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Abstract

A class of generalized bivariate Marshall–Olkin distributions, which includes as special

cases the Marshall-Olkin bivariate exponential distribution and the Marshall-Olkin type

distribution due to Muliere and Scarsini (1987), are examined in this paper. Stochastic

comparison results are derived, and bivariate aging properties, together with properties

related to evolution of dependence along time, are investigated for this class of distribu-

tions. Extensions of results previously presented in the literature are provided as well.

Key words Positive dependence properties; aging notions; survival copulas; stochastic

orders; positive dependence orders.



1 Introduction and preliminaries

Dealing with stress–strength modelling, a typical assumption is that the dependence

among components arise from common environmental shocks and stress. In this case,

a well-known joint distribution appropriate to describe the random lifetimes of a two–

component system is the the bivariate exponential distribution proposed in Marshall and

Olkin (1967), whose survival function is defined as

F (x1, x2) = P (X1 > x1, X2 > x2) = exp
{
− λ1x1 − λ2x2 − λ3 max{x1, x2}

}
, (1.1)

with x1, x2 ≥ 0 and λi ≥ 0, i = 1, 2, 3. For example, in reliability theory this structure

may describe the lifetimes of two components operating in a random environment and

subjected to fatal shock governed by a poisson process, while in the theory of credit risk

X1 and X2 may be viewed as the times to default of two counter-parties subject to three

independent underlying economic or financial events.

Different generalizations of this model have been considered and applied in the liter-

ature starting from the observation that a bivariate random vector (X1, X2) of lifetimes

has the Marshall–Olkin distribution whenever it admits the representation

(X1, X2)
st
= (min{S1, S3},min{S2, S3}), (1.2)

where S1, S2 and S3 are independent and exponentially distributed lifetimes with param-

eters λ1, λ2 and λ3, respectively.

On the one hand, some authors substituted in the above structure the exponential

distribution by the second type Pareto distribution, or by the Weibull distribution, in

order to obtain a bunch of bivariate semi–parametric models which performed well in

modelling bivariate survival data (see, for example, Lu, 1989 and 1992, or Asimit et al.,

2010), or, for example, in the description of occurrences of metastases at multiple sites

after breast cancer (see Klein et al., 1989). Moreover, bivariate vectors defined as in (1.2)

are, actually, a particular case of the family of distributions of coherent systems sharing

some of their components, like the ones recently studied in Navarro et al. (2010) (see also

Navarro and Balakrishnan, 2010, for dependence properties of this family of distributions).

On the other hand, those who focused on the lack-of-memory property of the Marshall–

Olkin distribution devote themselves to gaining any further insight in the mechanism. For

example, it was found (see Marshall and Olkin, 1967, or Galambos and Kotz, 1978) that

the vector (X1, X2) with exponential marginal distributions has the bivariate distribution

in (1.1) if and only if it achieves the lack-of-memory property

P (X1 > x1 + t, X2 > x2 + t| X1 > t, X2 > t) = P (X1 > x1, X2 > x2), (1.3)
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for all x1, x2 ≥ 0 and t ≥ 0. Subsequently, Muliere and Scarsini (1987) further investigated

the distributions satisfying the equality

P (X1 > x1 ∗ t, X2 > x2 ∗ t| X1 > t, X2 > t) = P (X1 > x1, X2 > x2), (1.4)

where the binary operation ∗ is assumed to be associative (i.e., such that x ∗ (y ∗ z) =

(x ∗ y) ∗ z ) and reducible (i.e., it satisfies x ∗ y = x ∗ z or y ∗ x = z ∗ x if and only if

z = y). Obviously, setting ∗ as + in (1.4), one gets (1.3). Muliere and Scarsini (1987)

proved that bivariate vectors (X1, X2) having continuous distribution possess the lack-of-

memory property (1.4) and satisfy the equality

P (Xi > xi ∗ t| Xi > t) = P (Xi > xi), i = 1, 2,

for all x1, x2, t ≥ 0 if and only if they have joint survival function

F (x1, x2) = exp{−λ1H(x1)− λ2H(x2)− λ3H(max{x1, x2})}, x1, x2 ≥ 0,

for an increasing function H such that H(0) = 0 and H(∞) = ∞. This kind of semi-

parametric model, that they called Marshall-Olkin type survival function, is rather flexible

in practice and includes several useful bivariate distributions (see, e.g., Scarsini, 1984, and

Wu, 1997). Moreover, in this case F also corresponds to the survival function of a vector

of lifetimes having marginal distributions satisfying a Cox proportional hazard rate model,

with baseline cumulative hazard function H.

