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ABSTRACT 

The increasing use of clays, with a high montmorillonite content in their mineralogical 

composition, as hydraulic and contaminant barriers for landfill and soil remediation 

applications needs to be supported by an adequate theoretical modelling of the mechanical 

behaviour and transport properties, in order to assess the expected performances in the long 

term. The framework of the thermodynamics of irreversible processes was adopted in a 

companiom paper to derive phenomenological constitutive equations for a clay soil 

characterized by swelling and osmotic phenomena, without specifying any of the physical 

mechanisms that occur at the pore scale. In this paper, a physical approach is proposed in 

order to provide an interpretation of the phenomenological parameters, obtained from 

laboratory tests. The soil structure is assumed to be constituted by montmorillonite lamellae, 



 

 

that can be aggregated to form the so-called tactoids, which have a slit-like geometry. 

Chemical equilibrium is assumed to be established between the bulk electrolyte solutions and 

the internal pore solution at the macroscopic scale, so that the hydraulic pressure and ion 

concentrations can be evaluated through the Donnan equations. Water and ion transport is 

described at the pore scale through the generalized Navier-Stokes equation and the 

generalized Nernst-Planck equations, respectively. Mechanical behaviour is modelled taking 

into account intergranular contact stresses. The approach is applied to interpret literature 

experimental results, showing how it can reduce the number of tests that need to be carried 

out and provide insight into the physical mechanisms that determine the observed phenomena. 

 

KEY-WORDS: clay barrier, porous media theory, method of volume averaging, chemical 

osmosis, swelling soils. 

  



 

 

INTRODUCTION 

Clay soils with a high montmorillonite content are increasingly used as hydraulic and 

contaminant barriers, due to the their low hydraulic conductivity, k, to permeation with water 

and dilute aqueous solutions (k typically  3.010
11

 m/s). Bentonite, which is a clay mixture 

that contains about 70% of montmorillonite, is currently used in the so-called geosynthetic 

clay liners (GCLs), which have been proposed as an alternative to traditional clay compacted 

liners, due to their reduced costs and ease of installation. GCLs are factory manufactured 

products that consist of a thin layer of bentonite (510 mm thick) sandwiched between two 

geotextiles. 

Bentonite is characterized by the swelling and osmotic phenomena that are typical of 

polyelectrolyte gels and biological membranes, and which is attributed to the interaction 

between the electric charge of montmorillonite lamellae and the ions contained in the pore 

solution. 

In order to account for these phenomena specific theoretical approaches need to be developed 

to assess the long-term behaviour of barriers containing bentonite. 

A first fundamental distinction can be made between phenomenological approaches, which 

only have the aim of describing how phenomena occur, and physical approaches, which, on 

the basis of a conceptual picture of the physical and chemical interactions between the solid 

and liquid phases at the soil pore scale, have the scope of explaining why phenomena occur. 

In Dominijanni and Manassero (2011), the phenomenological approach was developed using 

the formalism of the thermodynamics of irreversible processes (Eckart, 1940a,b; Coussy, 

1995 and 2004), in order to derive transport and poro-elastic constitutive equations. The 

analysis referred to a pore solution containing N ion species, with the following simplifying 

assumptions: 

1. unidimensional geometry; 



 

 

2. infinitesimal strains of the solid skeleton; 

3. saturated porous medium; 

4. incompressible solid and liquid phase; 

5. infinitely diluted electrolyte solution; 

6. complete dissociation of the salts in the solution; 

7. absence of chemical reactions. 

In order to maintain the purely phenomenological approach, i.e. without any specification of 

the physical and chemical phenomena that occur at the pore scale, it was necessary to refer the 

state variables of the system (i.e. the hydraulic pressure, the ion concentrations and the 

electric potential) to a virtual solution, which was considered to be in thermodynamic 

equilibrium with the real pore solution at any point of the porous medium. The consistency of 

such an approach was assured by the possibility of formulating the boundary conditions for 

the virtual solution, in terms of the values assumed by the state variables in the external real 

bulk solutions in contact with the porous medium. 

The obtained constitutive equations were characterized by a defined number of parameters 

(called phenomenological parameters), subject to some restrictions due to the Clausius-

Duhem inequality. These parameters were assumed to be measured by means of macroscopic 

experimental tests, without any identification of the physical mechanisms at the microscopic 

scale that influence them. 

However, a practical shortcoming of the approach was the very high number of tests 

necessary to characterized a single bentonite, due to the dependency of the phenomenological 

parameters on the state variables. 

The limitations implied by the lack of a physical interpretation of the mechanisms that 

generate the phenomena observed at the macroscopic scale were also empathized. 



 

 

In this paper, a theoretical model is developed following the physical approach in order to 

provide an interpretation of the phenomenological parameters introduced in Dominijanni and 

Manassero (2011).  

From a historical point of view, the physical approach is older than the phenomenological 

one, and it dates back to the pioneering works of von Helmholtz and Smoluchowski on 

electrokinetic phenomena in fine capillaries (Lyklema, 2003). The aim of these eminent 

scientists was to explain macroscopic phenomena, such as electro-osmosis, that is, the flow of 

water driven by an electric potential gradient, on the basis of the electrostatic interaction 

between the charged wall of a capillary pore and the ions in the solution within the capillary. 

Their theory was later revised by Gouy (1910) and Chapman (1913), who were the first to 

evaluate the distribution of the electric potential in a charged pore by solving the Poisson-

Boltzmann equation. The Gouy-Chapman theory represents the mathematical formulation of 

the simplest double diffuse layer (DDL) model, which has been named in such a way because 

it is based on an idealized picture of the distribution of electric charges in the pore, where the 

first layer of electric charges is given by the solid wall of the pore and the second layer is 

represented by the ions contained in the pore solution. A relevant improvement in such a 

model was given by Stern (1924), who accounted for the presence of a layer of specifically 

adsorbed ions on the pore wall surface. 

Gross and Osterle (1968) coupled the Gouy-Chapman theory to transport equations in order to 

model the motion of electrolyte solutions through charged porous media and Groenevelt and 

Bolt (1969) applied this model to bentonites. In this theoretical approach, the microscopic 

equations are upscaled to the macroscopic scale of observation through the method of volume 

averaging. In such a way, a macroscopic interpretation is provided of the transport 

parameters, starting from the evaluation of the interaction between the solid skeleton and the 

pore solution at the pore scale. 



 

 

Recently, Moyne an Murad (2002) extended the approach to the evaluation of the mechanical 

behaviour of the solid skeleton by adopting a homogenization procedure in order to upscale 

the constitutive equations from the pore to the macroscopic scale. 

The main difficulty involved in applying DDL is that it needs the non-linear Poisson-

Boltzmann equation to be solved in the microscopic porous medium unit cell. Owing to the 

high non-linearity of this equation, only numerical solutions can be found and these do not 

provide explicit relations with the state variables. 

