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a b s t r a c t

Diamagnetic levitation principle opens to promising solutions for innovative powerless and low stiffness suspension applicable to many technological 
fields. The peculiarities of diamagnetic suspen-sion make this design solution very attractive for some applications such as microdevices and energy 
harvesters. Low stiffness and powerless functioning are the most appreciable characteristics of this kind of suspension, despite their force–displacement 
curve is generally hard to predict and strongly nonlinear. The modeling complexity resides in the preliminary prediction of magnetic field distribution 
and in the calculation of diamagnetic forces as function of the levitation height. This work introduces a modeling approach for calculating the levitation 
height of a parameterized diamagnetic suspension composed of a ground of permanent magnets and a levitating mass made of pyrolytic graphite. The 
numerical discretization approach is used and the predicted values are compared with experiments providing good agreement between results.

1. Introduction

Magnetic levitation has been investigated as valuable design 
approach for the suspension of mechanical systems in various 
dimensional scales in alternative to the traditional elastic linear 
and nonlinear springs. Basically, the most relevant benefits 
provided by levitated suspension to the system dynamic response 
are due to their intrinsic low stiffness; additionally, their simple 
structure assures high reliability and long lifetime. More specifi-
cally, diamagnetic levitated suspension can operate without 
external power supply with significant advantages for the ener-
getic efficiency improvement. Active magnetic levitation is typi-
cally applied to maglev transports and is operated through 
electromagnets; this solution, based on magnetic fields induced by 
the electric power supply, has its main drawback in the significant 
energy consumption. The alternative to active levita-tion is 
represented by passive levitated suspension, which can be divided 
in two typologies: the first type is based on the repulsive force 
between magnets and, usually, is simply composed by one 
permanent magnet attached to the frame and another one work-
ing as oscillating proof mass owing to the repulsive force. The 
polarity orientation of magnets allows generating the repulsive 
force between the facing sides; Mann and Sims [1] provide an

example of this kind of levitated system. The second typology of 
levitated suspension, namely ‘diamagnetic suspension’, is based on 
the repulsive force generated inside diamagnetic materials. When 
surrounded by an external magnetic field, diamagnetic materials 
can generate a weak field that opposes the external one; if the 
configuration is properly studied, the magnetic repulsive force 
acting between the magnetic and the diamagnetic poles of the 
suspension may balance the gravity force and produce levitation 
[2,3]. Permanent magnets are generally used to gen-erate the 
external magnetic field; they are organized to form arrays or 
matrices of magnets and their polarity is properly oriented to 
maximize the diamagnetic force. Alternative strate-gies have been 
explored, for instance by using high-temperature superconductors 
to increase the levitation force [4] or with compact high field force 
magnets [5].

Traditional mechanical suspension systems are characterized 
by deformable elements that are able to store elastic potential 
energy when bended and then return almost the same amount of 
energy, except for small dissipations, when restoring the original 
shape; generally, their force–displacement characteristics are 
linear only for small travels and exhibit strong nonlinearities for 
long travels. The benefits of diamagnetic suspension compared to 
mechanical suspension are very significant, especially considering 
some applications (such as energy harvesting, inertial sensing, 
micromanipulation, bioengineering, etc.): their stiffness is some 
orders of magnitude lower, the energetic efficiency is comparable 
(but extremely higher than that of active magnetic suspension),
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and their dimensions are sensitively smaller. The missing of 
deformable structural connections prevents some serious pro-
blems, such as the energy dissipation inside the material (e.g. 
thermoelastic damping), the energy dissipation with the sur-
rounding fluid caused by viscous friction, and the mechanical 
fatigue effect, that reduces considerably the lifetime of mechan-
ical parts when subjected to alternate loads [6].

Even though diamagnetism is a well-known physical property 
of materials and diamagnetic levitation has been deeply studied in 
the past [7–11], the application of this effect to practical devices 
and systems is still not mature. In the next years, the development 
of new fields such as micro- and nano-technology will offer the 
opportunity to exploit more in deep the properties of diamagnetic 
levitation and the benefits deriving from the integration of 
diamagnetic levitated components in real systems.

Several theoretical and empirical models of levitated systems 
have been described in the literature to explain and predict the 
static and dynamic behavior of the magnetic coupling associated 
to specific components with defined shape and dimensions. Simon 
et al. [12] discussed the equilibrium limits of a spinning rotor 
levitating on an annular magnet depending on its rotational 
velocity. The same authors in [13] found that the introduction of a 
diamagnetic material in some particular locations of magnet–
magnet levitating systems allows stable equilibrium without 
external energy input, although this condition is generally pro-
hibited by the Earnshaw theorem of levitation [7]. Cansiz and Hull 
[14] investigated the use of diamagnetic materials in magnetic 
bearings to study their characteristics in the static and in the 
dynamic behavior and their load-carrying capacity; in the paper is 
experimentally investigated a NdFeB disk-shaped rotor levitating 
over a ferrite magnet with a diamagnetic stabilizer in a vacuum 
chamber. The results show the rotational energy losses due to 
eddy currents and frequency of bearing rotation.