Along the line of such a kind of semi-parametric extension, in this paper we study

the more general model which takes the form (1.2) where the three non–negative random

variables S1, S2 and S3 are assumed to be independent but not necessarily with propor-

tional hazard rates. In other words, we consider here the class of bivariate vectors X

defined as in (1.2), where the lifetimes Si are independent and not necessarily identically

distributed, thus vectors having joint survival function

F̄X(x1, x2) = P (X1 > x1, X2 > x2)

= P (S1 > x1, S2 > x2, S3 > max{x1, x2})

= Ḡ1(x1)Ḡ2(x2)Ḡ3(max{x1, x2})

= exp{−H1(x1)−H2(x2)−H3(max{x1, x2})}, (1.5)

where the right continuous functions Hi satisfying Hi(0) = 0 and Hi(∞) = ∞ are the

cumulative hazard functions of the lifetimes Si (and, in particular, are the integrals of the

hazard rates when the Si are absolutely continuous). In this case, we will say that X has
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a Generalized Marshall-Olkin type (GMO) distribution, and H1, H2, H3 will be called the

generating functions of (1.5).

As already mentioned, the following are special cases of GMO distributions.

1. Bivariate exponential distribution (Marshall and Olkin, 1967)

Hi(x) = λix, x ≥ 0, λi ≥ 0, i = 1, 2, 3.

2. Bivariate Weibull distribution (Marshall and Olkin, 1967, and Lu, 1989)

Hi(x) = λix
α, x ≥ 0, α > 0, λi ≥ 0, i = 1, 2, 3.

3. Bivariate Pareto distribution (II) (Hanagal, 1996, Kotz et al., 2000, and Asimit et al.,

2010)

Hi(x) = αi log

(
1 +

x− µi

σi

)
, x ≥ µi ≥ 0, i = 1, 2, 3,

for µ1 = µ2 ≥ 0, σ1 = σ2 ≥ 0, µ3 = 0, σ3 = 1 and αi ≥ 0, i = 1, 2, 3.

4. Marshall-Olkin type distribution (Muliere and Scarsini, 1987)

Hi(x) = λiH(x), λi ≥ 0, i = 1, 2, 3,

where H(x) is increasing with H(0) = 0 and H(∞) = ∞.

However, it should also be pointed out that GMO distributions defined as above have

the main disadvantage that they are not absolutely continuous, having a singularity due

to P (X1 = X2) > 0, thus they can not be applied in all those problems where absolute

continuity is required.

The class of the generalized Marshall-Olkin type distributions does not possess the

lack-of-memory property, and for this reason the aim of this paper is to investigate the

aging behavior and the dependence properties of such type of random vectors.

In Section 2, we derive the copula expression for GMO distributions, and we provide

the first preliminary positive dependence property satisfied by these distributions. In

Section 3, we analyze stochastic comparisons among GMO distributions. Apart from the

stochastic order and the increasing concave order of the random vectors themselves, the

order on their copulas is built based upon the stochastic orders of the generating random

variables. In Section 4, we first have a simple discussion on the aging behavior of this

type of distributions due to the aging property of the three generating random variables.

Then, by studying the survival copula of the residual life, we explore the evolution of the
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dependence as time elapses. Based on these works on dependence, a further discussion

on the aging behavior of the GMO distribution is made.

Throughout this note, the terms increasing and decreasing stand for non-decreasing

and non-increasing, respectively. All random variables under investigation are non–

negative, with continuous distribution, and expectations are implicitly assumed to be

finite once they appear.

For ease of reference, let us first briefly recall some useful notions, and stochastic orders

and aging concepts which will be used in sequel.

Recall that a random vector X = (X1, X2) with joint survival function F̄ and contin-

uous marginal survival functions F̄i, i = 1, 2 has survival copula

ĈX(u, v) = F̄
(
F̄−1
1 (u), F̄−1

2 (v)
)
, 0 ≤ u, v ≤ 1,

where F̄−1
i is the right continuous inverse of F̄i, i = 1, 2. The survival copula, which

is unique under assumption of continuity of the F i, is an useful tool to describe the

structure of dependence between the concerned components (see, e.g., Nelsen, 1999). For

example, different positive dependence concepts have been defined by means of copulas.

Among others, the well–known PQD notion: a vector X is said to be positively quadrant

dependent (PQD) if

ĈX(u, v) ≥ uv for all 0 ≤ u, v ≤ 1

(see, e.g., Denuit et al., 2005).

Definition 1.1 X = (X1, X2) is said to be smaller than Y = (Y1, Y2) in the

(i) usual stochastic order (denoted by X ≤st Y ) if E[ϕ(X1, X2)] ≤ E[ϕ(Y1, Y2)] for

every increasing function ϕ such that expectations exist;

(ii) increasing concave order (denoted by X ≤icv Y ) if E[ϕ(X1, X2)] ≤ E[ϕ(Y1, Y2)] for

every increasing and concave function ϕ such that expectations exist;

(iii) upper orthant order (denoted by X ≤uo Y ) if E[ϕ(X1, X2)] ≤ E[ϕ(Y1, Y2)] for

every joint distribution function ϕ such that expectations exist, i.e., if and only if P [X1 >

x1, X2 > x2] ≤ P [Y1 > x1, Y2 > x2] for all x1, x2 ∈ ℜ.

See Shaked and Shanthikumar (2007) for details, properties and equivalent definitions

of these stochastic orders.

