For the 1st level, we consider that each satellite can be served by more than
one 1st-level vehicle, therefore the aggregated freight assigned to each satellite can
be split into two or more vehicles. Each 1st level vehicle can deliver the freight of
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one or several customers, as well as serve more than one satellite in the same route.
We consider only one product, i.e., the volumes of freight belonging to different
customers can be stored together and loaded into the same vehicle for both the 1st
and the 2nd-level movements. We define a route made up of a 1st-level vehicle
starting from the depot, serving one or more satellites, and ending up at the depot,
as 1st-level route. A 2nd-level route is made up of a 2nd-level vehicle starting from
a satellite, serving one or more customers, and ending up at the same satellite. The
fleet sizes are fixed and known in advance for both levels. All vehicles belonging
to the same level have the same capacity. Each vehicle may perform at most one
route. Satellites have limited capacity defined as the maximum number of vehicles
that can leave from it. Different satellites may have different capacities.

The literature on 2E-VRP is still somewhat limited. A general time-dependent
formulation with fleet synchronization and customer time windows has been in-
troduced in [5] in the context of two-echelon City Logistics systems. The authors
have indicated promising algorithmic directions, but no implementation has been
reported. A MIP formulation for the 2E-VRP has been presented in [16], with in-
stances with up to 32 customers solved to optimality. In the same paper, the authors
derived two math-heuristics able to address instances with up to 50 customers. Both
math-heuristics are based on the MIP model presented in the paper and work on the
customer-to-satellite assignment variables. The first math-euristic, called Diving,
considers a continuous relaxation of the model and applies a diving procedure to
the customer-to-satellite assignment variables that are not integer. A restarting pro-
cedure is incorporated to recover possible unfeasibilities due to variable fixing. The
second one is named Semi-continuous; in this method, the arc usage variables are
considered continuous, while the assignment variables are still considered integer.
The method solves this relaxed problem and uses the obtained values of the assign-
ment variables to build a feasible solution for the 2E-VRP. Several families of valid
inequalities have been proposed in [15]. The valid inequalities are integrated into a
Branch-and-Cut scheme, which is able to drastically reduce the optimality gap. A
multi-start heuristic has been presented in [3]. The method is based on a clustering
heuristic, which mainly works on the assignment between satellites and customers.
The heuristic is used by the authors to solve large-sized instances with up to 250
customers. In [2] the authors study the effect of different spatial distributions on the
total costs and a comparison with the standard CVRP solutions is given, while the
impact of realistic situations in urban freight delivery where the travel costs are af-
fected by components different from the distance, like fixed costs for using the arcs,
operational costs, and environmental costs can be found in [4].

A problem from the literature quite similar to the 2E-VRP is the Truck and Trailer
Routing Problem (TTRP), in which the use of trailers (a commonly neglected feature
in the VRP) is considered where customers are served by a truck pulling a trailer.
However, due to practical constraints, including government regulations, limited
manoeuvring space at customer sites, road conditions, etc., some customers may
only be serviced by a truck. These constraints exist in many practical situations.
This problem, as the 2E-VRP, involves two routing levels strictly interconnected.
The main difference with 2E-VRP is that, while in the 2E-VRP freight must pass
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through the satellites, because it must be delivered to the customer only by sec-
ond level vehicles, in the TTRP the delivery of certain customers can be directly
carried out by first level vehicles (truck and trailer) without passing through satel-
lites. In [19], the Single Truck and Trailer Routing Problem with Satellite Depots
(STTRPSD), a particular version of the TTRP, is introduced. In STTRPSD a vehicle
composed of a truck with a detachable trailer serves the demand of a set of cus-
tomers reachable only by the truck without the trailer. This accessibility constraint
implies the selection of locations to park the trailer before performing the trips to the
customers. This version of the problem is the most similar to the 2E-VRP while all
deliveries must be carried out by the same kind of vehicle (truck without the trailer),
even if, in this case, only one vehicle is considered, while in our problem several
vehicles could be used to fulfil the customers demands.