According to Earnshaw’s theorem the equilibrium of forces 
acting on a ferromagnetic or paramagnetic body is not stable in a 
static magnetic field. A stable levitation can be achieved using a 
levitated body made of a magnetic material [15] having a relative 
permeability locally less than one; diamagnetic and supercon-
ducting materials can be used for this purpose. Diamagnetic 
materials present a value of magnetic permeability that differs 
only slightly from unity so with these materials the attained 
levitated load is very small compared to superconductors, which 
have practically zero permeability. Even though the levitation 
capacity is greater than that of the diamagnetic materials, the 
cooling cost, hysteresis and maintenance decrease the practical 
usefulness of superconductive bearings. This is the reason why the 
diamagnetic materials with no hysteresis can be used to create a 
stabilizer in the magnetic bearings if the application requires 
rather small loads.

Other studies investigated the dissipations occurring in dia-
magnetic suspension due to eddy currents [16]; this effect may 
have relevant influence on the suspension dynamics, in particular 
on its quality factor and on the response to impulsive excitations. 
Analytic compact models and numerical models based on the 
finite elements method (FEM) have been introduced to predict the 
static levitation height of the suspension starting from the 
magnetic field distribution and the discretization of the diamag-
netic force induced in the levitating mass [18,19].

Also Chen et al. [17] investigated the eddy-current effect on the 
performance of diamagnetic bearings. Eddy current could be 
induced in the diamagnetic bearing with viscous forces opposing 
the relative motion between the rotor and the stator. Such 
damping mechanism was analyzed with a thin-sheet model and 
the image method and compared with that due to aerodynamic 
effects so as to give an idea of its significance at the microscale. 
The obtained results indicated that, due to its rotating nature,

eddy current has a destabilizing effect on the diamagnetic bearing 
which is operated in the supercritical range, whereas for opera-
tion in the subcritical region, it provides a simple and effective 
damping mechanism.

Some examples of devices and prototypes with embedded 
magnetic levitating components were effectively described. The 
acceleration sensor introduced by Barrot et al. in [20] is based on a 
force-feedback sensing concept that exploits the optical detec-tion 
of a levitated inertial mass, providing high accuracy and sensitivity 
to the measurements. Instead, the accelerometer described by 
Garmire et al. in [21] is based on the micro electro-mechanical 
systems (MEMS) technology and includes a miniatur-ized proof 
mass made with a diamagnetic material that is suspended on a 
magnetic ground; the acceleration measurement is provided again 
by an optical detection of the mass motion. Sometimes, MEMS 
accelerometers include special finger-shaped features, namely 
‘comb drives’, used to detect the mass motion via their capacitance 
variation; the electrostatic interactions between comb drives may 
induce the magnetic levitation of the structure, offering the 
opportunity to control its position in static and dynamic 
conditions thanks to this particular magnetic micro-suspension 
[22,23]. Li et al. [24] efficiently applied a magnetic levitated 
suspension system to an atomic force microscope for the 
calibration of the lateral force. A diamagnetic rotor suspension was 
developed in [25] and in [26] for optical devices positioning 
purposes.

Differently from the previous studies, this work does not 
focuses on a specific device but introduces a general modeling 
approach to predict the behavior of diamagnetically levitated 
suspension [27]. A very basic layout of the suspension is con-
sidered and the calculation predictions are supported by experi-
mental validation tests. The behavioral prediction of simple 
structures and their characterization by experiments permit to 
setup the design parameters of more complicated solutions to suit 
every specific application. This statement led to consider the 
particular typology of samples used in this work, instead of more 
complicated specimens addressed to more specific fields of 
application. After the preliminary analysis of the theoretical 
background of magnetic levitation, the numerical discretization of 
the suspension is presented with the goal to predict its static 
properties, i.e. levitation height and stiffness. The diamagnetic 
force acting on the levitating part is calculated by means of the 
finite elements approach. The suspension is defined through the 
parameterization of its geometrical dimensions, according to the 
approach already used in the literature [19,28,29] in order to 
derive size-dependent properties of the suspension.

2. Theoretical background

!

!

This section reports the basic physical relations and interac-
tions between the external magnetic field ( H ) and diamagnetic 
materials. The magnetic behavior of diamagnetic materials 
depends on its orbital magnetization: when an external magnetic 
field influences a diamagnetic material, the electrons of its atoms 
react to the field by orbiting in such a way as to create an opposite 
magnetic field. The magnetization of an elementary volume DV of 
material is defined by the magnetic dipole per unit volume (M ) 
that is also called induced magnetization; for some materials such 
as permanent magnets, it persists even if the external magnetic 
field is removed.

!
In diamagnetic materials, M depends on the external magnetic 

field and on the magnetic susceptibility (w) of the material. The 
magnetic susceptibility of anisotropic materials varies depending 
on the directions; for example, the pyrolytic graphite used in the
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next part of the work for the experimental characterization of
diamagnetic suspension has anisotropic properties.