The following aging notions are well–known in reliability theory. Denote with Xt =

[X − t|X > t] the residual life of X at time t ≥ 0.
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Definition 1.2 A non–negative random variable X is said to be

(i) of increasing in failure rate (IFR) if Xs ≥st Xt for all t ≥ s ≥ 0;

(ii) new better than used (NBU) if X ≥st Xt for all t ≥ 0;

(iii) new better than used in the 2nd order stochastic dominance (NBU(2)) if X ≥icv Xt

for all t ≥ 0;

Let now

Xt = [(X1 − t,X2 − t)|X1 > t,X2 > t]

be the residual life vector of X at time t ≥ 0.

Definition 1.3 A non–negative random vector X = (X1, X2) is said to be

(i) of bivariate increasing failure rate (B-IFR) if Xs ≥st Xt for all t ≥ s ≥ 0;

(ii) bivariate new better than used (B-NBU) if X ≥st Xt for all t ≥ 0;

(iii) bivariate new better than used in the 2nd stochastic dominance (B-NBU(2)) if

X ≥icv Xt for all t ≥ 0.

The dual notions decreasing failure rate (DFR), new worse than used (NWU) and new

worse than used in the 2nd order stochastic dominance (NWU(2)) as well as their bivariate

versions B-DFR, B-NBU, B-NBU(2) may be defined through reversing all corresponding

inequalities above. It is well-known that

X ≤st Y =⇒ X ≤uo (≤icv)Y ,

IFR (DFR) =⇒ NBU (NWU) =⇒ NBU(2) (NWU(2)),

and

B-IFR (B-DFR) =⇒ B-NBU (B-NWU) =⇒ B-NBU(2) (B-NWU(2)).

For more details on stochastic orders and aging properties, readers may refer Barlow

and Proschan (1981), Klefsjö (1983), Deshpande et al. (1986), Pellerey (2008), Li and

Kochar (2001), Denuit et al. (2005), Shaked and Shanthikumar (2007), Lai and Xie (2006)

and Mulero and Pellerey (2010).

2 Generalized Marshall-Olkin copula

Consider a bivariate vector X = (X1, X2) having GMO distribution, i.e.,

X = (X1, X2) = (min{S1, S3},min{S2, S3}) (2.1)
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for mutually independent random lifetimes Si ∼ Ḡi(x) with cumulative hazard functions

Hi, thus with joint survival function

F̄X(x1, x2) = P (X1 > x1, X2 > x2)

= P (S1 > x1, S2 > x2, S3 > max{x1, x2})

= Ḡ1(x1)Ḡ2(x2)Ḡ3(max{x1, x2})

= exp{−H1(x1)−H2(x2)−H3(max{x1, x2})}, (2.2)

and marginal survival functions

F̄1(x1) = P (X1 > x1) = Ḡ1(x1)Ḡ3(x1) = exp{−H1(x1)−H3(x1)},

F̄2(x2) = P (X2 > x2) = Ḡ2(x2)Ḡ3(x2) = exp{−H2(x2)−H3(x2)}.

Denote

H̃1(x) = H1(x) +H3(x), H̃2(x) = H2(x) +H3(x).

Then,

F̄−1
1 (u) = H̃−1

1 (− lnu), F̄−1
2 (v) = H̃−1

2 (− ln v).

Let ĈX(u, v) be the survival copula of X. Then, for (u, v) such that F̄−1
1 (u) > F̄−1

2 (v),

we have

ln ĈX(u, v) = ln F̄
(
F̄−1
1 (u), F̄−1

2 (v)
)

= −H1(F̄
−1
1 (u))−H2(F̄

−1
2 (v))−H3(F̄

−1
1 (u))

= −H̃1(F̄
−1
1 (u))−H2(F̄

−1
2 (v))

= lnu−H2(H̃
−1
2 (− ln v))

= lnu+ ln v +H3(H̃
−1
2 (− ln v)).

Likewise, for (u, v) such that F̄−1
1 (u) ≤ F̄−1

2 (v), we have

ln ĈX(u, v) = ln u+ ln v +H3(H̃
−1
1 (− lnu)).

Thus,

ĈX(u, v) =


uv exp

{
H3

(
H̃−1

1 (− lnu)
)}

, H̃−1
1 (− lnu) ≤ H̃−1

2 (− ln v),

uv exp
{
H3

(
H̃−1

2 (− ln v)
)}

, H̃−1
1 (− lnu) > H̃−1

2 (− ln v).

(2.3)

To avoid ambiguity, throughout this paper any survival copula taking the form of (2.3)

is called Generalized Marshall-Olkin (GMO) survival copula, and the functions H1, H2,

H3 are called as its generating functions.

The following corollary is an immediate consequence of (2.3)
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Proposition 2.1 Every vector X having GMO distribution is always PQD.

Note that by setting Hi(x) = λix for λi ≥ 0 and x ≥ 0, i = 1, 2, 3, the GMO copula

in (2.3) reduces to

ĈX(u, v) = uvmin
{
u

−λ3
λ1+λ3 , v

−λ3
λ2+λ3

}
, for 0 ≤ u, v ≤ 1, (2.4)

which is just the survival copula for (1.1) and is known as the bivariate Marshall-Olkin

survival copula. Equipped with various nonexponential margins, this copula has been

utilized in a variety of applications. One may see, for example, Hutchinson and Lai

(1990) for details and references.