A simpler theory, based on the approximation of considering only the equilibrium between 

phases at the macroscopic scale, was developed by Donnan (1911) and was the applied to 

transport processes across membranes by Teorell (1935, 1937), Meyer and Sievers (1936a,b), 

Kedem and Katchalsky (1961) and Hoffer and Kedem (1967). This theory can also be used to 

determinate the swelling pressure (Dähnert and Huster, 1999). In this model, the Poisson-

Boltzmann equation is averaged across the pore and reduced to the electroneutrality condition 

in the presence of a solid skeleton charge. This theory was applied to the evaluation of clay 

soil transport properties by Hanshaw and Coplen (1973), Marine and Fritz (1981), Muurinen 

et al. (2004), Revil and Leroy (2004), Revil at al. (2005), Leroy et al. (2006) and Birgersson 

and Karnland (2009). 

In this paper, the approach is extended to also include the mechanical behaviour of the solid 

skeleton and is applied to interpret the phenomenological parameters derived in the 

companion paper (Dominijanni and Manassero, 2011). 

  



 

 

BENTONITE STRUCTURE 

Bentonite is a clay soil that usually contains about 70% of the three layered (2:1) clay mineral 

called montmorillonite. Isomorphic substitution in montmorillonite usually results in the 

replacement of a portion of trivalent aluminum (Al
3+

) in the crystalline structure with a 

divalent metal, such as magnesium (Mg
2+

), and this leads to a negative surface charge. The 

ideal unit cell formula of montmorillonite is (OH)4Si8Al3.44Mg0.66O20nH2O0.66- with 

a typical surface charge of 0.66 equivalent per unit cell. Montmorillonite crystals consist of 

parallel-aligned elementary alumino-silicate lamellae, which are approximately 10 Å thick 

and 1000-2000 Å in the lateral extent. The unit cell parameters are a = 5.17 Å and b = 8.95 Å, 

which correspond to a unit cell area of 92.5 Å
2
, or one unit charge per 140 Å

2
. The 

corresponding surface charge, , is equal to 0.114 Cm
2

. The total specific surface, S, 

available for water adsorption is approximately equal to 760 m
2
g

1
, assuming a solid density, 

sk = 2.65 gcm
3

. 

Montmorillonite particles can be represented as infinitely extended platy particles. The half 

distance, b (m), between the montmorillonite particles can be estimated from the total 

porosity, n (-), or the void ratio, e = n/(1n) (-). Norrish (1954) showed that bentonite can 

have a dispersed structure in which clay particles are present, as well separated units, or an 

aggregated structure that consists of packets of particles, or tactoids, within which several 

clay platelets or lamellae are in a parallel array, with a characteristic interparticle distance of 9 

Å. 

The formation of tactoid has the net result of reducing the surface area of the montmorillonite, 

which then behaves like a much larger particle with the diffuse double layer only fully 

manifesting itself on the outside surfaces of the tactoids (see Fig. 1). The formation of tactoids 

is due to internal flocculation of the clay platelets, and depends on the concentration and the 

valence of the ions in the soil solution. The number, Nl, of clay platelets or lamellae forming 



 

 

tactoids increases with an increase of the ion concentration and valence of cations in the soil 

solution. Unfortunately, the number of platelets in a tactoid cannot be predicted and has to be 

estimated from macroscopic measurements of the transport parameters (e.g. hydraulic 

conductivity). A complicating factor is the non-uniform distribution of ions in mixed systems. 

For instance, in Na
+
-Ca

2+
 systems, the distribution of the ions is not random, but the charges 

within the tactoids are mainly neutralized by Ca
2+

, whereas those on the outer surfaces are 

substantially enriched in Na
+
 over Ca

2+
. 

The average half spacing, b, in dispersed clays may be estimated assuming a uniform 

distribution of the clay platelets in a parallel orientation, from the relation: 

 

S

e
b

sk
                (1) 

 

If the clay has an aggregated structure, only the external surface of the tactoids is in contact 

with the mobile fluid, therefore the void space within the platelets in the tactoids should be 

subtracted from the total void space to obtain the void space with reference to the conducting 

pores (see Fig. 1). If Nl is the number of platelets per tactoid, the external specific surface, S', 

and the internal specific surface, S'', are given by: 
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The average half spacing between the platelets in the tactoids, as determined by means of X-

ray measurements, is b'' = 4.5 Å (Shainberg et al., 1971). The total void index, eT, of the 



 

 

bentonite is given by the sum of the void index inside the tactoid, e'', and the void index, e, of 

the conducting pores. The water in the tactoids can be considered part of the solid particles 

and is excluded from the transport mechanisms. 

The void index associated with the internal surfaces of the tactoid, e'', can be estimated as 

follows: 

 

''S''b''e sk .               (3) 

 

where sk = density of the solid particles (kg/m
3
). 

The corrected half spacing, b, between the tactoids, in the case of an aggregate microstructure 

of bentonite, can be estimated from a similar equation to Eq.1: 
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b

sk
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where e = eT  e0 = void ratio reffering to the void space between the tactoids and S' = 

effective specific surface of the tactoids. 

When the number, Nl, of clay platelets in the tactoids increases, the external specific surface 

decreases and the half spacing, b, between the tactoids increases, even though the total void 

ratio remains constant and the void ratio referring to the pore volume available for the 

transport decreases. 

Guyonnet et al. (2005), through a comparison of the results of hydraulic conductivity tests and 

microscopic analyses of bentonite structure based on small angle X-ray scattering and 

transmission electron microscopy, showed that high values of the hydraulic conductivity are 

related to an aggregated structure (also called the hydrated-solid phase), while low values of 



 

 

the hydraulic conductivity are related to a dispersed structure (also called the gel phase). 

These experimental results can be explained by the increase in the average pore size, due to 

tactoid formation (see Fig. 1). 

 

  



 

 

PARTITION EFFECT 

On the basis of the previous description of the micro-structure of bentonite, the pores in the 

clay may be considered as capillaries with a slit-like geometry. When such a porous medium 

is interposed between two solutions of different electrolyte concentrations, the internal surface 

of the pore acquires a charge, and electric double layers develop within the pore. A 

rectangular coordinate system (x,y) is used to describe the flow, where x is the position along 

the longitudinal axis of the pore, while y is the distance from the central axis in the transversal 

direction (see Fig. 2). 

At the microscopic scale, the variables of the physical system are indicated as 

micromicro

i

micro ,c,u  , and these represent the hydraulic pressure, the ion concentrations and the 

electric potential, respectively. These microscopic variables are related to the corresponding 

macroscopic quantities through volume averaging over the capillary cross-section, i.e. 

 

microuu               (5a) 

micro

ii cc               (5b) 

micro              (5c) 

 

where the brackets mean averaging over the capillary cross section, i.e.  
b

0
dy

b

1
. 

The variable symbols are over-marked to show that they refer to the real pore solution and not 

to the corresponding virtual solution adopted in the phenomenological approach (Dominijanni 

and Manassero, 2011). The hydraulic pressure, the ion concentrations and the electric 

potential of the virtual solution, which is in thermodynamic equilibrium with the real pore 

solution at the generic position x in the porous medium, are indicated as u, ci and , 



 

 

respectively. The virtual variables do not depend on the microscopic variable y and, as a 

result, do not vary when they are upscaled from the microscopic to the macroscopic scale. 