The induced magnetization is related to the magnetic flux
density ( B

!
) by the equation

M
!
ffiw B

!

m0

 !
ð1Þ

where m0 is the magnetic permeability of vacuum (4p�10�7 N/
A2) and the magnetic flux density, also known as induced
magnetic field, is a vectorial quantity that can be linked to the
external magnetic field using the following equation:

B
!
¼ m0ð1þwÞH

!
¼ m0mr H

!
ð2Þ

mr ¼ ð1þwÞ is the relative magnetic permeability and m¼ m0mr

is the magnetic permeability; they are both dependent on the
direction considered for anisotropic materials.

Thanks to their properties, diamagnetic materials are able to
generate a weak opposite field when inserted into an external
magnetic one; therefore, in particular conditions, the magnetic
force acting on the diamagnetic mass may balance the gravity
force and produce levitation.

Diamagnetic materials are characterized by very small nega-

tive w (that means mr slightly smaller than 1). Exploiting this fact 
and their anisotropy, Eq. (1) can be rewritten as follows:

M
-
¼

1

m0

� �
U wxUBxU i

-
þwyUByU j

-
þwzUBzUk

-
� �

ð1aÞ

The total potential energy of a unit volume of diamagnetic
material immersed in the field with magnetic flux density B

!
is

W ¼�
X

DV
M
!

i

� �
U B
!

ð3Þ

and the elementary diamagnetic force acting on the unit volume
can be calculated as

f
!

m ¼�rðWÞ ¼rðM
!

U B
!
Þ¼M
!

Urð B
!
Þ ð4Þ

From the combination of Eqs. (1a) and (4), the expression of the 
force per unit volume becomes finally

f
!

m ¼
1

2Um0

Ur wxUB2
xþwyUB2

yþwzUB2
z

� �
ð5Þ

The total magnetic force acting on the diamagnetic proof mass
can be obtained by integrating the unit force on the entire
volume:

F
!

m ¼

Z
V

f
!

mUdV ð6Þ

The vertical component of the magnetic force that opposes to
the gravity one and produces levitation is given by

Fm,z ¼

Z
V

dðf mÞ

dz
UdV ¼

Z
V

1

2m0

dðwxB2
xþwyB2

yþwzB2
z Þ

dz
UdV ð7Þ

3. Description of the suspension

The magnetic suspension is composed of a magnetic ground 
and a levitating proof mass, as represented in Fig. 1. The ground is 
composed of four permanent magnets oriented in the so-called ‘2D 
opposite’ configuration according to [18] meaning that magnets 
along the diagonal have the same polarization. Multiple layers of 
permanent magnets (e.g. we used two layers of NdFeB magnets) 
with the same polarization can be added to increase the field 
intensity. The geometrical dimensions and material proper-ties of 
the magnets used to fabricate the suspension prototype are listed 
in Table 1 [30]. The levitating part of the suspension is

obtained with a square pyrolytic graphite proof mass with the 
properties listed in Table 2.

4. Finite elements model

The finite elements modeling starts from the discretized
distribution of the magnetic field that was previously calculated
with the commercial software Ansys. The magnetic field intensity
calculated at a specific height is then used to compute the
magnetic force induced in the diamagnetic material; this is
possible through the numerical modeling of the proof mass
according to the procedure proposed in this study. Firstly, the
diamagnetic force acting on the graphite is calculated at an
arbitrary levitation height of the proof mass; then the levitation
coordinate is varied iteratively till when the equilibrium between
magnetic force and gravity force is verified.

4.1. Magnetic field distribution

The distribution of the magnetic field generated by the perma-
nent magnets is calculated by means of a 3D FEM simulation using
the commercial tool Ansys 12.0. The elements solid96 are used to
model the magnets and the above air blocks; the mesh size is set to
0.5 mm and the coercive force (i.e. the measure of the magnetiza-
tion as expressed by the external magnetic field strength necessary
to demagnetize it) of NdFeB magnets Hc¼7900 kA/m simulates
the opposite polarization. In the surrounding region, the magnetic

zL

t’

t

w

y

o

xO
z

x l

Fig. 1. Geometrical parameterized dimensions of the diamagnetic suspension.

Table 1
Geometrical dimensions and material properties of NdFeB permanent magnets.

Description Symbol Value Unit

Side length w 20 mm

Thickness t0 3 mm

Number of layers N 2 –

Coercive force Hc 860C995 kA/m

Relative permeability mr 1.05 –

Maximum working temperature Tmax 80 1C

Table 2
Geometrical dimensions and material properties [27] of the pyrolytic graphite

levitating mass.