3 Stochastic comparisons

In this section, we build some stochastic comparison results for GMO distributions, which

are also useful in studying aging properties in the sequel.

Consider two sets of independent random variables {Si, i = 1, 2, 3} and {Ti, i = 1, 2, 3},
and let

X = (min{S1, S3},min{S2, S3}) and Y = (min{T1, T3},min{T2, T3}) (3.1)

be the two corresponding random vectors with GMO distributions. The following result

provides conditions to compare X and Y in the usual stochastic and increasing concave

orders.

Theorem 3.1 Let X and Y be defined as in (3.1). If Si ≤st (≤icv)Ti for i = 1, 2, 3,

then, X ≤st (≤icv)Y .

Proof Since {Si, i = 1, 2, 3} and {Ti, i = 1, 2, 3} both are formed by independent

variables, Si ≤st Ti (i = 1, 2, 3) imply (S1, S2, S3) ≤st (T1, T2, T3). Note that the function

min{x, y} is increasing in both x and y, thus the comparisonX ≤st Y follows immediately

from Theorem 6.B.16(a) of Shaked and Shanthikumar (2007).

For the case of the increasing concave order, let us consider

g(s) = g((s1, s2, s3)
′) = (min{s1, s3},min{s2, s3})′.
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For any 0 < α < 1, it holds that

g(αs+ (1− α)t) = g


αs1 + (1− α)t1

αs2 + (1− α)t2

αs3 + (1− α)t3



=

min{αs1 + (1− α)t1, αs3 + (1− α)t3}

min{αs2 + (1− α)t2, αs3 + (1− α)t3}


and

αg(s) + (1− α)g(t) =

min{αs1, αs3}+min{(1− α)t1, (1− α)t3}

min{αs2, αs3}+min{(1− α)t2, (1− α)t3}

 .

Since, for i = 1, 2,

min{αsi, αs3}+min{(1− α)ti, (1− α)t3} ≤ min{αsi + (1− α)ti, αs3 + (1− α)t3},

it follows that g(αs + (1 − α)t) ≥ αg(s) + (1 − α)g(t). That is, g(s) is increasing and

concave.

Due to the independence, Si ≤icv Ti for i = 1, 2, 3 imply (S1, S2, S3) ≤icv (T1, T2, T3).

By Theorem 7.A.5(a) of Shaked and Shanthikumar (2007), we get

X = g((S1, S2, S3)
′) ≤icv g((T1, T2, T3)

′) = Y .

This completes the proof.

The following statement, which is the main result of this section, deals on comparisons

of GMO survival copulas.

Theorem 3.2 Let X and Y be defined as in (3.1). If S1 ≤st T1, S2 ≤st T2 and S3 ≥st T3,

then,

ĈX(u, v) ≤ ĈY (u, v), for all 0 ≤ u, v ≤ 1. (3.2)

Proof Denote Li(x) the cumulative hazard function of Ti for i = 1, 2, 3 and let L̃i =

Li + L3 for i = 1, 2. Then, Y has its survival copula

ĈY (u, v) =


uv exp

{
L3

(
L̃−1

1 (− lnu)
)}

, L̃−1
1 (− lnu) ≤ L̃−1

2 (− ln v),

uv exp
{
L3

(
L̃−1

2 (− ln v)
)}

, L̃−1
1 (− lnu) > L̃−1

2 (− ln v).
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Let Z = (min{T1, S3},min{T2, S3}) and K̃i = Li + H3 for i = 1, 2 so that Z has its

survival copula

ĈZ(u, v) =


uv exp

{
H3

(
K̃−1

1 (− lnu)
)}

, K̃−1
1 (− lnu) ≤ K̃−1

2 (− ln v),

uv exp
{
H3

(
K̃−1

2 (− ln v)
)}

, K̃−1
1 (− lnu) > K̃−1

2 (− ln v).

First we show

ĈX(u, v) ≤ ĈZ(u, v) for all 0 ≤ u, v ≤ 1. (3.3)

For i = 1, 2, since Si ≤st Ti, i.e., Hi(x) ≥ Li(x) for all x ≥ 0, it holds that Hi(x)+H3(x) ≥
Li(x) +H3(x) and hence

H̃−1
i (x) ≤ K̃−1

i (x) for all x ≥ 0. (3.4)

Let us consider the four possible cases, one by one:

i)
{
(u, v) : H̃−1

1 (− lnu) ≤ H̃−1
2 (− ln v) and K̃−1

1 (− lnu) ≤ K̃−1
2 (− ln v)

}
.

By (3.4), we have

ĈX(u, v) = exp
{
H3

(
H̃−1

1 (− lnu)
)}

≤ exp
{
H3

(
K̃−1

1 (− lnu)
)}

= ĈZ(u, v).

ii)
{
(u, v) : H̃−1

1 (− lnu) > H̃−1
2 (− ln v) and K̃−1

1 (− lnu) > K̃−1
2 (− ln v)

}
.