3 GRASP with Path Relinking

GRASP is a multistart meta-heuristic for combinatorial optimization [9]. It con-
sists of a constructive procedure based on a greedy randomized algorithm. In liter-
ature, this procedure is often combined with Local Search (see [6], [7], and [8] for
a detailed survey of the method and its applications). Path Relinking is an inten-
sification strategy that explores trajectories connecting high-quality solutions. Path
Relinking was suggested as an approach to integrate intensification and diversifi-
cation strategies in the context of tabu search [10, 11] and then extended to other
heuristic methods [18]. This approach generates new solutions by exploring trajec-
tories that connect high-quality solutions by starting from one of these solutions,
called the starting solution, and generating a path in the search space that leads to-
wards the other solution, called guiding solution. Laguna and Martı́ adapted Path
Relinking to the context of GRASP as a form of intensification [12]. The relinking
in this context consists of finding a path between a solution found with GRASP and
a chosen elite solution. Therefore, the relinking concept has a different interpreta-
tion within GRASP since the solutions found by two successive GRASP iterations
are not linked by a sequence of moves. See [17] for a survey and numerous examples
of GRASP with Path Relinking.

3.1 GRASP with Path Relinking for the 2E-VRP

The customer-to-satellite assignment problem plays a crucial role when addressing
the 2E-VRP. In fact, assuming one knows the optimal customer-to-satellite assign-
ments, the 2E-VRP can be partitioned into at most ns + 1 CVRP instances, where
ns is the number of satellites, one for the 1st-level and one for each satellite with
at least one customer assigned to it. Thus, following the math-euristics presented
in [16], and in the meta-heuristics in [3], we focus on the customer-to-satellite as-
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signment by searching for the optimal assignment, delegating state-of-the-art CVRP
methods to solve the corresponding subproblems. Both exact and heuristics methods
from the literature are suitable to this purpose. Using exact methods we would obtain
more precise results, while heuristics would require a more limited computational
effort. After preliminary tests, we decided to use the hybrid meta-heuristic proposed
in [14], which provides a good compromise between solution quality and compu-
tational time. Anyway, the effort required to evaluate the objective function, for a
given assignment, is considerable. Then, heuristic methods involving large neigh-
borhoods exploration are not suitable for the 2E-VRP, while procedures in which a
rule, that allows to identify promising solutions, is applied are strongly preferable.
In this work we propose a GRASP, which fits well with these requirements, com-
bined with a Path Relinking strategy. Furthermore, intensification is applied only on
promising GRASP solutions with a strong reduction of global computational time.

More precisely, The proposed method, GRASP-PR, consists of four main phases
which will be described in detail:

1. A GRASP procedure;
2. A Feasibility Search (FS) phase to be applied if the solution is unfeasible;
3. A Local Search (LS) phase to improve a solution;
4. A Path Relinking phase.

The innovative aspect of this method is neither in its single components, which
are well established in literature, nor in the meta-heuristic framework, but in the
way the different components are combined within the framework. More in details,
GRASP-PR works as follows. First of all an initial assignment is computed fol-
lowing the clustering constructive heuristic presented in [3] and the corresponding
solution is kept as current best solution. At each iteration, a new assignment is built
by means of the GRASP procedure, and the correspondent 2E-VRP solution is eval-
uated. If it is unfeasible, a repair procedure, named Feasibility Search, is applied. If
the solution is feasible and promising, i.e. it is better or within a threshold from the
current best, an intensification phase made by a local search and a path-relinking
heuristic is applied, otherwise it is discarded. A pseudocode of the algorithm is re-
ported in Algorithm 1.
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Algorithm 1 GRASP with Path Relinking
Compute an initial solution by means of the clustering constructive heuristic presented in [3];
while a maximum number of iterations IT ERMAX is not reached do

Compute a solution CS by means of the GRASP procedure
if CS is unfeasible then

Try to repair CS by means of the Feasibility Search (FS)
if CS is still unfeasible then

Discard CS
end if

end if
if CS is feasible or it has been successfully repaired by FS then

if CS cost is within a given threshold t from the best solution cost then
Apply the Local Search (LS)
Apply Path Relinking

else
Discard CS

end if
else

Discard CS
end if

end while

Note that the initial solution is computed in order to have a current feasible solu-
tion. It is considered as the current best solution at the first iteration of GRASP-PR
and used to determine if the solutions obtained by the GRASP procedure are promis-
ing or not, i.e. if Local Search and Path Relinking should be applied or not. In the
following subsections each component of the meta-heuristic framework is described
in detail.