Description Symbol Value Unit

Side length l 9-10-11-12-13-14 mm

Thickness t 1 mm

Density r 2200 kg/m3

Hor. susceptibility wx,y �85�10�6 –

Vert. susceptibility wz �450�10�6 –
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! !

relative permeability of air (mr¼1) is imposed. The first magnetiza-

tion curve describing the relation between the magnetic flux density 
B and the magnetic field H has been obtained from the properties of 
the NdFeB material and imposed as a constraint in the elements 
simulating the magnets. The first magnetization curve is reported in 
Fig. 2.

Fig. 3 shows the values of the external magnetic field, arbi-
trarily taken at the vertical position z¼� 6 mm (see the reference 
system reported in Fig. 1), obtained in our FEM simulations 
varying the mesh size; there is not an evident variation of the 
external magnetic field decreasing the mesh size below 0.5 mm so 
increasing the number of the elements, while the computational 
time changes a lot. As a consequence the 0.5 mm mesh (E105 

elements) was considered as a good compromise to be used in the 
FEM simulations.

The numerical model used to calculate the magnetic field
distribution only includes the magnets and the surrounding air;
theoretically, the presence of the diamagnetic material in the

space region above the magnets may influence the magnetic field 
distribution due to its permeability. However, considering that the 
diamagnetic permeability of the graphite is very close to that of air 
(mr¼1) the missing of the levitating mass in the simulation does 
not introduce appreciable errors in the estimation of the magnetic 
field distribution. The FEM model including permanent magnets 
and the above air is represented in Fig. 4; the calculation results in 
terms of magnetic field components distribution are reported in 
Fig. 5. The values of the magnetic field distribution are in good 
agreement with the experimental measurements reported in [31].

4.2. Levitating mass modeling

The diamagnetic mass is discretized by dividing its volume in 
small elements. Due to the geometrical symmetry of the suspen-
sion, only one-half proof mass is considered, that is represented 
by a triangular shell with thickness t as reported in Fig. 6a. This 
half part of the proof mass is discretized in some portions (see 
Fig. 6a) and every portion, having a height equal to the double of 
the mesh size, is then divided in several elements, as it is reported 
in Fig. 6b.

Every portion of the proof mass represented in Fig. 6a i s 
identified by its central plane, represented with dashed lines and 
identified by numbers from 1 to 10. Fig. 6b reports one of the 
portions split up into elements; three rows of nodes are then 
positioned on the central plane of every mass portion, as reported in 
Fig. 6c. This discretizing strategy allows defining some cubic 
elements in every mass portion. The elements include one node at 
the center and two nodes on the upper and lower sides. The 
described distribution of nodes is suitable for the application of the 
finite difference method to calculate the diamagnetic force acting 
on each element, as described in the following. The same mesh size 
used for the modeling of magnetic field distribution (0.5 mm) is 
adopted in the levitating mass discretization.

4.3. Analysis of magnetic field symmetries

The hypothesis of symmetry at the basis of the finite element
model of the suspension must be verified by analyzing the
distribution of the magnetic field components in the region above
magnets in addition to the symmetry of the geometry. The three
components of H, calculated with the commercial software in
the nodes corresponding to the arbitrarily chosen coordinate

Fig. 2. First magnetization curve of the sinterized NdFeB permanent magnets.

Fig. 3. Convergence graph (continuous line) and corresponding interpolation

curve (dashed line) used to verify the mesh size selection for the calculus of the

external magnetic field in the FEM simulation.

Fig. 4. Upside-down FEM model showing the 2D opposite configuration of the

magnets and the above air region (red). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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z¼1 mm, are reported in Fig. 7 as an example. The results show 
that, due to the opposite configuration of permanent magnets, the 
distributions of Hx and Hy are simply rotated by a 901 angle. 
Instead, the distribution of Hz is equal in both x and y directions. 
These simple considerations lead to define the following 
symmetries of the magnetic field distribution in this

typology of suspension:

HxðxÞ ¼HyðyÞ-H2
x ðxÞ ¼H2

y ðyÞ

HxðyÞ ¼HyðxÞ-H2
x ðyÞ ¼H2

y ðxÞ

H2
z ðxÞ ¼H2

z ðyÞ ð8Þ

Fig. 5. Magnetic field distribution in horizontal directions (a, b) and vertical direction (c).

y

x

Fm,z,(i+1)Fm,z,(i) Fm,z,(i+2)Fm,z,(i-1)Fm,z,(i-2)

z

x LATERAL 
VIEW

TOP 
VIEW

Fig. 6. Discretization approach of the diamagnetic proof mass: only half volume is considered for the symmetry of the suspension. Firstly, the mass is divided in several portions,

each one identified by the central plane represented by the dashed lines in the top view (a). The elements have cubic shape except those at the end of each portion, which have

trapezoidal shape (b). Every portion includes three rows of nodes situated on the symmetry plane visible in the top view (c). The nodes of the FEM model correspond to the center

point of each cubic element shown in the top view; here the external magnetic field calculated by the FEM simulation is imposed for evaluating the magnetic force.
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According to Eqs. (7) and (8), the vertical magnetic force Fm,z 

varies in x and y directions with the following proportionality:

