
 

Abstract— A field source reconstruction of the dipoles 
modeling the activated area of the brain, while a subject 
performs the task of the voluntary motion of the hand, is solved. 
Experimental data resulting from fMRI are used for constraining 
the position of the equivalent dipole. 

I. INTRODUCTION 

Magnetic Resonance Imaging (MRI) and functional 
Magnetic Resonance Imaging (fMRI) techniques have good 
spatial resolution, but poor time resolution, because the time 
required to scan the head is longer than the characteristic time 
of brain activation. Electroencephalographic (EEG) technique, 
on the contrary, has a good time resolution, but poor spatial 
resolution. A good idea is to couple these two techniques in 
order to identify, using a field model, the brain areas activated 
during a simple task performed by a person [1]. In particular, 
fMRI technique is useful for determining a priori the position 
of the source or constraining the source position; EEG 
technique gives information about the temporal evolution of 
the source. For this research fMRI and EEG data have been 
recorded, but only fMRI information is used for source 
reconstruction because the problem is supposed to be static. 

II. EXPERIMENTS 

For the sake of building the 3D model of the head, MR 
images have been acquired using a Philips Intera 1.5 Tesla 
Gyroscan scanner. A high resolution T1-weighted anatomical 
image was acquired in a sagittal orientation using a Fast Field 
Echo (FFE) sequence covering the whole brain with 160 
slices.  

In order to identify the brain area activated during the task, 
a fMRI study was performed. Functional data were acquired 
using a T2*-weighted echo-planar imaging sequences with a 
repetition time equal to 3 s. 

The task to be studied is a motor stimulus consisting of a 
repetitive flexion-extension of the five digits of the right hand 
carried out by the volunteer with a block design, where five 
period of activation were alternated with five period of rest.  
Statistical analysis was performed using SPM5 
(http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to 
the first one to correct for subject motion, spatially normalized 
according to the MNI stereotactic space and smoothed with a 
6 mm 3D Gaussian filter.  
Changes in Blood Oxygenation Level Dependent (BOLD) 
signal associated with the performance of the motor task were 
based on the application of the general linear model [2] voxel-
by-voxel. Significant contrast was assessed using t statistical 

parametric maps (SPMt). The activations were recorded below 
a threshold of P<0.05 corrected for multiple comparisons.  
Activations were projected into the normalized anatomical 
image.  

Greater activation was found in the primary motor cortex 
(Brodmann areas (BA) 3,4), the primary sensorimotor cortex 
(BA 6), in the anterior prefrontal (BA 10) and in the middle 
temporal gyrus (BA 41-42). The prefrontal area is involved in 
memory retrieval and executive function and it is probably 
active because of the attention paid by the volunteer in 
performing the task. The temporal area is involved in hearing 
processes; this is due to the noise inside the MR chamber. 
Among the three, the area related to the hand was taken into 
account for the identification problem in this paper. This area, 
belonging to the primary motor cortex and to the 
somatosensory cortex, is about 20 mm × 20 mm × 20 mm and 
is shown in Fig. 1. 

 
Fig. 1 – fMRI images: the area related to hand movement is highlighted; 

bottom-right: experimental setup for EEG. 
 
In order to assess the magnitude of scalp potential, EEG 

technique was applied to the same volunteer performing the 
task, outside the MRI chamber (see Fig. 1, bottom-right). 
Nineteen electrodes were positioned on the scalp using the 10-
20 system, one more electrode was put on the opponens 
pollicis muscle to record the electromyographic signal. The 
EEG signals were filtered with a band-pass filter in the range 
[0.5;1000] Hz. Because of the noise affecting signals, the 
registrations were repeated 200 times and the average is 
considered. This way one has the so called event-related 
potentials. 

The signals so recorded have a magnitude of µV. 
Analyzing the 2D potential map in the range of time [-200 
ms,+200 ms] with respect to the appearance of movement of 
the hand (initial point of the electromyographic signal) it is 
possible to note that two main areas are activated. One area is 
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related to the motor cortex, controlater to the hand moved, and 
the other is a frontal area, as shown in Fig. 2a and Fig. 2b, 
respectively. 

 
Fig. 2a – Evoked-related potential map about 100 ms before the appearance 

of hand movement; the potential scale is in µV. 

  
Fig. 2b – Evoked-related potential map about 20 ms after the appearance of 

hand movement; the potential scale is in µV. 
 
These results about the two areas, which are valid for the 

whole temporal range considered, are in agreement with the 
fMRI results. The third area (the temporal one) shown in fMRI 
does not seem to be active in these registration. This could be 
explained by the fact that the potential registrations were made 
outside the MRI chamber in a noiseless environment. 

III. FIELD ANALYSIS 

A three-dimensional model of the head of the person 
subject to experiments was built, as shown in Fig. 3. 

The head anatomy was reconstructed using semi-automatic 
procedures, starting from the images provided by MRI. The 
voxels of the model  have dimension 1.14 mm × 1.14 mm × 
1.5 mm: 1.6 106 nodes belong to the whole model. 