The real electric potential at the microscopic scale )y,x(micro  can be assumed, according to 

Gross and Osterle (1968) and Yaroshchuk (1995), as being composed of two parts: the first, 

)y,x(micro represents the electric potential due to the double layer, while the second, )x( , 

denotes the potential of a virtual bulk solution that is in thermodynamic equilibrium with the 

soil solution at the generic position x. 

The total electric potential in the pore satisfies the Poisson equation: 
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
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N

1i
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0r
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F

             (6) 

 

where 

F = Faraday’s constant (96,485 Cmol
1

); 

r = relative permittivity (for water, r = 78); 

0 = vacuum permittivity (8.85410
-12

 CV
1
m

1
); 

zi = elctro-chemical valence of the i-th ion. 

Since the length of the pores is much longer than the transversal spacing (L >> b), the axial 

variations of the potential may be neglected with respect to the transversal ones: 
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The Poisson equation is usually associated to the following boundary conditions: 
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 at the centre of the pore         (8a) 

0r

d

micro

)by(
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d




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
 at the clay surface         (8b) 

 

where d = electric surface charge associated to the diffuse double layer (Cm
2

). d is given 

by the total surface charge, , minus the surface charge in the Stern layer Stern, i.e. 

Sternd  . 

Using the boundary conditions Eqs. 8, the area average of Eq. 7 may be expressed as follows 

(Cwirko and Carbonell, 1988; Moyne and Murad, 2002): 
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where 

skc = solid skeleton charge concentration referring to the pore volume (molm
3

). 



 

 

Eq. 9 represents the statement of macroscopic electroneutrality in the pore, accounting also 

for the solid skeleton charge. Using Eq. 4 for the half-spacing, b, the solid charge 

concentration, skc
,
 can be expressed as follows: 
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e
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   (10) 

 

where: 

'S
F

)f1(
c sk

Stern
0,sk 


  = solid skeleton charge concentration referring to the solid volume 

(molm
3

); 




 Stern

Sternf  = fraction of electric charge compensated by the cations specifically adsorbed in 

the Stern layer (-). 

Quirk and Marčelja (1997) reported values of fStern ranging from 0.68 to 0.80 for Lithium ions, 

with higher values in correspondence to higher concentrations. Ions like Na
+
, K

+
 or Ca

2+
, 

which have smaller hydrated radii, are expected to be characterized by higher values of fStern. 

Dominijanni and Manassero (2010) expressed Eq. 10, introducing the cation exchange 

capacity, 
F

S
CEC


 , as follows: 
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where  



 

 

sk = density of the solid phase (kgm
3

); 

S

'S)f1( Stern
sk


  = solid skeleton charge coefficient (-). 

In the DDL theory, the Poisson equation is coupled to the equations that impose the equality 

between the electro-chemical potentials of the components of the soil solution and the electro-

chemical potentials of the components of a virtual bulk solution at the microscopic scale: 
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i ,  = constants of integration; 
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micro cRT  = osmotic pressure in the pore solution; 





N

1i

icRT  = osmotic pressure in the virtual solution; 

R = universal gas constant (= 8.314 Jmol
1
K

1
); 

T = absolute temperature. 

Using the definitions of electro-chemical potentials, Eqs. 12 may be written as follows: 
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The ion concentration distribution given by Eq. 13a is known as the Boltzmann distribution., 

The Poisson-Boltzmann equation is obtained, coupling Eq. 7 with Eq. 13a: 
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The Poisson-Boltzmann equation must be solved to evaluate macroscopic variables through 

the DDL theory. However, due to its strong non-linearity, only approximate or numerical 

solutions can be obtained. 

As an alternative, a simplifying hypothesis can be adopted, assuming, as a first 

approximation, that the microscopic variables can be considered equal to the corresponding 

macroscopic variables, i.e. i

micro

i

micro

i ccc  , uuu micromicro   and  micromicro . 

Considering Eqs. 13, this assumption is equivalent to assuming a constant distribution of the 

electric potential in the pore section. 

Equality between the electric-potential can then be imposed directly at the macroscopic scale: 
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where 
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i  = electro-chemical potential of the i-th ion in the pore solution at 

the macroscopic scale; 

w

0

ww
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  = chemical potential of water in the pore solution at the macroscopic 

scale; 





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1i

icRT  = osmotic pressure ion in the pore solution at the macroscopic scale. 

Eqs. 15 are known as the Donnan equations (Donnan, 1911) and, using the chemical and 

electro-chemical expressions, they can be written in the following form: 
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where  . 

The macroscopic electric potential   is known as the Donnan potential or membrane 

potential and it represents the electric potential associated to the solid skeleton charge. 

An ion partition coefficient, i (-), can conveniently be introduced as follows: 
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This coefficient accounts for the ability of the solid skeleton to determine a partition effect on 

the ions in the pore solution. When the partition coefficient is higher than 1, the ions are 

accumulated by the solid skeleton, whereas when the partition coefficient is lower than one, 

the ions are partially excluded. The ions are completely excluded when the coefficient is equal 



 

 

to 0. In the absence of an ion partition effect, the coefficient is equal to one for all the ions and 

there is no difference between the virtual and real concentration in the porous medium. 

The Donnan potential   is evaluated through Eq. 9 concerning the condition of 

electroneutrality, and the ion concentrations and the hydraulic pressure can therefore be 

calculated as functions of the virtual variables and the electric charge concentration of the 

solid skeleton. 

The presented analysis clarifies the relation that exists between the DDL theory and the 

Donnan macroscopic theory. If the microscopic fluctuation of the variables is small with 

respect to their average value, the error due to the use of the Donnan equilibrium equation, 

instead of the Poisson-Boltzmann equation, is also small. Considering Eq. 8b concerning the 

boundary condition of the Poisson-Boltzmann equation, it can be deduced that such 

microscopic fluctuations are small when the non-dimensional parameter  
0r
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tends to zero. 

A case of special interest is when the pore solution contains a single salt:  
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consisting of a counter-ion (charge polarity opposite that of the solid skeleton charge) and a 

co-ion (same charge polarity as the solid skeleton); (1, z1) and (2, z2) are the stoichiometric 

coefficient and the electrochemical valence of the counter-ion (index 1) and the co-ion (index 

2), respectively. Montmorillonite particles have a negative net electric charge: as a result, the 

counter-ions are the cations (positive charged ion molecules) and the co-ions are the anions 

(negative charged ion molecules). 



 

 

The salt in the solution is considered to be completely dissociated on the basis of the 

following stoichiometric reaction: 
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The electroneutrality condition (Eq. 9) can be written as follows: 
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where 1c  and 2c  represent the cation and anion concentrations, respectively. 

Then, introducing the ion partition coefficient, the following equation can be derived: 
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where  
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1
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
   represents the salt concentration of the corresponding virtual solution. 

This latter equation can be solved to relate the partition coefficients to the virtual salt 

concentration, cs, and the concentration of the solid skeleton charge, skc . Under static 

conditions, i.e. in the absences of mass fluxes, the virtual solution can be identified with an 

external bulk solution, which is placed in contact with the porous medium for enough time to 

reach an equilibrium condition. 