Fm,z xð Þp
d

dz
wxB2

x xð ÞþwyB2
y xð ÞþwzB2

z xð Þ
h i

ð9Þ

Fm,z yð Þp
d

dz
wxB2

x yð ÞþwyB2
y yð ÞþwzB2

z yð Þ
h i

ð10Þ

! !
The relation between H and B expressed by Eq. (2) indicates 

that the same symmetrical properties are also verified in its 
discretized volume. Considering that the magnetic susceptibility

has the same value along the two horizontal directions (i.e.,
wx ¼ wy), it is

Fm,z xð Þ ¼ Fm,z yð Þ ð11Þ

Due to the symmetries of the magnetic field and magnetic flux 
density, the levitating force can be effectively calculated on the half 
portion of the graphite mass as described in Section 4.2. I n  Fig. 7c 
the vertical component of the magnetic field distribution shows a 
magnetic potential well whose shape gives important information 
about the levitation stability. The position of the diamagnetic 
sample with respect to the potential makes it
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Fig. 7. Magnetic field distribution calculated by FEM software at the height z¼1 mm.
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possible to understand if the equilibrium is stable or not; the 
pyrolytic graphite mass, levitating over a layer of permanent 
magnets, is stable whenever its borders are aligned to the ones of 
a space portion having a magnetic potential with an upwards 
concavity as in case of Fig. 7c; this alignment is possible thanks to 
the natural 45 degrees orientation of the pyrolytic plate.

4.4. Levitating height prediction

The nodes of the mesh identifying the diamagnetic levitating 
mass have been defined with the approach described before for 
the volume discretization. With reference to the central plane of 
each mass portion (Fig. 6a), the coordinates of the nodes reported 
in Table 3 can be calculated.

For example, the central plane 4 includes three rows of nodes
with 27 nodes each; the x coordinates are spaced by a value
corresponding to the mesh size (0.5 mm).

The diamagnetic force acting on the proof mass is given by 
Eq. (7) in case of continuum domains. The same equation can be 
used to run the numerical model with the meshing strategy 
previously described; in this case, arbitrarily calling gn the expression

wxUB2
x þwyUB2

y þwzUB2
z , its derivative with respect to the vertical 

direction can be calculated by means of the centered finite difference 
method (see Fig. 8) and is given by the following equation:

dgn i,j,kð Þ

dz
¼

gn i,j,kþ1ð Þ�gn i,j,k�1ð Þ

2Dz
ð12Þ

where i, j, k are the direction vectors for x, y, z axes respectively and
Dz is the mesh size in z direction.

According to Eqs. (7) and (12), the magnetic force acting on the
levitating mass is given by

Fm,z ¼ 2
1

2m0

X
j

Xn�1ð Þ=2

i ¼ 1

X
k

gn i,j,kþ1ð Þ�gn i,j,k�1ð Þ

2Dz
Vi

� �( )
ð13Þ

The magnetic forces acting on the nodes are represented in Fig. 
6c. The symbol Vi refers to the volume of the elements centered in 
the node i,k of the portion j. In case of cubic elements, it is Vi ¼ Vi, 
instead the first and the last volumes of the portion have 
trapezoidal shape and their volume is Vi ¼ Vout (see Table 4 for a 
better explanation of the volumes). The coefficient 2 at the 
beginning of Eq. (13) is due to the initial symmetry hypothesis.

5. Experimental setup

Some prototypes of the suspension have been fabricated and 
used to validate the results predicted by the numerical model in 
the static field through experimental measurements. The mag-
netic ground of the suspension is obtained with rare-earth 
permanent magnets made of sintered NdFeB, characterized by 
high values of magnetization. The magnets have been previously 
treated with NiCuNi surface coating to prevent corrosion. The 
geometrical dimensions and material properties of the magnets 
used in the prototypes are listed in Table 1 [30]. The properties of 
the levitating graphite proof mass are listed in Table 2. Some 
dimensional parameters are varied through the prototypes in 
order to characterize different configurations of the suspension. 
Fig. 9 shows a lateral view of one of the samples.

The layers of permanent magnets can be increased in number
to enhance the magnetic field and to allow levitating heavier
proof masses; the geometry of the suspension is defined through
some independent parameters that can be varied to modify its
static configuration and properties. The levitation height and the
suspension stability (i.e. the propensity to keep the proof mass
centered in the xy plane) are strongly dependent to the relative
size of permanent magnets and levitating mass. It was observed
that weak magnetic fields reduce the stability, as well as heavy
proof masses.

The instrumentation used to characterize the suspension 
includes a DC voltage generator and two LK-G82 KEYENCE laser 
sensors (50 kHz sampling frequency, 0.2 mm70.05% accuracy) 
with a LK-G signal controller. The measurements have been 
conducted on a seismic table to reduce the effects of external noise 
on the experimental results. A metallic supporting frame is used to 
align and hold the instruments. The laser sensors (see Fig. 10) are 
supplied by the DC voltage generator and are used to measure the 
static configuration of the suspension. The measured data are sent 
to a signal controller and then to a PC for the post-processing.