By (3.4) again, we have

ĈX(u, v) = exp
{
H3

(
H̃−1

2 (− ln v)
)}

≤ exp
{
H3

(
K̃−1

2 (− ln v)
)}

= ĈZ(u, v).

iii)
{
(u, v) : H̃−1

1 (− lnu) ≤ H̃−1
2 (− ln v) and K̃−1

1 (− lnu) > K̃−1
2 (− ln v)

}
.

It always holds that

ĈX(u, v) = exp
{
H3

(
H̃−1

1 (− lnu)
)}

≤ exp
{
H3

(
H̃−1

2 (− ln v)
)}

;

By (3.4) again, we also have

exp
{
H3

(
H̃−1

2 (− ln v)
)}

≤ exp
{
H3

(
K̃−1

2 (− ln v)
)}

= ĈZ(u, v).

Hence, ĈX(u, v) ≤ ĈZ(u, v).

iv)
{
(u, v) : H̃−1

1 (− lnu) > H̃−1
2 (− ln v) and K̃−1

1 (− lnu) ≤ K̃−1
2 (− ln v)

}
.

In a similar manner to iii), we have

exp
{
H3

(
H̃−1

1

(
− lnu)

)
} ≤ exp

{
H3

(
K̃−1

1 (− lnu)
)}

≤ exp{H3

(
K̃−1

2 (− ln v)
)}

.

That is, ĈX(u, v) ≤ ĈZ(u, v).
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Thus, (3.3) is validated.

Secondly, let us prove

ĈZ(u, v) ≤ ĈY (u, v) for all 0 ≤ u, v ≤ 1. (3.5)

Since S3 ≥ T3, i.e., H3(x) ≤ L3(x) for all x ≥ 0, it holds that

Li(x) +H3(x) ≤ Li(x) + L3(x), for i = 1, 2,

and thus also

K̃−1
i (x) ≥ L̃−1

i (x) for all x ≥ 0 and i = 1, 2. (3.6)

For x ≥ 0 and i = 1, 2, denote t = K̃−1
i (x), s = L̃−1

i (x) and b = Li(t), a = Li(s).

Then, it holds that H3(t) = x− b and L3(s) = x− a. The inequality (3.6) implies s < t

and hence a = Li(s) < Li(t) = b. Thus,

L3

(
L̃−1

i (x)
)
= L3(s) = x− a > x− b = H3(t) = H3

(
K̃−1

i (x)
)
. (3.7)

Likewise, we have four possible cases.

i)
{
(u, v) : K̃−1

1 (− lnu) ≤ K̃−1
2 (− ln v) and L̃−1

1 (− lnu) ≤ L̃−1
2 (− ln v)

}
.

By (3.7), it always holds that

ĈZ(u, v) = exp
{
H3

(
K̃−1

1 (− lnu)
)}

≤ exp
{
L3

(
L̃−1

1 (− lnu)
)}

= ĈY (u, v).

ii)
{
(u, v) : K̃−1

1 (− lnu) > K̃−1
2 (− ln v) and L̃−1

1 (− lnu) > L̃−1
2 (− ln v)

}
.

By (3.7) again, we have

ĈZ(u, v) = exp
{
H3

(
K̃−1

2 (− ln v)
)}

≤ exp
{
L3

(
L̃−1

2 (− ln v)
)}

= ĈY (u, v).

iii)
{
(u, v) : K̃−1

1 (− lnu) ≤ K̃−1
2 (− ln v) and L̃−1

1 (− lnu) > L̃−1
2 (− ln v)

}
.

It holds that

ĈZ(u, v) = exp
{
H3

(
K̃−1

1 (− lnu)
)}

≤ exp
{
H3

(
(K̃−1

2 − ln v)
)}

;

By (3.7), we also have

exp
{
H3

(
K̃−1

2 (− ln v)
)}

≤ exp
{
L3

(
L̃−1

2 (− ln v)
)}

= ĈY (u, v).

Thus, ĈZ(u, v) ≤ ĈY (u, v).
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iv)
{
(u, v) : K̃−1

1 (− lnu) > K̃−1
2 (− ln v) and L̃−1

1 (− lnu) ≤ L̃−1
2 (− ln v)

}
.

Similarly,

exp
{
H3

(
K̃−1

2 (− ln v)
)}

≤ exp
{
H3

(
K̃−1

1 (− lnu))
}
≤ exp

{
L3

(
L̃−1

1 (− lnu)
)}

.

Once again, we have ĈZ(u, v) ≤ ĈY (u, v).

Hence, (3.5) is invoked.

Now, the desired assertion in (3.2) follows immediately from (3.3) and (3.5).

To close this section, we present an example to illustrate the above theorem.

Example 3.3 Consider bivariate vectors X and Y having GMO distributions with the

generating cumulative hazard functions

H1(x) = x+ x2, H2(x) = 2x+ x2, H3(x) = x

and

L1(x) = x, L2(x) = 2x, L3(x) = x+ x2.