An analytical solution can be found for specific cases. For a 1:1 electrolyte (eg. NaCl or KCl) 

the anion partition coefficient results to be (Katchalsky and Curran, 1965): 
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where 
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while for a 2:1 electrolyte (e.g. CaCl2 or MgCl2) it results to be: 
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where   3/12/133 )1281(128108)(  . 

The cation partition coefficient can be obtained from Eq. 17, which gives the following 

relationship between the ion partition coefficients: 

 

2112
z/z

2

/

21


            (22) 

 

The cation partition coefficient, 1, and the anion partition coefficient, 2, are plotted in Fig. 

3a and in Fig. 3b as a function of the normalized salt concentration,  sks

1 c/c  , for a 

solution containing a (1:1) and a (2:1) electrolyte. When the solution contains a (2:1) 

electrolyte, the partition ability of the bentonite is considerably reduced. It should be noted 

that 1 is plotted on a logarithmic scale, while 2 is plotted on an arithmetic scale. 

The partition coefficients relate the ion concentrations in the bentonite pores to the virtual salt 

concentration cs. The partition coefficients describe the ability of the membrane to alter the 

salt concentration with respect to the external bulk solution. The coefficient 1  1 represents 

the accumulation of the cations, whereas the coefficient 0  2  1 indicates the exclusion of 



 

 

the anions from the pore. When 1 = 2 = 1, the membrane does not generate a partition of the 

ions and does not have any selective capability; when 2 = 0 and 1 , the membrane is 

"ideal" or "perfect", being able to hinder the passage of the salt completely. 

  



 

 

TRANSPORT EQUATIONS 

According to Gross and Osterle (1968), Cwirko and Carbonell (1988), Yaroshchuk (1995) 

and Moyne and Murad (2002), the transport equations at the microscopic scale can be 

expressed by means of the Generalized Nernst-Planck Equations for ion mass transport and 

the Generalized Navier-Stokes Equation for volumetric liquid transport, provided that the 

solution can be assumed ideal, i.e. infinitely diluted, and chemical reactions do not occur. 

These equations may be written in the axial direction as follows: 
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where 

vx = liquid velocity in the pore relative to the solid skeleton (ms
1

); 

ji = pore flux of the i-th ion relative to the solid skeleton (molm
2
s
1

); 

w = water viscosity (= 10
3

 Pas
1

); 

w = water density (= 1000 kgm
3

); 

g = gravity acceleration (= 9.81 ms
2

); 

Di,0 = diffusion coefficient in free solution of the i-th ion (m
2
s
1

). 

Eqs. 23 can be interpreted as the momentum balance equations of the components of the 

liquid phase. The assumption in Eq. 23b that flux ji does not depend on the concentration 

gradient of the other ions that are different from the i-th ion is a consequence of the 

hypothesis of dilution of the ions in the pore solution: if the i-th ion species is very diluted, it 

can be expected that it only exchanges momentum with water, i.e. the solvent, and not with 



 

 

other ion species. Therefore, the coefficient D0,i accounts for the friction between the i-th ion 

and water. The gravity and electric fields are taken into account in Eqs. 23. 

The assumption of an infinitely diluted solution is generally considered reasonable for most 

geotechenical and geoenvironmental engineering applications that deal with natural soil water 

and landfill leachate, in which the ion concentrations are expected to be relatively low (Bear, 

1972; Freeze and Cherry, 1979). Chemical reactions have not been considered in the present 

treatment, but they can be taken into account for specific problems by adding a source/sink 

term. 

Coupling transport Eqs. 23 with Poisson-Boltzmann Eq. 7 allows an analysis to be made of 

electrolyte solution transport through the porous  medium in the single pore. Such a set of 

equations is known in literature as the space-charge model. Due to the non-linearity of the 

Poisson-Boltzmann equation, only numerical solutions can be provided for such a set of 

equations. 

An approximate solution can be evaluated if the microscopic fluctuations of the variables are 

neglected with respect to their average values, in a similar manner to what is assumed in 

Donnas’s equations. Then, taking i

micro

i

micro

i ccc  , uuu micromicro   and 

 micromicro , as a first approximation, the following macroscopic equations can be 

obtained from Eqs. 23: 
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where 



 

 

m = non-dimensional matrix tortuosity factor that accounts for the tortuous nature of the 

actual diffusive pathways through the porous medium due to the geometry of the 

interconnected pores (<1); 

i,0m

*

i DD   = effective diffusion coefficient of the i-th ion (m
2
s
1

); 
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  = hydraulic conductivity at constant electric potential gradient 

(ms
1

). 

gww   = water weight per unit volume ( 9.81 kN/m
3
) 

Macroscopic Eqs. 24 govern the transport of the electrolyte solution when a homogeneous 

distribution of the variables is assumed at the microscopic scale. Hydraulic conductivity, k, 

can be expressed through a Kozeny-Carman equation, which accounts for the effective 

specific surface of bentonite, S'. 

Using the identity between the electro-chemical potential at the macroscopic scale (Donnan’s 

equations), Eqs. 24 can be expressed in terms of virtual variables as follows: 
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Eqs. 25 can be compared with the phenomenological equations derived in Dominijanni and 

Manassero (2011), that can be formulated as follows: 
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or in the following alternative way, which is more suitable for an experimental determination 

of the phenomenological coefficients: 
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where 
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On the basis of the Onsager’s reciprocal relations (Onsager, 1931a,b), the following identities 

can be inferred: 
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jiij         for i  j          (28b) 
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for i,j = 1, 2, ... , N. 

Then, comparing Eqs. 25 with phenomenological Eqs. 26 and 27, the following physical 

identification of the phenomenological parameters can be obtained: 
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for  i, j = 1,2,…,N. 

 

A physical identification of the phenomenological coefficients is conditioned by the implicit 

assumptions in Eqs. 23. In particular, the coefficient ij

~
  with i  j results to be equal to zero 

due to the fact that the interactions between the ions are neglected in the Nernst-Planck 

equations. Onsager’s reciprocal relations can be confirmed from the physical interpretation, 



 

 

when the interactions between the different components of the system are binary. The 

coupling between the water and ions is closely related to the ion partition effects. When 

1i   for all the ions, the osmotic coefficients i result to be null: in such a condition, the 

classical advective-diffusive transport theory is restored. 

For a contaminant transport analysis, the condition of null electrical current has to be added to 

the previous equations: 
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where Ie is the electric current density. 