3.2 GRASP

The GRASP procedure assigns customers to satellites. The core of the GRASP pro-
cedure is the clustering constructive heuristic presented in [3], where the customers
are assigned according to a less-distance-based rule. The assignment of customer i
to satellite l is made with probability pil

pil =
1− Dil

∑l∈Vs Dil

ns−1
, (1)

where Di j is the distance between customer i and satellite j. The rationale is to as-
sign customer i to satellite j with a probability inversely proportional to the distance
between them. The k assignments with the highest probability are considered and
one of them is randomly selected.

The algorithm is adaptive. Thus, if by assigning customer i to satellite j the satel-
lite capacity is exceeded, i.e., the number of vehicles required at the satellite is larger
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than the number of vehicles available for that satellite, or the global required number
of vehicles is larger than the fleet size, the correspondent assignment becomes for-
bidden by setting its probability to zero. In this way, at each step of the greedy algo-
rithm, previous choices are taken into account. When all customers are assigned to
satellites, the original problem can be split into several CVRP subproblems, which
are solved by means of the hybrid meta-heuristic in [14]. This procedure differs
from the greedy algorithm used in [3] to find an initial solution because, in GRASP,
the customer-to-satellite assignment is probabilistic, while in the greedy algorithm it
follows a deterministic rule assigning each customer to its nearest available satellite.
Notice that, the GRASP procedure does not include a local search phase to improve
the routes, as this optimization is delegated to the meta-heuristic used to solve the
CVRP subproblems.

3.3 Feasibility Search

The GRASP procedure does not guarantee the feasibility of the obtained solution,
because, even when the satellite capacity is satisfied, the global fleet size constraint
may be violated. When this happens, we try to rebuild a feasible solution by means
of the Feasibility Search (FS) procedure.

The FS does not imply a neighborhood exploration, it rather proceeds in a
straightforward customer-moving procedure, aiming to empty vehicles that are in
excess at some satellites. More in detail, customers are selected based on a distance
criterion maximizing their distance from the satellite. A selected customer is then
moved, from its assigned satellite (the one with the less filled vehicle) to another
randomly chosen satellite, in order to free the exceeding vehicle. These moves are
repeated until the global fleet size constraint is satisfied. If no move allows the fea-
sibility of the obtained solution, this solution is discarded.

3.4 Local Search

The Local Search phase is performed only if the solution obtained by GRASP or
GRASP and Feasibility Search is both feasible and promising, i.e., its cost is bet-
ter (or within a given threshold) than the cost of the best solution found so far. The
procedure adopted for the local search is based on the Clustering Improvement algo-
rithm presented in [1]. The neighborhood explored by the local search is composed
by all the solutions differing by exactly one customer-to-satellite assignment from
the ones of the current solution.

The order according to which the solutions in the neighborhood are analyzed is
given by an assignment list. Customers are sorted in non decreasing order of the
difference between the distance to the satellite to which they are assigned in the
solution, and the distance to the nearest not-assigned satellite. The choice of this
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sorting order is based on the observation that customers displaying smaller such dif-
ferences lead to improved solutions with a much higher frequency than the others.
The exploration follows a First Improvement criterion and terminates after LSmax
iterations or when the entire neighborhood has been explored without finding any
improvement to the best solution. Preliminary computational experiments shown
that this neighborhood exploration strategy is much more efficient than a standard
random one, and that following a First Improvement criterion obtained better re-
sults than a Best Improvement one. A pseudocode of this procedure is reported in
Algorithm 2.