It may be evaluated that

0.0

0.2

0.4

u

0.0

0.2

0.4

v

0.0

0.1

0.2

0.3

(a) Copulas: ĈX (lower) and ĈY (upper)
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Level curves: ĈX (solid) and ĈY (dotted)

Figure 1: Uniform inequality ĈX(u, v) ≤ ĈY (u, v)

ĈX(u, v) =


uv exp

{√
1− lnu− 1

}
,

√
1− lnu ≤

√
9
4
− ln v − 1

2
,

uv exp
{√

9
4
− ln v − 1

2

}
,

√
1− lnu >

√
9
4
− ln v − 1

2
,
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ĈY (u, v) =


uv exp

{
1− lnu−

√
1− lnu

}
,

√
1− lnu ≤

√
9
4
− ln v − 1

2
,

uv exp
{
2− ln v −

√
9
4
− ln v

}
,

√
1− lnu >

√
9
4
− ln v − 1

2
.

Evidently, S1 ≤st T1, S2 ≤st T2 and S3 ≥st T3. According to Theorem 3.2, it holds that

ĈX(u, v) ≤ ĈY (u, v) for all 0 ≤ u, v ≤ 1. The copulas and the corresponding level curves

are displayed in Figure 1. As it can be seen, ĈY (u, v) is always above ĈX(u, v).

4 Aging and dependence properties

In this section we investigate the relationships between the aging properties of the generat-

ing distributions and the dependence in the components of the vector when its distribution

is of GMO type.

The first result tells that the vector of the residual lifes also has a GMO copula if the

vector X does.

Theorem 4.1 If X has a GMO distribution, then, for any t ≥ 0, Xt also has a GMO

distribution. In particular, if X has a Marshall-Olkin distribution, then so does Xt for

any t ≥ 0.

Proof Since S1, S2 and S3 are independent, for any t ≥ 0 it holds

P [Xt > (x1, x2)] = P
(
X1 − t > x1, X2 − t > x2| X1 > t,X2 > t

)
= P

(
(min{S1 − t, S3 − t}, min{S2 − t, S3 − t}) > (x1, x2)| Si > t, i = 1, 2, 3

)
=

P
(
S1 > t+ x1, S2 > t+ x2, S3 > t+max{x1, x2}

)
P (S1 > t, S2 > t, S3 > t)

=
G1(t+ x1)

G1(t)

G2(t+ x2)

G2(t)

G3(t+max{x1, x2})
G3(t)

Letting now the variables (Si)t, for t ≥ 0 and i = 1, 2, 3, be independent and with survival

functions Gi,t(x) =
Gi(t+x)

Gi(t)
, i.e., letting (Si)t

st
= [Si − t|Si > t], one immediately gets that

P [Xt > (x1, x2)] = P ((S1)t > x1)P ((S2)t > x2)P ((S3)t > max{x1, x2})

= P
(
min{(S1)t, (S3)t} > x1, min{(S2)t, (S3)t} > x2

)
.

Thus, for any t ≥ 0 it holds that

Xt
st
= (min{(S1)t, (S3)t}, min{(S2)t, (S3)t}), (4.1)

12



Recalling that X = (min{S1, S3}, min{S2, S3}), from Theorem 6.B.16(b) of Shaked and

Shanthikumar (2007) it follows immediately that X and Xt have the same type of copula,

even if they have different generating functions.

The other part is trivial.

It should be remarked here that the stochastic equality in (4.1) is of independent

interest. In fact, Li and Lu (2003) built the following univariate version

[min{S1, S2} − t|min{S1, S2} > t]
st
= min{(S1)t, (S2)t}, for all t ≥ 0,

and derived a preservation property under the taking of series systems for some aging

properties.

Also, one may easily draw the following conclusion.

Corollary 4.2 Let X be defined as in (2.1).

(i) If Si is NBU (NWU) for i = 1, 2, 3, then, X is B-NBU (B-NWU);

(ii) If Si is NBU(2) (NWU(2)) for i = 1, 2, 3, then, X is B-NBU(2) (B-NWU(2));

(iii) If Si is IFR (DFR) for i = 1, 2, 3, then, X is B-IFR (B-DFR).

Proof (i) NBU (NWU) property guarantees

Si ≥st (≤st) (Si)t, for any t ≥ 0 and i = 1, 2, 3.

Recalling that the function min{x, y} is increasing in x and y, respectively, it follows

immediately that

X = (min{S1, S3}, min{S2, S3})

≥st (≤st)
(
min{(S1)t, (S3)t}, min{(S2)t, (S3)t}

)
.

Taking (4.1) into account, we have X ≥st (≤st)Xt for any t ≥ 0.

(ii) and (iii) may be proved in completely a similar manner.

Corollary 4.3 below is a direct consequence of Property 2.1 and Theorem 4.1.

Corollary 4.3 For any t ≥ 0, the residual life Xt corresponding to a vector X having

GMO distribution is always PQD.

In order to get more insight, let us take a look at the survival copula of the residual

life.

13



Denote, for any t ≥ 0 and x ≥ 0,

Wi,t(x) = Hi(t+ x)−Hi(t), i = 1, 2, 3.