The most interesting case, from an applicative point of view, is that of a solution containing a 

single salt. Accounting for the condition given by Eq. 30, the following phenomenological 

equations were derived in Dominijanni and Manassero (2011): 
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The following identification of the phenomenological parameters used in Eqs.31 can be 

obtained for this case (Dominijanni, 2005): 
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Such a physical identification allows the following comments to be made: 

1) the hydraulic conductivity at zero electric current, as usually measured in laboratory 

experiments, can be expressed through a Kozeny-Carman type of equation, in which the water 

viscosity is substituted by the electro-viscosity coefficient. Such a coefficient accounts for the 

increase in water viscosity due to the accumulation of cations in the pore; 

2) the reflection coefficient accounts for the osmotic phenomenon and results to be null when 

i = 1 for all the ions. This result points out that the macroscopic osmotic phenomena can be 



 

 

explained by invoking the ion partition effect at the microscopic scale only. A simpler 

expression of the coefficient  can be obtained for a (1:1) electrolyte: 
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On the basis of Eq.33,  can assume negative values in the presence of low values of the 

transport number of the cation, t1 (i.e. when the anions have a much greater mobility than the 

cations) for 1:1 electrolytes. For example the dependency of  on the value of the cation 

transport number and the relative salt concentration, sks c/c , is illustrated for a 1:1 

electrolyte in Fig. 4. When t1 is smaller than 0.5,  can assume negative values. When the salt 

concentration increases or the concentration of solid skeleton electric charge, skc , decreases, 

parameter  decreases. 

When the solution contains a 2:1 electrolyte, the restrictive capacity of the membrane is 

reduced. This phenomenon is clearly illustrated in Fig. 5, where  is plotted as a function of 

the relative salt concentration, , for the case of KCl and CaCl2 solution. 

3) the solute permeability Ps is linearly related to the complement to 1 of . This result is a 

consequence of the physical assumption made in the derivation of the equations and, in 



 

 

particular, the hypothesis that the microscopic fluctuations of the variables can be neglected 

with respect to their average values. When 0 , the solute permeability is equal to the 

product of the porosity times the effective diffusion coefficient of the salt, and the classical 

advective-diffusive transport theory is therefore restored. When 1 , the solute permeability 

is null and the salt flux is also null. Therefore, the condition 1  is sufficient to identify a 

"perfect" or "ideal" membrane, that is able to completely hinder the passage of the salt. 

  



 

 

PORO-ELASTIC CONSTITUTIVE EQUATIONS 

In soil mechanics, macroscopic strains are related to effective stresses, which are defined as 

the difference between the total stresses and the pore water pressure (Terzaghi, 1925). The 

effective stress principle, for a charged porous medium, such as bentonite, can be expressed 

as follows: 

 

u'               (34) 

 

where 

' = effective stress (Pa); 

 = total stress (Pa). 

The effective stress can be interpreted as the intergranular stress, which is transmitted through 

ideal springs that link the solid particles (Fig. 6). The springs represent the intergranular 

contacts between the solid particles, whose real geometry is not constituted by perfectly 

horizontal platelets. This identification is based on the assumption that the area of the 

intergranular contacts is very small compared to the total area of a generic section crossing the 

soil (Skempton, 1961). Under such an assumption, the intergranular stress is defined directly 

at the macroscopic scale, without having to pass through an upscale procedure. 

The pore solution pressure, u , can be related to the ion concentrations and the concentration 

of the charge of the solid particles through Donnan’s Eq. 16b. It should be stressed that, due 

the dependency of skc  on the void ratio, the pore solution pressure results to be related to the 

deformation of the bentonite. 

Using Eq.16b, the effective stress principle can be formulated as follows: 
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where 

u'app   = apparent effective stress, evaluated with respect to the pressure of the external 

bulk solution in equilibrium with the bentonite (Pa); 

swu  = swelling pressure, which depends on the ion concentration and bentonite void 

ratio (Pa). 

The concentration of the charge of the solid particles, for uncharged porous media, is equal to 

zero (i.e. 0csk  ), which implies that the ion partition coefficients are equal to unity, and the 

osmotic pressure with the bentonite,  , is equal to the osmotic pressure of the virtual 

external bulk solution,  . Therefore, for an uncharged porous medium the swelling pressure, 

swu , is equal to zero and the effective stress, ' , coincides with the apparent effective stress, 

app' . 

The effective stress principle states that the porous medium strains, d, are determined by the 

effective stress, i.e. 

 

'dmd intergr              (36) 

 

where 

mintergr = unidimensional compressibility of the intergranular contacts (Pa
1

). 

mintergr represents the compressibility of the ideal springs that link the solid particles and 

should not be mistaken for the compressibility of the solid particles, which is assumed to be 

nil. 

It should be stressed that, for the proposed idealized mechanical model, intergranular stress 

and strain are evaluated directly at the macroscopic scale, although they have a microscopic 



 

 

representation. Eq. 36 cannot be considered as the upscaled constitutive equation of a 

microscopic model, but instead represents a macroscopic relation that is derived from a 

simplified mechanistic model that represents the soil microstructure. 

In the case of elastic behaviour of the solid skeleton, the constitutive equations can be 

developed as follows for the particular case of a pore solution containing a single salt only: 
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Eq. 38 can be compared with the phenomenological equation derived by Dominijanni and 

Manassero (2011): 
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  is the chemical potential increment of the salt at constant temperature. 

Comparing Eq. 38 with phenomenological Eq. 39, the following identification is obtained: 
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In the case of a solution containing monovalent ions, the derivatives of osmotic pressure,  , 

can be expressed as follows: 

 

1
ec4

c

1

ec4

c
RT2

de

d

22

s

2

0,sk

3

s

2

0,sk






        (41a) 

1
ec4

c

1

ce4

c
RT21

ec4

c
RT2

dc

d

22

s

2

0,sk

2

s

2

2

0,sk

22

s

2

0,sk

s






      (41b) 

 

Similarly, the real ion concentrations can be expressed as follows: 
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Using Eq. 38, the following equation is obtained: 
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Eq. 43 can be compared with the phenomenological equation derived by Dominijanni and 

Manassero (2011): 
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From such a comparison, the following identification of the phenomenological coefficients is 

obtained: 
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Observing that (for a demonstration see Appendix A): 
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the reciprocal relation svvs   is verified for the adopted physical approach. 

In bentonite characterized by a very high void ratio, as in suspensions, it can be assumed that 

there are no contacts between the solid particles, therefore the effective stresses can be 

considered null. Such an assumption has been made, for instance, by Bolt (1956) and is 

equivalent to assuming 0'd   or intergrm . 

As far as the well known mechanical model used by Terzaghi to explain effective stresses in 

soils (Fig. 7a) is concerned, a simple modification is sufficient to explain the mechanical 

behaviour of a charged porous medium, such as bentonite. In order to account for the swelling 

pressure, it is sufficient to add a spring that represents the repulsive forces exchanged by the 

solid particles at the microscopic scale (see Fig. 7b). From Fig.7b, it is clear that equilibrium 

with external forces can also be reached in the absence of the spring representing the 

intergranular contacts. 

The dependency of the swelling pressure on the salt concentration of the external bulk 

solution in equilibrium with bentonite, and the concentration of the charge of solid particles 

can be appreciated looking at Fig. 8. The swelling pressure is plotted in Fig. 8a as a function 

of the void ratio, e, and the relative concentration, 0,sks c/c , for a 1:1 electrolyte (e.g. NaCl or 

KCl). The swelling pressure increases when the void ratio, e, and the salt concentration, cs, 

decrease, and the reference concentration of the charge of solid particles, 0,skc , increases.The 

same swelling pressure behaviour can be appreciated in Fig. 8b for a 2:1 electrolyte (e.g. 