Algorithm 2 Local search
Given the current solution, the customers are sorted by non-decreasing order of the reassignment
cost, defined as RCi = ci j− cik, where i is a customer, j is the satellite to which i is assigned in
the current solution, and k 6= j is the satellite such that, moving i from satellite j to satellite k,
the capacity constraints on the global second-level vehicle fleet and the satellite k are satisfied
and the cost cik is minimum among the satellites k 6= j. This is equivalent to order the customers
according to non-decreasing order of the estimation of the change in the solution quality due to
the assignment of one customer from the present satellite to its second-best choice. Let be CL
the ordered list of the customers.
repeat

Consider the first customer i in CL;
if k exists then

remove i from CL;
else

terminate the LS algorithm and return the best solution;
end if
Solve the CVRPs of satellites j and k;
Update the demand of each satellite according to the new assignment and solve the first-level
CVRP;
Compute the objective function of the new solution and compare it to the cost of the current
solution;
if the new solution is better then

Keep it as new current solution and exit from the neighborhood;
else

if the new solution has an objective function which is worse than a fixed percentage thresh-
old γ from the objective function of the current solution then

Terminate the LS algorithm and return the best solution;
else

Consider the next customer in the list
end if

end if
until CL is empty

Even if the neighborhood size is not so large, O(nc), where nc is the number of
customer, the computational time could grow up due to the need of recompute the
CVRPs after a change in the customer-satellite assignments. This is the rationale
of adding the additional heuristic stopping criterion when the reassignment has an
objective function which is significantly worse than the current solution, i.e. it is
larger of more than a given percentage threshold, γ , with respect to the current solu-
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tion. In fact, being the customers ordered by non-decreasing order of RCi and being
RCi related to the change in the objective function when we assign the customer to
another satellite, if the objective function of a neighbor is deteriorating too much, it
is unlikely that the following neighbors may bring us an improving solution.

3.5 Path Relinking

The Path Relinking phase consists of starting from the local optimum SLS obtained
by the Local Search procedure and “relinking” it to best solution Sb. The relinking is
performed in a backward way, from Sb towards SLS, inserting an element of SLS into
Sb at each step. More precisely, the Path Relinking procedure considers a customer
assigned to satellite s1 in SLS and to satellite s2 in Sb. It then assigns this customer to
satellite s2 in SLS, without changing the other assignments. If the new solution is un-
feasible, then the Feasibility Search is applied. If it is still unfeasible it is discarded.
The procedure terminates when SLS becomes equal to Sb. The order according to
which the customers are selected is given by a list in which customers are ordered
in non decreasing order of the difference of distances between the customer and the
satellites to which it is assigned in Sb and the customer and the satellites to which
it has been assigned in SLS. In this way we first analyze most promising moves, i.e.,
solutions characterized by a customer-satellite change minimizing its perturbation
to the solution. Preliminary tests have shown the effectiveness of this Path Relinking
strategy [13].

4 Computational Results

In this section, we present computational results and analyze the performance of the
method we propose. An analysis of the impact of each component of the algorithm
is reported and the results of GRASP-PR are compared with the literature.

Computational tests were effectuated on instances with 50 customers and 5 satel-
lites, introduced in [2]. The instances present different combinations of customer
distributions and types of satellite locations. Three customer distributions are con-
sidered representing a regional area, a large city, and a small town. Three types of
satellite locations are considered as well, namely, random around the customer area,
sliced around the customer area, and within part of the ring around the customer
area, the latter representing city settings with limited accessibility due to geograph-
ical constraints (e.g., near to natural barriers such as the sea, a lake, or a mountain).
Two instances were randomly generated for each combination of customer and satel-
lite distributions. Table 1 displays the list of instances and their layout characteris-
tics. Computational tests were performed on a computer with a Core 2 Duo proces-
sor at 2.5 GHz. The number of iterations, ITERMAX, and the maximum number
of local search iterations, LSmax, were fixed to 25 and 250, respectively. This values
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come out of a tuning phase. In Table 2 we report best and average (over 10 trials)
results obtained by the different steps of the methods. More in details the table is
organized as follows:

• Column 1: instance name;
• Column 2: results of GRASP and Feasibility Search (phases 1 and 2 of the algo-

rithm);
• Column 3: results of GRASP, Feasibility Search, and Local Search (phases 1, 2,

and 3);
• Column 4: results of the overall GRASP-PR, in which all phases are applied

(GRASP, Feasibility Search, Local Search, and Path Relinking);

A comparison with the literature is reported in Tables 3 and 4. More in detail,
objective function values are reported in Table 3 while the corresponding compu-
tational times, expressed in CPU seconds, are reported in Table 4. Both tables are
organized as follows:

• Column 1: instance name;
• Column 2: results of GRASP and Feasibility Search (phases 1 and 2 of the algo-

rithm);
• Column 3: results of GRASP, Feasibility Search, and Local Search (phases 1, 2,

and 3);
• Column 4: results of the overall GRASP-PR, in which all phases are applied

(GRASP, Feasibility Search, Local Search, and Path Relinking);
• Columns 5-7: results of Multi-Start heuristic (MS) proposed in [3], the math-

heuristics (MH) presented in [16], and the Branch-and-Cut (BC) proposed in
[15] with a time-limit of 10000 seconds (BC also yields, on average, the overall
best solutions in the literature).