Then, the residual life Xt has the survival function

F̄Xt(x1, x2) = P (X1 − t > x1, X2 − t > x2|X1 > t,X2 > t)

=
Ḡ1(t+ x1)Ḡ2(t+ x2)Ḡ3(t+max{x1, x2})

Ḡ1(t)Ḡ2(t)Ḡ3(t)

= Ḡ1,t(x)Ḡ2,t(x2)Ḡ3,t(max{x1, x2})

= exp{−W1,t(x)−W2,t(x2)−W3,t(max{x1, x2})},

and the marginal survival functions

F̄1,t(x1) = Ḡ1,t(x2)Ḡ3,t(x2) = exp{−W1,t(x2)−W3,t(x2)},

F̄2,t(x2) = Ḡ2,t(x2)Ḡ3,t(x2) = exp{−W2,t(x2)−W3,t(x2)}.

In the same manner to that in Section 2, the survival copula of the residual life Xt may

be derived as follows:

ĈXt(u, v) =


uv exp

{
W3,t

(
W̃−1

1,t (− lnu)
)}

, W̃−1
1,t (− lnu) ≤ W̃−1

2,t (− ln v),

uv exp
{
W3,t

(
W̃−1

2,t (− ln v)
)}

, W̃−1
1,t (− lnu) > W̃−1

2,t (− ln v),

(4.2)

where

W̃i,t(x) = Wi,t(x) +W3,t(x), i = 1, 2.

Since X is PQD if and only if F̄ (x1, x2) ≥ F̄1(x)F̄2(x2) for all x1, x2 ≥ 0, naturally,

DX(x1, x2) = F̄ (x1, x2)/F̄1(x1)F̄2(x2)

may be viewed as a measure for the degree of PQD, which permits heterogeneous margins

and hence is in general more informative than the PQD order. Next proposition tells

that the convexity (concavity) of H3 dominates the evolution of the degree of PQD of the

residual life.

Theorem 4.4 Let X be defined as in (2.1). Suppose H3 is convex (concave). Then, the

degree of PQD of Xt is increasing (decreasing) with respect to t ≥ 0.
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Proof For any x1, x2 ≥ 0, it holds

DXt(x1, x2) =
F̄t(x1, x2)

F̄1,t(x1)F̄2,t(x2)

= exp
{
− [W3,t(max{x1, x2})−W3,t(x1)−W3,t(x2)]

}
=


exp{H3(x2 + t)−H3(t)}, if x1 > x2,

exp{H3(x1 + t)−H3(t)}, if x1 < x2.

Because the convexity (concavity) of H3 implies that H3(x + t) − H3(t) is increasing

(decreasing) in t ≥ 0, the desired result follows immediately.

By taking a comparison between (2.3) and (4.2), we reach the second main result,

which asserts that the survival copula of the residual life of the Marshall-Olkin type

distribution (Muliere and Scarsini, 1987) is invariant with respect to the age.

Theorem 4.5 A random vector X with GMO distribution and its residual life Xt have

the same GMO copula if, and only if, H1, H2 and H3 are proportional.

Proof By Theorem 1, page 34, in Aczel (1966), the functional equation f(x + y) =

f(x) + f(y) is satisfied for all real x, y by a function f : ℜ → ℜ+ continuous at a

point if and only if f = αx for a non-negative α. Thus, for two continuous and increasing

functions g and h the composition g◦h−1 satisfies additivity if and only if g(h−1(x)) = αx,

with α ≥ 0. Letting x = h(u), this is equivalent to g(u) = αh(u). As an immediate

consequence, the composition H3 ◦ (Hi + H3)
−1, for i = 1, 2, satisfies additivity if and

only if H3(u) = α(Hi(u) +H3(u)) for all u and an α ≥ 0, which in turns is verified if and

only if Hi and H3 are proportional, i.e., c1H1 = c2H2 = H3 for some c1, c2 ≥ 0. Thus,

H3(H2 +H3)
−1 and H3(H1 +H3)

−1 are additive if and only if S1, S2 and S3 belong to a

proportional hazard family.

In view of

W̃1,t(x) = H̃1(t+ x)− H̃1(t)

and by the additivity of H3 ◦ H̃−1
1 , we have, for any u ∈ [0, 1] and t ≥ 0,

W3,t

(
W̃−1

1,t (− lnu)
)

= W3,t

(
H̃−1

1 (H̃1(t)− lnu)− t
)

= H3

(
H̃−1

1 (H̃1(t)− lnu)
)
−H3(t)

= H3

(
H̃−1

1 (− lnu)
)
.

Similarly, due to the linearity of H3 ◦ H̃−1
2 , we also have, for any v ∈ [0, 1] and t ≥ 0,

W3,t

(
W̃−1

2,t (− ln v)
)
= H3

(
H̃−1

2 (− ln v)
)
.
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Thus, ĈX(u, v) = ĈXt(u, v) for any t ≥ 0 and 0 ≤ u, v ≤ 1.

As an immediate consequence of Theorem 4.5, we get the characterization of the weak

lack-of-memory property of GMO distributions (see, e.g., Ghurye and Marshall (1984)).

Corollary 4.6 For a random vector X with GMO distribution, X
st
= Xt for any t ≥ 0

if and only if Hi(x) is proportional to x for i = 1, 2, 3.