CaCl2 or MgCl2). From a comparison of Fig. 8a and Fig. 8b, it can be observed that the 

swelling pressure of a 1:1 electrolyte is always higher than that of a 2:1 electrolyte, under the 

same conditions. 



 

 

An interesting development concerns Eq. 39, which can be re-formulated as follows: 
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where dusw is the increment in the swelling pressure, which is given by: 

 

 ddu sw             (48) 

 

where 
svv

vs

c
1




  is the swelling pressure coefficient. 

It is known, from experimental observations, that the swelling pressure tends to zero when 

sc ; therefore the swelling pressure usw can be obtained as follows: 
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Eq. 47 was derived in Dominijanni and Manassero (2011) and it can be considered as a re-

formulation of the Terzaghi effective stress principle for charged soils. The effective stresses, 

in fact, can be identified with the term on the right hand side of Eq. 47, i.e. 

 

swdudud'd              (50) 

 

Terzaghi’s classical definition of effective stress is restored when dusw = 0, i.e. vs = 0: in such 

a case, the macroscopic compressibility vv coincide with the compressibility of the 

intergranular contacts between the solid particles. 



 

 

Using Eqs. 40, the swelling pressure coefficient  results to be given by: 
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A very interesting finding of the proposed physical model is that  results to be equal to the 

reflection coefficient , when D1,0 = D2,0. A demonstration of this equality is reported in 

Appendix B. Moreover, unlike , which can assume negative values,  is restricted to vary 

between 0 and 1, so that it appears to be a better candidate to represent an efficiency 

coefficient. In particular,  is equal to zero when vs = 0, which is the condition that is 

encountered when sks c/c  and 1, 21  . On the other hand,  is equal to 1 when 

0c/c sks  , so that 1  and 02  . 

The equality between  and  (when D1,0 = D2,0) is a very interesting result of the physical 

model, because it allows a transport parameter () to be related to a mechanical parameter 

(), in such a way that is possible to obtain information on the mechanical behaviour through 

the measurement of a transport property and vice versa.  



 

 

INTERPRETATION OF THE MALUSIS AND SHACKELFORD (2002a,b) 

EXPERIMENTAL DATA 

In order to apply the proposed physical model to the interpretation of experimental tests, the 

results obtained by Malusis and Shackelford (2002a,b), on samples of a geosynthetic clay 

liner (GCL) containing bentonite, are interpreted using the relations derived in the previous 

sections. 

Malusis and Shackelford (2002a,b) determined the transport parameters (ww, , Ps) on GCL 

samples using the testing apparatus described in Malusis et al. (2001). This apparatus consists 

of a rigid wall cell in which a saturated sample of GCL can be contained. The sample is 

confined, at the top and the bottom boundaries, by two porous stones in which a continuous 

circulation of a testing solution can be maintained. A KCl solution has been adopted in the 

considered tests to represent the potentially polluted leachate produced in a landfill. 

Maintaining constant and equal boundary salt concentrations, the hydraulic conductivity, k = 

www, is measured by imposing a hydraulic pressure difference across the sample under 

steady state conditions, so that: 
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where ''u'uu   represents the difference between the hydraulic pressure at the boundaries 

of the clay sample and u' and u'' are the values of the hydraulic pressure at the top and the 

bottom of tha sample, respectively. 

The condition of null volumetric flux across the sample (q = 0) is imposed to measure  and 

Ps, maintaining constant salt concentration values at the sample boundaries. Indicating the salt 



 

 

concentrations at the top and the bottom of the sample with cs' and cs'', respectively, the salt 

concentration difference is given by: 

 

''c'cc sss  .            (53) 

 

Malusis and Shackelford (2002a,b) circulated de-ionized water at the bottom of their samples, 

so that cs'' = 0, and assumed the top concentration (i.e. cs') as the reference concentration, c0 

(i.e. c0 = cs' = cs). 

It is not possible to determine  and Ps directly because these parameters depend on the salt 

concentration, which varies across the sample. Only the global or averaged parameters, 

defined as follows (Auclair et al., 2002): 
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can be determined from the tests. 

It is interesting to observe that the relationship between Ps and  is also maintained between 

their corresponding global values: in fact, inserting Eq. 32c into Eq. 54b gives: 
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The global parameters g and Psg are determined under steady state conditions as follows: 
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where L (m) is the length of the sample. 

The interpretation of the phenomenological parameters measured by Malusis and Shackelford 

(2002a,b) is reported in Figs. 9-11. The hydraulic conductivity is plotted in Fig. 9 for a sample 

with porosity n = 0.79, for different values of the KCl concentration. The reflection 

coefficient in Fig. 10 is determined for different values of porosity, varying from n = 0.74 to n 

= 0.86, and for different values of the KCl reference concentration. The solute permeability is 

reported in Fig. 11 for a sample with porosity n = 0.79, at different values of the KCl 

reference concentration. 

The data relative to the reflection coefficient, , have been interpreted using the solid skeleton 

charge concentration per unit pore volume, 0,skc , as the only fitting parameter. The theoretical 

curves are obtained by inserting Eq. 33 into the integral of Eq. 54a, which results in: 
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The only undetermined parameter in Eq. 57 is 0,skc , because the void index, e = n/(1-n), is 

given for each sample, the boundary salt concentrations are imposed in the test, and the cation 



 

 

transport number is a function of Potassium and Chloride free solution diffusion coefficients 

(DK,0 = 19.610
10

 m
2
/s; DCl,0 = 20.310

10
 m

2
/s; t1 = 0.49). 

A value of 0,skc  equal to 0.464 M has been found from the fitting of the experimental data 

(Fig. 10). As is possible to see in Fig. 10, the assumption of a constant value for 0,skc  allows 

the experimental data to be simulated with an acceptable degree of approximation, when the 

porosity and salt concentrations vary in the range investigated in the Malusis and Shackelford 

(2002a,b) tests. 

A second physical parameter that can be determined from the theoretical interpretation of the 

experimental data is the tortuosity factor, m. The most direct way of obtaining this factor is to 

plot the measured values of Psg as functions of the corresponding values of the complement to 

1 of g, i.e. )1( g . A linear relationship should be found between these data on the basis of 

the theoretical model (see Eq. 55). The plot in this graph of the Malusis and Shackleford 

(2002a,b) data is reported in Fig. 12 together with the theoretical linear relationship. The 

value of the tortuosity factor is thus obtained from the intercept of the linear function with the 

ordinate axis at 1)1( g  , i.e. 0g  . In fact, the tortuosity factor in Eq. 55, is given by: 
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where Ds,0 is the KCl free solution diffusion coefficient (= 19.910
10

 m
2
/s). 

A value of m equal to 0.14 has been obtained from the data plotted in Fig. 12. Once m is 

known, Psg can be calculated for different salt concentration values using Eqs. 55 and 57 (Fig. 

11). 