Seven different tissues are considered, namely grey matter, 
white matter, cerebrospinal fluid, muscle, bone, fat, skin. The 
electrical conductivity of these tissues is shown in Table I. 

 
Fig. 3 – 3D model of the head of the person under study  

(after MRI) 
 

TABLE I 
CONDUCTIVITY OF BIOLOGICAL TISSUES AT LOW 

FREQUENCIES 

Tissue Conductivity [Sm-1] 
Grey matter 0.33 
White matter 0.14 
Cerebrospinal fluid 1.54 
Muscle 0.1 
Bone 0.00625 
Fat 0.04 
Skin 0.43 

 
The sources of the conduction field are current dipoles 
representing the activated areas in the brain. Due to the slow 
variation of electric sources in the brain, the electric potential 
ϕ, to be recorded on the scalp, is governed by the electrostatic 
approximation of Maxwell’s equation: 
 

( ) SJ

⋅∇=ϕ∇σ⋅∇        (1) 

 
where σ is the electrical conductivity, and SJ


 is the dipole 

current density, which in general is a time-varying function.  
Neumann condition is applied to all surface nodes, while  the 
reference potential is set on the left earlobe.  
For solving problem (1) the cell method is used. The cell 
method implements an algebraic formulation of the field 
problem and associates potential to mesh nodes and current to 
mesh edges [3]. Problem (1) reads 
 

siD
~GMD~ =ϕσ           (2) 

 
with D~  the dual discrete divergence operator (volume-face 
incidence matrix equal to GT), σM  the conductance 
constitutive matrix, G  the discrete gradient operator (edge-
node incidence matrix) and is the edge current. The solution to 
problem (2) is 
 

s
1 iD~K−=ϕ            (3) 

 



 

with GMD~K σ= , stiffness matrix, factorized in a suitable 
way. 
Because in this problem the point of interest for potential 
calculation is only the position of the EEG electrodes, it is 
convenient to restrict the calculation to the subset of those 
surface electrodes. This can be done by means of a projection 
matrix P 
 

 ϕ=ϕ Pˆ              (4) 
 

The a priori knowledge on the position of the sources coming 
from fMRI results can be taken into account by means of an 
interpolation matrix Q such that 
 

Qiis =         (5) 
 

The problem now reads: 
 

iLiQGPKˆ T1 ==ϕ −           (6) 
 

The L matrix is the so-called lead field matrix, which maps the 
source vector to scalp potential in selected points. The 
advantage of using this matrix for solving the problem is the 
reduction in computational cost. 

IV. INVERSE PROBLEM 

The inverse problem reads as follows: knowing the head 
anatomy of the person subject to MRI, the electromagnetic 
properties of the biological tissues, the position of the 
activated area (from fMRI) and the electrical activity on the 
scalp, identify the orientation and the magnitude of the 
equivalent dipole which models the area activated during the 
task.  

The electrical activity on the scalp is calculated 
numerically a priori and it is hereinafter called benchmark 
solution. Two different cases for benchmark solutions have 
been considered:  

1) one dipole positioned in the center of the activated 
area 
2) two dipoles positioned inside the activated area  

 
Fig. 4 – Potential map given by one dipole set in the activated area and 

calculated by means of the cell method. 

The activated area is built according to the information 
given by fMRI and shown in Fig. 1. The benchmark solution 
(case 1) is shown in Fig. 4 

From the computational viewpoint, the solution of the 
inverse problem is based on the minimization of a suitable 
functional; to this end two different approaches are used. 

The first approach defines the functional to be minimized 
as the error between computed and benchmark potential in the 
scalp positions corresponding to the EEG electrodes. Hence, 
the problem reads: find the set x of variables characterizing 
the source dipole, which minimizes the error functional 
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where ϕ̂  is the benchmark solution, ϕ(x) is the computed 
solution and n the number of points in which the field is 
evaluated (n=19, which are the electrode positions). 

Because each dipole is characterized by 6 parameters (3 
for the position and 3 for the magnitude), but the position is 
supposed to be known from fMRI, in case 1 only 3 variables 
have to be identified; in case 2 the variables to be identified 
are 6, i.e. 3 for each dipole. 

The error minimization is driven by a stochastic algorithm, 
because this kind of problem is known to have many local 
minima. In particular, a 1+1 evolution strategy called ESTRA 
(from one parent an offspring is generated and the fittest 
individual between parent and offspring is selected) is used. 
ESTRA was successfully used in [4], where the reconstruction 
of a single dipole source was solved considering an analytical 
model of the head. 

The unknowns of the second approach are current values ik 
(continuous) and binary values kδ for each edge k. Variable 

kδ  defines the on/off status of the k-th edge current ik. In the 
actual example the number of possible active edges is about 
3000, which are the edges of the region identified by means of 
fMRI analysis. 