The experimental setup was conceived to study the static and
the dynamic behavior of the suspension, as well as its stiffness,
only in the vertical direction. This configuration is suitable for
single degree of freedom devices where the mass motion is
guided by lateral constraints and limited by mechanical dimples.
Then, lateral motion and lateral suspension stiffness, which
require dedicated simulation hypotheses and different physical
explanation, are not included in this study.

6. Results

6.1. Numerical results

The magnetic force acting on the proof mass is calculated by
using the described model for three tentative levitation heights of
the graphite mass. The position is changed iteratively until the
value of the magnetic force (Fm,z) equals the gravity force (Fg) on
the levitating mass. The first tentative calculation is performed at
the height z¼1 mm, the second iteration at z¼2 mm and the last
third iteration at z¼1.5 mm.

Table 3
Coordinates of the nodes of every mass portion as reported in Fig. 6. The mesh size 
considered for the discretization of the mass is 0.5 mm.

Central plane (j) Number of nodes

per row (n)

x [mm] y [mm] z [mm]

1 39 –9.5C9.5 0.5

1.0-1.5-2.0

2 35 –8.5C8.5 1.5

3 31 –7.5C7.5 2.5

4 27 –6.5C6.5 3.5

5 23 –5.5C5.5 4.5

6 19 –4.5C4.5 5.5

7 15 –3.5C3.5 6.5

8 11 –2.5C2.5 7.5

9 7 –1.5C1.5 8.5

10 3 –0.5C0.5 9.5

z
j = cost

(i,k) (i+1,k)(i-1,k)

(i,k+1)

(i,k-1)

x

Fig. 8. Centered finite difference method applied to the discretized levitating

mass.
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The total magnetic force acting on the proof mass is calculated 
for the three vertical positions and the ratio R¼Fm,z/Fg is obtained; 
the results are reported in Table 5 while the steps for the definition 
of the parameters and of the equations in the numerical model are 
summarized in Table 4. Table 4 is divided into six parts; the first 
part contains all the parameters used as Ansys simulation

data input and the ones obtained as results in the simulation and
used to calculate the diamagnetic force acting on the pyrolytic
sample mass; the second part deals with the calculus of the
main parameters related to the levitating sample geometry.
The third part summarizes the equations relative to the nodes
virtually located on each of the central planes belonging

Table 4
Summary of the modeling steps and definition of parameters and equations.

Step Parameter Description Value Unit

Data input l Diamagnetic mass side length 9C14 mm

r Pyrolytic graphite density 2200 kg/m3

t Diamagnetic mass thickness 1 mm

wx,y Magnetic susceptibility in x/y directions �85�10�6 /

wz Magnetic susceptibility in z direction �450�10�6 /

m0 Magnetic permeability of vacuum 4p�10�7 N/A2

Hx(i,j,k) Magnetic field in x direction Preliminary FEM simulation A/m

Hy(i,j,k) Magnetic field in y direction Preliminary FEM simulation A/m

Hz(i,j,k) Magnetic field in z direction Preliminary FEM simulation A/m

D Mesh size 0.5 mm
Computing of suspension parameters M Diamagnetic mass rtl2 kg

P Diamagnetic material weight force 9.81M N

y1 Vertical position of the three rows of nodes for the

calculus of the magnetic field over the magnetic layers

zG�D mm

y2 zG mm

y3 zGþD mm

d Diamagnetic mass diagonal l21/2 mm

a / d/2 mm

b Rounding of ‘‘a’’ to its nearest integer Round(a) mm

Vi Volume of i-th cubic element 8D3 mm3

For j from 1 to b/(2D) in steps of 1

For w from D to b�D in steps of 2D

Computing of j-w-dependent parameters

Lj Length of the j-th row 2(b�w) mm

nj,tot Number of total nodes in the j-th row (Lj/D)þ1 /

nj Number of nodes to be considered in the j-th row (nj,tot�1)/2 /

Aj Area of the j-th portion 2DLj mm2

Vout Volume of each i-th external element D[Aj�2D2(nj,tot�5)] mm3

For k from 1 to 3 in steps of 1
For i from 1 to nj,tot in steps of 1

Construction of magnetic flux density matrices Bx(i,j,k) Magnetic flux density in x direction m0(1þwx,y) �Hx(i,j,k) T

By(i,j,k) Magnetic flux density in y direction m0(1þwx,y) �Hy(i,j,k) T

Bz(i,j,k) Magnetic flux density in z direction m0(1þwz) �Hz(i,j,k) T
Computing of nodal magnetic forces F(i,j,1) Zero vector to be updated zeros(1,nj,tot) N/m3