 

 

The linearity of data reported in Fig. 12 is a validation of the physical model, since Eq. 55 has 

been derived adopting a number of assumptions and simplifications, the most important of 

which is that the dispersive phenomena, due to the pore-scale variation of the hydraulic 

pressure, ion concentrations and water velocity, have been considered negligible. Looking at 

the data in Fig. 12, it is possible to observe that the linear relationship is in good agreement 

with the experimental data, thus showing the acceptability of the assumptions made to 

develop the model. 

Once 0,skc  and m have been determined, the effective specific surface, S', can be evaluated 

from the hydraulic conductivity data (Fig. 9). The theoretical curve in Fig. 9 has been 

obtained for a value of S' equal to 127 m
2
/g, which means a number of lamellae per tactoid Nl 

= 6, for a total specific surface S = 760 m
2
/g. The electroviscous effect causes a variation in 

the theoretical hydraulic conductivity as a function of the salt concentration (see Fig. 9) which 

is close to the level of accuracy of the experimental measure and thus is not very significant. 

Therefore, as a first approximation, the hydraulic conductivity can be considered constant and 

equal to the average value, kavg = 1.6310
11

 m/s. These conclusions only refer to salt 

concentration values of c0 < 1 M. Changes in the bentonite microscopic structure can in fact 

occur for higher values of salt concentration, and can lead to a reduction in the effective 

specific surface and, consequently, an increase in the hydraulic conductivity. 

One of the most interesting results of the physical model is the equality between the reflection 

coefficient, , and the swelling pressure coefficient, , when the ion diffusion coefficients are 

equal to each other. In the case of the KCl solution, the Potassium free solution coefficient 

(DK,0 = 19.610
10

 m
2
/s) is practically equal to the Chloride free solution diffusion coefficient 

(DCl,0 = 20.310
10

 m
2
/s), therefore  can be considered equal to . As a result, starting from 

the results of the test for the measurement of the transport parameter, , it is possible to 

evaluate the swelling pressure as a function of the salt concentration and soil porosity. Using 



 

 

such a theoretical result, the swelling pressure values have been calculated at T = 293 K for 

the salt concentration and soil porosity ranges investigated by Malusis and Shackelford 

(2002a,b) (Fig. 13). The theoretical curves in Fig. 13 show the influence of soil porosity, i.e. 

confinement stress, on the swelling pressure. Moreover, the loss in swelling ability at higher 

salt concentrations than 0.1 M can be appreciated. 

Therefore, on the basis of the physical model, it is possible to obtain information on the 

mechanical behaviour of bentonite from the results of tests carried out to determine transport 

parameters. This example highlights the potential usefulness of the theoretical analysis to 

interpret experimental results, in order to extract the maximum possible amount of 

information on the behaviour of bentonite. 

The experimental results of Malusis and Shackelford (2002a,b) and their theoretical 

interpretations show that coupled phenomena related to both transport properties and 

mechanical properties are significant in the presence of dilute salt solutions (c0 <1 M) or high 

confinement stresses (corresponding to lower porosity values that have been investigated). 

When salt concentrations are increased, or in the presence of cation exchange phenomena 

with divalent ions, such as Calcium, coupled phenomena become less influential on the 

behaviour of bentonite, which is instead dominated by variations in the microscopic structure, 

that are determined by montmorillonite lamellae aggregation. 



 

 

CONCLUSIONS 

It could be useful to highlight the limits and potentialities of the proposed physical model. 

First of all, the assumptions adopted in the theoretical derivation are here pointed out: 

1. unidimensional geometry; 

2. infinitesimal strains of the solid skeleton; 

3. saturated porous medium; 

4. incompressible solid and liquid phase; 

5. infinitely diluted electrolyte solution; 

6. complete dissociation of the salts in the solution; 

7. absence of chemical reactions. 

The model does not predict or explicitly quantify the effects induced by changes in the 

bentonite structure, i.e. by changes in the number of particles per tactoide, Nl. In addition, the 

model does not take into account the dispersive effects, i.e. the effects induced by the 

fluctuations of the state variables at the pore scale. In spite of these limitations and 

simplifications, the model allows all the phenomenological coefficients to be correlated to the 

fundamental variables of the system (i.e. void ratio and ion concentrations), through a limited 

number of physical parameters of the porous medium ( 0,skc , mint, m, S', s) and the interstitial 

fluid (w, w, Di,0). 

In particular, the model furnishes a relation between the reflection coefficient, , and the 

solute permeability, Ps, considering the influence of the ion partition effect on these 

parameters. Moreover, the model offers a validation of Onsager’s reciprocal relations, which 

express the symmetry of the transport phenomenological coefficient matrix. 

Another result of the model is the equality between the reflection coefficient, , and the 

swelling pressure coefficient, , when the cation and anion diffusion coefficients are equal. 

This relation is a consequence of the identification of the swelling pressure with the difference 



 

 

between the real and the virtual osmotic pressures and it allows the mechanical behaviour of 

the soil to be evaluated, starting from experimental data relative to a transport parameter. 

The physical approach in general allows correlations between the phenomenological 

coefficients to be determined, thus reducing the number of tests necessary for soil 

characterization. In this way, it is possible to extract a large amount of information from a 

limited number of experimental test results and simulate the expected behaviour in 

engineering applications. 

It should be stressed that the physical model represents a simplified picture of the real soil 

microstructure, and a direct measurement of its properties at the microscopic scale could be 

very difficult. For instance, experimental techniques for the direct determination of the 

effective specific surface or the tortuosity factors are unavailable. The evaluation of the 

physical properties relies on macroscopic experiments, and the validation of the model is not 

based on the ability to predict the macroscopic behaviour, but on the capacity to explain the 

effects produced by changes in the system variables (e.g. ion concentration or soil porosity) 

on the macroscopic behaviour. The physical approach, even though based on the 

identification of the phenomena that occur at the microscopic scale, is only aimed at 

describing the soil behaviour at the macroscopic scale. Therefore, the physical approach 

should not be mistaken for a microscopic modelling of soil behaviour, but it should be 

considered as a tool that can be used to help understand why soils behave in a given way at 

the macroscopic scale on the basis of a simplified picture of their microstructure. 



 

 

APPENDIX A 

The osmotic pressure of pore solution,  , is given by: 

 

)cc(RT 21             (A1) 

 

where 1c  and 2c  are the cation and anion concentrations, which are related to the virtual salt 

concentration as follows: 
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Using Eq. A1,   can be expressed as a function of cs and the ion partition coefficients 1 and 

2: 

 

)(cRT 2211s            (A3) 

 

The ion partition coefficients depend on the salt concentration and the void index through the 

condition of electroneutrality: 

 

sk2211 cczcz             (A4) 

 

where skc  is the solid skeleton charge concentration, referring to the pore volume. 

Considering Eq. 10, skc  is related to the void index, e, through the following relation: 
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where 0,skc  is the solid skeleton charge concentration, referring to the solid volume, which, as 

a first approximation, can be assumed to be independent of cs and e. 