Each row reports the values of a single instance, while the last two rows give the
mean values and the gaps with respect to the BC (in Table 3 only), respectively.

When compared to the results of the Multi-Start heuristic (Column MS), the
pure GRASP obtains comparable results, while the introduction of Local Search
yields a gain of more than 6%. The complete meta-heuristic GRASP-PR shows
an improvement of 8.7% with respect to MS and outperforms the best heuristic
results in the literature (MH) by 1.5%. This behavior confirms the trend reported
in the literature, which encourages the use of Path Relinking as an enhancement of
GRASP.

GRASP-PR achieves slightly worst results with respect to the exact solution
method BC, but this small loss in accuracy (1.89%) is highly compensated by a
significant reduction in computational effort of more than 2 orders of magnitude, as
shown in Table 4.
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Instances Customer Distribution Satellite Location
Instance50-s5-37.dat regional area random
Instance50-s5-38.dat regional area random
Instance50-s5-39.dat regional area sliced
Instance50-s5-40.dat regional area sliced
Instance50-s5-41.dat regional area limited accessibility
Instance50-s5-42.dat regional area limited accessibility
Instance50-s5-43.dat large city random
Instance50-s5-44.dat large city random
Instance50-s5-45.dat large city sliced
Instance50-s5-46.dat large city sliced
Instance50-s5-47.dat large city limited accessibility
Instance50-s5-48.dat large city limited accessibility
Instance50-s5-49.dat small town random
Instance50-s5-50.dat small town random
Instance50-s5-51.dat small town sliced
Instance50-s5-52.dat small town sliced
Instance50-s5-53.dat small town limited accessibility
Instance50-s5-54.dat small town limited accessibility

Table 1 Instance layout characteristics

INST GRASP GRASP+LS GRASP-PR
BEST AVG BEST AVG BEST AVG

Instance50-s5-37.dat 1599.86 1615.34 1586.23 1586.23 1545.99 1545.99
Instance50-s5-38.dat 1335.22 1335.22 1222.27 1222.27 1172.83 1172.83
Instance50-s5-39.dat 1657.27 1657.27 1580.19 1580.19 1535.28 1535.28
Instance50-s5-40.dat 1260.14 1409.40 1197.00 1197.00 1197.00 1197.00
Instance50-s5-41.dat 1817.17 1817.17 1687.96 1687.96 1687.96 1687.96
Instance50-s5-42.dat 1509.39 1509.39 1191.46 1191.46 1191.46 1191.46
Instance50-s5-43.dat 1607.28 1607.99 1603.56 1603.56 1593.06 1593.06
Instance50-s5-44.dat 1111.28 1111.28 1063.25 1063.25 1047.96 1047.96
Instance50-s5-45.dat 1801.99 1801.99 1480.32 1480.32 1480.32 1480.32
Instance50-s5-46.dat 1248.41 1248.41 1074.88 1074.88 1074.88 1074.88
Instance50-s5-47.dat 1807.40 1807.40 1786.17 1786.17 1683.13 1683.13
Instance50-s5-48.dat 1178.88 1188.8 1178.88 1178.88 1078.28 1078.28
Instance50-s5-49.dat 1697.96 1705.9 1539.89 1546.77 1500.39 1510.98
Instance50-s5-50.dat 1201.11 1201.11 1201.11 1201.11 1072.42 1072.42
Instance50-s5-51.dat 1590.00 1590.00 1535.18 1535.18 1435.83 1435.83
Instance50-s5-52.dat 1132.20 1132.20 1132.20 1132.20 1132.20 1132.20
Instance50-s5-53.dat 1599.09 1599.09 1598.66 1598.66 1598.66 1598.66
Instance50-s5-54.dat 1206.97 1304.97 1201.90 1201.90 1201.90 1201.90
MEAN 1464.53 1479.83 1381.17 1381.56 1346.09 1346.67