Fm,ij(i,j,1) zero vector to be updated zeros(1,nj,tot) N

For c from 2 to (nj,tot �1) in steps of 2

F(c,j,1) Nodal magnetic force per unit volume [gn(c,j,3)�gn(c,j,1)]/(4Dm0) N/m3

Fm,ij(c,j,1) Nodal magnetic forces in cubic elements F(c,j,1)Vi N

Fm,ij(2,j,1)
Nodal magnetic forces in trapezoidal elements

F(2,j,1)Vout N

Fm,ij(nj,tot�1,j,1) F(nj,tot�1,j,1)Vout N
Computing of total magnetic force

Fm,j(1,j,1) Magnetic force in the j-th portion Pnj,tot

i ¼ 1

Fmði,j,1Þ
N

Fm,z Total magnetic force 2
Pb=2D

j ¼ 1

Fm,jð1,j,1Þ N

R Magnetic force/weight ratio Fm,z/P /

proof mass 

permanent 
magnets 

Fig. 9. Diamagnetic suspension sample used in experimental characterization of

static configuration.

Fig. 10. Experimental equipment: laser sensor.
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to the portions the diamagnetic sample is divided in; these
equations, omitted in the text not to create a too heavy mathe-
matical treatment overtaking the physical purpose of this paper,
were simply used to find out in the Ansys model the correct
position of the nodes where to read the values of the external
magnetic field acting on them. The fourth part contains the

formulas for the calculus of the magnetic flux density and for the 
construction of the matrices whose elements are used to compute 
the vertical magnetic force as it is shown in the fifth and in the 
sixth part of Table 4.

The levitation height (zL) is defined as the distance between the 
upper surface of the permanent magnets and the center of gravity 
of the diamagnetic mass. The levitation height corre-sponds to the 
vertical coordinate at which the numerical model gives the ratio R 
closer to the unity. This is verified, in the three cases considered, at 
the levitation height zL¼1.5 mm. Fig. 11 reports the value of the 
ratio R with respect to the vertical coordinate for different sizes of 
the graphite. The experimental levitation height (corresponding to 
R¼1) is also indicated.

The numerical predicted values of R can be interpolated by the
function

R¼
1

az3þbz
ð14Þ

where the coefficients a and b have been calculated for each size of 
the proof mass and listed in Table 6. The fitting curves are reported 
in Fig. 11 as dashed lines.

Table 5
Values of the magnetic force predicted by the model and compared to the gravity

force at three tentative levitation heights of the proof mass for different dimen-

sions of the graphite side length.

Side length (l) [mm] Gravity force (Fg) [mN] Fm,z [mN]

z¼1 mm z¼1.5 mm z¼2 mm

9 1.82 3.7 1.7 0.6

10 1.97 4.5 2.2 0.8

11 2.77 5.4 2.7 1.0

12 2.89 6.3 3.2 1.2

13 3.58 7.1 3.7 1.4

14 4.44 7.9 4.3 1.6
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0.5

1

1.5

2

2.5

3

3.5

4

4.5

R

l = 9 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3

l = 10 mm

4

4.5
l = 11 mm

4

4.5
l = 12 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
l = 9 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
l = 10 mm

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3

l = 11 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
l = 12 mm

2.5

3

3.5

4

4.5
l = 13 mm

2.5

3

3.5

4

4.5
l = 14 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 30 10 1 2

z (10z -3 m)z

l = 9 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2

R

z (10-3 m)zz

l = 10 mm

0

0.5

1

1.5

2

2.5

3

1

R

z (10-3 m)z

l = 11 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1.5 2 2.5 31

R

z (10-3 m)z

l = 12 mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3

R

z (10-3 m)

l = 13 mm

0

0.5

1

1.5

2

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3

R

z (10-3 m)

l = 14 mm

Fig. 11. Vertical forces ratio R at different vertical positions: numerical prediction (black dots) with fitting curve and experimental value (black cross) for different graphite

side lengths.
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The magnetic stiffness of the suspension can be obtained from
the derivative of the magnetic force at the equilibrium position:

km ¼�
dFm,zðz¼ zLÞ

dz
ð15Þ

that, considering the definition of R becomes

km ¼�
d½FgURðz¼ zLÞ�

dz
¼�mg

dRðz¼ zLÞ

dz
ð16Þ

From Eqs. (14) and (16) it results finally

km ¼mg
3az2

Lþb

ðaz3
LþbzLÞ

2
ð17Þ

The curve fitting numerical results have been calculated for 
every configuration of the suspension. The levitation height (zL) 
and the suspension stiffness (km) resulting from the simulations 
have been obtained from the fitting curve in correspondence to 
R¼1; these values are reported respectively in the second and 
fourth columns of the next Table 7.

6.2. Experimental results

Firstly, the static equilibrium position of the suspension
depending to the dimensions of its parts has been characterized.
The suspension reaches its static equilibrium position at the
vertical coordinate where the diamagnetic force acting on the
proof mass equals its gravity force; this coordinate gives the static
levitation height of the suspension (zL,exp). The gravity force (Fg) is
constant for a given size of the levitating mass and the diamag-
netic force (Fm,z) can be easily calculated at the equilibrium
position (corresponding to zL,exp).