The algorithm should minimize the number of sources of a 
specified potential map [5], generalized here for arbitrary 
oriented dipoles. This can be formulated as a linear 
combination of the binary variables: 

 

∑δ
k

kmin             (8) 

This is a Mixed Integer Linear Programming (MILP) 
problem, subject to the following constraints. 
A first set of inequality constraints is the relation between 
continuous and binary variables in each edge: 
 

kmaxkkmax IiI δ≤≤δ−        (9) 
The reconstruction of electrode potentials can be imposed as 
an equality constraint: 
 

ϕ= ˆLi               (10) 



 

 
It is useful to relax this constraint, since recorded scalp 
potential are affected by measurement uncertainties. To be less 
prone to noise on scalp potentials, (10) is reformulated as an 
inequality constraint: 
 

ϕα+≤≤ϕα− ˆ)1(Liˆ)1(        (11) 
 
where 0>α   is an estimation of measurement uncertainties. 
When 0ˆ <ϕ  the inequality sign of (11) must be reversed. 
In this work for solving problem (8) a commercial code that 
implements branch-and-cut technique [6] is adopted. 
Hence, in ESTRA approach the fMRI results are used to 
localize the source of the problem and magnitude and 
orientation have to be identified, while in MILP approach 
fMRI results are used to constrain the solution, i.e. they give 
boundaries for the variables to be identified. 

V. RESULTS 

All the optimization problems are solved considering different 
situations: no noise, white noise of 5%, 10% and 15% in 
magnitude with respect to signal. 
The starting point is x0=[0.5 0.5 0.5] for case 1 and x0=[0.5 0.5 
0.5 0.5 0.5 0.5] for case 2. The variation range for each 
variable is [-1;1] Am. The results obtained applying ESTRA 
to case 1 and case 2 are shown in Table II and Table III, 
respectively. To better show the goodness of the solution, a 
relative error εx(x) on the reconstructed solution is introduced: 

2

2
x x̂m

x̂x
)x(

−
=ε          (12) 

where x̂  is the set of parameters of the benchmark solution 
dipole and  m = dim( x̂ ). 

 TABLE II 
RESULTS OBTAINED WITH ESTRA – CASE 1 

 ε(x) εx(x) Iterations 
No noise 4.393 10-6 2.93 10-5 461 
Noise 5% 1.13 10-3 9.66 10-3 611 
Noise 10% 2.04 10-3 8.96 10-3 611 
Noise 15% 3.28 10-3 3.31 10-2 415 

TABLE III 
RESULTS OBTAINED WITH ESTRA – CASE 2 

 ε(x) εx(x) Iterations 
No noise 8.896 10-4 6.7 10-2 20981 
Noise 5% 8.616 10-4 3.2 10-2 7357 
Noise 10% 1.519 10-3 1.2 10-1 6607 
Noise 15% 1.907 10-3 1.3 10-1 5643 

 
Many other runs of the optimization problem were made 
considering different dipole strength and orientation; the order 
of magnitude of the error functional ε(x) found, confirmed 
always the results above. 
Applying the MILP method for case 1, the number of dipole 
found was correctly one. In particular the results found by 
adding noise are shown in Table IV. 

TABLE IV 
RESULTS OBTAINED WITH MILP – CASE 1 

 ε(x) εx(x) Elapsed time [s] 

No noise 1.64 10-8 2.29 10-7 87.6 
Noise 5% 8.11 10-4 4.20 10-3 152.9 
Noise 10% 3.22 10-3 1.16 10-1 5.5 
Noise 15% 1.38 10-3 1.05 10-1 3.7 

 
Also for case 2, MILP was able to find two sources and results 
are shown in Table V. 

TABLE V 
RESULTS OBTAINED WITH MILP – CASE 2 

 ε(x) εx(x) Elapsed time [s] 
No noise 6.74 10-6 3.89 10-5 965.0 
Noise 5% 2.43  10-3 9.17 10-2 104.0 
Noise 10% 5.42 10-3 7.13 10-2 112.0 
Noise 15% 4.12 10-3 8.12 10-2 31.0 

 
MILP run on a 2 quad-core Intel Xeon E5440, 2.83 GHz – 32 
GB RAM, while ESTRA run on a Pentium 4, 3 GHz – 2GB 
RAM and it takes about 0.15 s for 100 iterations. 
The precision gained with MILP is comparable with that 
obtained with ESTRA. Moreover, MILP method was able to 
find the right location of the sources in all problems, while in 
ESTRA the position was set a priori by fMRI. 

VI. CONCLUSION 
A preliminary work for the identification of electrical brain 
activity during hand movement has been presented. Two 
different numerical techniques using experimental data, 
mainly from MRI and fMRI, were employed. The 
performances of the two methods seem to be comparable in 
terms of precision gained. 
In future works the challenge will be solving the problem 
taking into account the whole time window in which the task 
is done. For this purpose EEG data will be used together with 
MRI and fMRI data. 
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