Using Eqs. A2 and A5, the electroneutality condition (Eq. A4) is given by: 
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The electrochemical valences z1 and z2 are related to the stoichiometric coefficients 1 and 2, 

through the condition of electroneutrality of the virtual solution: 
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where the cation and anion concentrations are related to cs as follows: 
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Substituting Eq. A8 in Eq. A7, the following condition is obtained: 

 

0zz 2211  .           (A9) 

 

The electroneutrality condition in the porous medium (Eq. A6) can be solved taking into 

account Eq. A9 and the relation that links the partition coefficients: 



 

 

 

1

2

1

2

1

z

z

12






 .                    (A10) 

 

The resulting equation can be expressed taking, for instance, 2 as the variable to find: 
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It is possible to obtain 2 from the solution of Eq. A11 and then 1 through Eq. A10. 

Looking at Eq. A11, it is possible to deduce that the ion partition coefficients, and 

consequently their weighted sum 2211  , can be expressed as a function of the product 

(ecs), i.e. 

 

)ce(f s2211                     (A12) 

 

where f represents an unknown function. 

 

As a result, the osmotic pressure of the pore solution,  , given by Eq. A3 can be expressed 

in the following form: 
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The derivative of  , with respect to cs, results to be given by: 
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Proceeding in a similar way, it is possible to obtain an expression for the derivative of   

with respect to the void index, e: 
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Then, using Eq. A14-A17, the following identity is verified: 
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which is Eq. 46 in the paper, and it is necessary to prove the equality of the phenomenological 

coefficients vs and sv.  



 

 

APPENDIX B 

The aim of this appendix is to show the equality between the swelling pressure coefficient, , 

given by Eq. 51 and the reflection coefficient, , when D1,0 = D2,0. 

The reflection coefficient is given by Eq. 32b, which can be expressed in the following form: 
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if the tortuosity factor 
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  is simplified between the numerator and 

denominator. 

Considering the relationship between the ion partition coefficients given in Eq. A10,  can 

only be expressed in terms of 2: 
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When D1,0 = D2,0 (for instance in the case of a KCl solution, where DK,0 = 19.610
10

 m
2
/s and 

DCl,0 = 20.310
10

 m
2
/s), the expression of  is simplified as follows: 
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The swelling pressure coefficient  is given by Eq. 51, which is here reported: 

 



 

 

RT)(

1

dc

d
1

21s 


 .           (B4) 

 

The aim of the demonstration is to show that Eq. B4 is equal to Eq. B3. In order to obtain this 

result, we can observe that the derivative of the osmotic pressure of the pore solution,  , 

with respect to the virtual salt concentration, cs, can be obtained by deriving Eq. A3: 
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The following relation between the ion partition coefficients can be obtained from Eqs. A6 

and A9: 
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where 
e

c
c

0,sk

sk   is the solid skeleton charge concentration, referring to the pore volume, 

which only depends on the void index, e. 

Deriving Eq. B6, with respect to cs, it is possible to obtain the derivative of 1 as a function of 

the derivative of 2 and cs: 
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The derivative of 2 can be obtained by deriving Eq. A11 with respect to cs: 
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From Eq. B8, it is possible to obtain 
s
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If Eq. B7 and B9 are inserted into Eq. B5, the following equation is found for 
sdc

d
: 
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The solid skeleton charge concentration skc  can be related to the ion partition coefficients 

through the condition of electroneutrality within the porous medium (see Eq. A6): 
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Introducing Eq. B11 into Eq. B10, 
sdc

d
 results to be given by: 
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Multiplying the numerator and denominator in Eq. B12 by 
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can be derived: 
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Developing the calculations within the squared brackets in Eq. B13, it is possible to find: 
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Inserting Eq. B14 into Eq. B4, the resulting expression of the swelling coefficient, , is: 
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Comparing Eq. B3 and Eq. B15, the equality between  and  is obtained, when D1,0 = D2,0. 
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Figure 1. Microscopic structure of clay soils containing montmorillonite as the main 

mineralogical component. The structure can be dispersed (a), if the lamellae of 

montmorillonite (or clay platelets) are present as individual units, or aggregated (b), if the 

lamellae are condensed to form the so-called tactoids. Symbols: Nl = number of clay platelets 

per tactoid; b = half-spacing of the conducting pores; b'' = half spacing of the intra-tactoid 

pores containing immobile water. 
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Figure 2. Slit-like geometry for an idealized bentonite pore. Symbols: x = longitudinal pore 

axis, corresponding to the macroscopic direction of transport; y = transversal pore axis; L = 

length of the clay layer; b = half-spacing of the conducting pores; 
micro  = electric potential 

due to the double layer. 
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Figure 3. Cation partition coefficient (a) and anion partition coefficient (b) as a function of the 

relative salt concentration sks c/c  for a (1:1) (e.g. NaCl or KCl) and a (2:1) (e.g. CaCl2) 

electrolyte. It should be noted that 1 is plotted on a logarithmic scale, while 2 is plotted on a 

arithmetic scale.  
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Figure 4. Reflection coefficient, , versus relative salt concentration, sks c/c , and the 

cation transport number, t1 = D1,0/(D1,0+D2,0), for a solution containing a (1:1) electrolyte. 

 

 

  



 

 

 

 

Figure 5. Reflection coefficient, , versus relative salt concentration, sks c/c , for a 

solution containing cations with different valences (z1 = +1 for K
+
 and z1 = +2 for Ca

2+
). 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Microscopic idealized mechanical model, where the springs represent the 

intergranular contacts that transmit the intergranular or effective stress '. 
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Figure 7. Mechanical model for (a) an uncharged porous medium and (b) a charged porous 

medium. 
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Figure 8. Swelling pressure as a function of the void ratio, e, salt concentration, cs, and charge 

concentration of the solid particles referring to the solid volume, 0,skc , for (a) a 1:1 electrolyte 

and (b) a 2:1 electrolyte. 
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Figure 9. Hydraulic conductivity, k, determined on a GCL sample with porosity n = 0.79 by 

Malusis and Shackelford (2002a,b) as a function of the KCl reference concentration, c0, and 

the theoretical interpretation (continuous line). 

  



 

 

 

 

Figure 10. Global reflection coefficient g measured by Malusis and Shackelford (2002a,b) 

on GCL samples as a function of the KCl reference concentration, c0, and soil porosity, n, and 

the theoretical interpretation (continuous lines). 

  



 

 

 

 

Figure 11. Global solute permeability, Psg, determined on a GCL sample with porosity n = 

0.79 by Malusis and Shackelford (2002a,b) as a function of the KCl reference concentration, 

c0, and the theoretical interpretation (continuous line). 

  



 

 

 

 

Figure 12. Global solute permeability, Psg, as a function of the complement to 1 of the global 

reflection coefficient, g, determined on a GCL sample with porosity n = 0.79 by Malusis and 

Shackelford (2002a,b) and the theoretical linear relationship (continuous line). 

  



 

 

 

 

Figure 13. Theoretical swelling pressure, usw, as a function of the KCl reference 

concentration, c0, and soil porosity, n, for the GCL investigated by Malusis and Shackelford 

(2002a,b). The theoretical curves have been derived from the equality of the reflection 

coefficient, , and the swelling pressure coefficient, , for a KCl solution (DK,0  DCl,0). 

 

 

 

 