The laser sensor is used to measure the distance between the
magnets surface and the upper surface of the proof mass, which is
situated at the coordinate zsurf. Then the thickness (t) of each
proof mass is measured as the average value of 9 detections taken
in different points of every graphite mass. From the comparison
of all the measurements of thickness, the average variance
1.707�10�3 has been found. Finally, the experimental levitation

height value is calculated as

zL,exp ¼ zsurf�
t

2
ð18Þ

At the equilibrium position, the diamagnetic force is simply
expressed by

F
!

m,zðz¼ zL,expÞ ¼ F
!

g ¼ rVg, ð19Þ

where V is the volume of the proof mass and g is the acceleration
of gravity.

The static levitation height was measured in presence of N¼2 
layers of permanent magnets and different graphite masses 
having variable side lengths and thickness t¼1 mm. The mea-
surements results are reported in Fig. 12 and listed in Table 7 
(third column).

!

!

The results reported in Fig. 12 show a linear relation between 
the graphite side length and the levitation height in the range 
considered. The levitation height increasing testifies that the 
additional diamagnetic material determines the additional con-
tribution D F m,z to the magnetic force, which is larger than the 
additional gravity force D F g due to the proof mass widening. This 
effect can be explained by considering that the magnetic field 
generated inside the graphite is opposite in direction to the field 
generated by permanent magnets; the entity of the induced field is 
proportional to the volume of the proof mass. These considera-
tions are limited to the range of graphite side values considered in 
the experiments.

6.3. Comparison of results

The levitation height predicted by the numerical model (zL) 
and measured by experiments (zL,exp) is reported in Table 7 for 
different graphite side lengths.

The magnetic stiffness (km) predicted by the numerical model 
with Eq. (17) is also reported in Table 7. These values are compared 
with the experimental magnetic stiffness (km,exp), obtained as the 
derivative of the fitting curve reported in Fig. 11 at the coordinate 
zL,exp for every configuration of the suspension. Additionally, the 
dynamic stiffness of the suspension (kmd,exp) i s  also reported in 
Table 7; it has been calculated from the experi-mental 
measurement of the resonance frequency by means of the relation 
kmd,exp ¼mon

2 where on is the angular frequency at resonance of a 
mass-spring system whose damping effect is neglected. A 
mechanical shaker, controlled by a sinusoidal func-tion generator, 
was used to simulate vibrations coming from external sources.

The dynamic stiffness (see Table 7) is less than the static one 
determined by means of the fem simulation and this is due to the

Table 6
Values of coefficients a and b for different sizes of the proof mass.

Side length (l) [mm] a [1/m3] b [1/m]

9 1.77�108 3.16�102

10 1.33�108 3.03�102

11 1.38�108 3.80�102

12 1.12�108 3.50�102

13 1.08�108 3.96�102

14 1.08�108 4.51�102

Table 7
Comparison between numerical and experimental values of levitation height and

magnetic stiffness.

Side

length

(l)

[mm]

Levitation

height (zL)

[mm]

Experimental

levitation

height (zL,exp)

[mm]

Magnetic

stiffness

(km) [N/

m]

Experimental

magnetic

stiffness

(km,exp) [N/m]

Experimental

dynamic

magnetic

stiffness

(kmd,exp) [N/m]

9 1.45 1.29 2.62 3.55 2.18

10 1.58 1.24 2.55 4.58 2.25

11 1.47 1.31 3.53 4.60 3.01

12 1.59 1.27 3.46 5.70 2.99

13 1.54 1.35 4.15 5.50 3.53

14 1.47 1.36 5.09 5.96 4.15
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z L
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Fig. 12. Experimental levitation height with graphite thickness t¼1 mm and

variable side lengths in presence of N¼2 layers of permanent magnets.
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magneto-mechanical system non-linearity and to the fact that the
fem approach overestimates the real values of the stiffness of the
system.

7. Conclusions

This study introduces a strategy for the numerical modeling of
a magnetic suspension based on the diamagnetic levitation principle.
The approach proposed starts from the preliminary discretization of
the space region interested by the magnetic field distribution; the
magnetic force acting on the diamagnetic mass and producing
levitation is calculated in correspondence to the nodes of the mesh.
Finally the static levitation height of the suspension is determined by
an iterative procedure till when the equilibrium condition between
magnetic and gravity force is verified. The accuracy of the result
depends on the mesh size; the final results have been interpolated by
a fitting curve to predict the levitation height. The numerical
calculations have been verified by means of experimental measure-
ments of the levitation height in different dimensional configurations
of the suspension.

The results show a good agreement between numerical pre-
dictions of the finite elements model and the experiments; the
small differences are probably due to the uncertainties in mag-
netic properties of magnets and diamagnetic materials and to the
effect of surface coating of magnets. The mesh size used in the
current modeling is quite large to simplify the formalisms;
however the same simulation strategy is suitable for accurate
discretization of the involved domains.
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