Table 2 Best and average results
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INST GRASP GRASP+LS GRASP-PR MS MH BC
Instance50-s5-37.dat 1599.86 1586.23 1545.99 1586.23 1587.95 1528.73
Instance50-s5-38.dat 1335.22 1222.27 1172.83 1340.49 1186.02 1187.39
Instance50-s5-39.dat 1657.27 1580.19 1535.28 1604.32 1525.24 1528.25
Instance50-s5-40.dat 1260.14 1197.00 1197.00 1387.28 1226.79 1179.64
Instance50-s5-41.dat 1817.17 1687.96 1687.96 1762.62 1726.04 1681.04
Instance50-s5-42.dat 1509.39 1191.46 1191.46 1559.39 1324.38 1232.87
Instance50-s5-43.dat 1607.28 1603.56 1593.06 1687.28 1453.11 1422.29
Instance50-s5-44.dat 1111.28 1063.25 1047.96 1227.26 1063.64 1061.25
Instance50-s5-45.dat 1801.99 1480.32 1480.32 1756.60 1497.91 1444.82
Instance50-s5-46.dat 1248.41 1074.88 1074.88 1148.31 1173.12 1068.50
Instance50-s5-47.dat 1807.40 1786.17 1683.13 1683.13 1620.7 1581.57
Instance50-s5-48.dat 1178.88 1178.88 1078.28 1319.96 1122.18 1092.32
Instance50-s5-49.dat 1697.96 1539.89 1500.39 1500.39 1508.87 1441.64
Instance50-s5-50.dat 1201.11 1201.11 1072.42 1131.65 1170.89 1089.67
Instance50-s5-51.dat 1590.00 1535.18 1435.83 1600.83 1456.12 1440.64
Instance50-s5-52.dat 1132.20 1132.20 1132.20 1145.54 1185.05 1109.52
Instance50-s5-53.dat 1599.09 1598.66 1598.66 1647.67 1569.59 1554.58
Instance50-s5-54.dat 1206.97 1201.90 1201.90 1201.90 1189.14 1135.39
MEAN 1464.53 1381.17 1346.09 1460.60 1365.93 1321.12
GAP 10.86% 4.55% 1.89% 10.56% 3.39%

Table 3 Comparison of objective function values

INST GRASP GRASP+LS GRASP-PR MS MH BC
Instance50-s5-37.dat 5 25 33 2 71 10000
Instance50-s5-38.dat 5 27 38 2 68 10000
Instance50-s5-39.dat 5 30 37 2 66 10000
Instance50-s5-40.dat 2 64 69 5 73 10000
Instance50-s5-41.dat 7 55 59 32 97 10000
Instance50-s5-42.dat 8 49 54 2 67 10000
Instance50-s5-43.dat 7 36 48 1 66 10000
Instance50-s5-44.dat 12 12 44 14 66 10000
Instance50-s5-45.dat 3 13 13 1 73 10000
Instance50-s5-46.dat 2 22 22 7 69 10000
Instance50-s5-47.dat 28 80 90 53 76 10000
Instance50-s5-48.dat 15 15 45 13 74 10000
Instance50-s5-49.dat 4 8 34 21 86 10000
Instance50-s5-50.dat 5 54 67 1 98 10000
Instance50-s5-51.dat 5 53 65 1 82 10000
Instance50-s5-52.dat 5 55 55 12 67 10000
Instance50-s5-53.dat 5 38 38 1 45 10000
Instance50-s5-54.dat 17 77 96 32 30 10000
MEAN 8 40 50 11 71 10000

Table 4 Comparison of computational times in CPU seconds

5 Conclusion

We presented GRASP-PR, a GRASP with Path Relinking meta-heuristic for the
2E-VRP, an extension of the classical vehicle routing problem, in which the deliv-
ery from a single depot to customers is managed by routing and consolidating the
freight through intermediate facilities. Computational tests show that the method
we propose outperforms the methods from the literature. Due to the good quality
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of the obtained solutions and the limited computational effort, GRASP-PR could be
adopted both for long term planning and on-demand optimization.
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