Next corollary asserts that the condition on Si in Corollary 4.2 may be relaxed to a

similar condition on the margins when H1, H2 and H3 are proportional.

Corollary 4.7 Let X be defined as in (2.1). Suppose that the generating functions H1,

H2 and H3 are proportional.

(i) If Xi is NBU (NWU), i = 1, 2, then, X is B-NBU (B-NWU);

(ii) If Xi is IFR (DFR), i = 1, 2, then, X is B-IFR (B-DFR).

Proof By Theorem 4.5, ĈX(u, v) = ĈXt(u, v) for any t ≥ 0. Due to the similarity, we

only prove the assertion (ii).

(ii) Let (U1, U2) be the vector having distribution ĈX(u, v). Then, for any t ≥ 0,

X
st
=

(
F̄−1
1 (U1), F̄

−1
2 (U2)

)
, Xt

st
=

(
F̄−1
1,t (U1), F̄

−1
2,t (U2)

)
,

where F̄i,t(x) =
F̄i(x+t)

F̄i(t)
, i = 1, 2. By the IFR (DFR) property, we have

F̄i,t(x) ≤ (≥) F̄i,s(x), for all x ≥ 0 and i = 1, 2,

and hence

Xs
st
=

(
F̄−1
1,s (U1), F̄

−1
2,s (U2)

)
≥a.s. (≤a.s.)

(
F̄−1
1,t (U1), F̄

−1
2,t (U2)

) st
= Xt,

for t ≥ s ≥ 0 and x ≥ 0.

Now, let us analyze the behavior of dependence due to aging. We will address condi-

tions to compare in dependence the entire bivariate life and the bivariate residual life.

Suppose S1, S2 are NBU and S3 is NWU. Then, for any t ≥ 0, S3 ≤st (S3)t and Si ≥st

(Si)t, i = 1, 2. In view of (4.1), it stems from Theorem 3.2 that ĈX(u, v) ≥ ĈXt(u, v) for

any 0 ≤ u, v ≤ 1 and t ≥ 0. That is, the bivariate residual life becomes less dependent

as the age of time elapsed. Actually, we have a more general conclusion as below. Recall

that a real valued function h is said to be superadditive if h(x+ y) ≥ h(x) + h(y) for all

x, y ≥ 0, while it is said to be subadditive if the inequality is reversed. Also, observe that

an increasing function h is superadditive if, and only if, h−1 is subadditive.
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Theorem 4.8 Let X be defined as in (2.1), and suppose Hi ◦ H−1
3 is superadditive

(subadditive) for i = 1, 2. Then,

ĈX(u, v) ≥ (≤) ĈXt(u, v), for any 0 ≤ u, v ≤ 1 and t ≥ 0.

Proof Let i = 1, 2. Since

(Hi +H3) ◦H−1
3 (x) = Hi ◦H−1

3 (x) + x,

from superadditivity of Hi◦H−1
3 follows the superadditivity of (Hi+H3)◦H−1

3 . Observing

now that (Hi+H3)◦H−1
3 is increasing, being the composition of two increasing functions,

it follows that its inverse H3 ◦ H̃−1
i is subadditive. Then we have, for u ∈ [0, 1], t ≥ 0 and

i = 1, 2,

W3,t

(
W̃−1

i,t (− lnu)
)

= W3,t

(
H̃−1

i (H̃i(t)− lnu)− t
)

= H3

(
H̃−1

i (H̃i(t)− lnu)
)
−H3(t)

≤ H3

(
H̃−1

i (− lnu)
)
.

So, from (2.3) and (4.2), it follows that ĈX(u, v) ≥ ĈXt(u, v) for t ≥ 0 and 0 ≤ u, v ≤ 1.

The assertion for subadditivity may be proved by reversing all inequalities above.

Replacing the superadditivity (subadditivity) assumption for the composition Hi◦H−1
3

with the stronger property of convexity (concavity), then the monotonicity in dependence

of the residual life can be asserted, as described in the following result.

Theorem 4.9 Let X be defined as in (2.1). Suppose Hi ◦ H−1
3 is convex (concave) for

i = 1, 2. Then,

ĈXs(u, v) ≥ (≤) ĈXt(u, v), for any 0 ≤ u, v ≤ 1 and t ≥ s ≥ 0.

Proof Let i = 1, 2. The convexity (concavity) of Hi ◦ H−1
3 clearly implies convexity

(concavity) of (Hi+H3)◦H−1
3 = H̃1 ◦H−1

3 . Since H̃−1
1 ◦H−1

3 is increasing, then its inverse

H3 ◦ H̃−1
1 is increasing and concave, i.e, H3

(
H̃−1

1 (x+ y)
)
−H3(

(
H̃−1

1 (x)
)
) is decreasing in

x, for all y ≥ 0. Letting x = H̃1(t) and y = ln(u), it follows that

H3

(
H̃−1

1 (H̃1(t)− lnu)
)
−H3(t), and H3

(
H̃−1

2 (H̃2(t)− ln v)
)
−H3(t)

are increasing (decreasing) with respect to t ≥ 0 for any u, v ∈ [0, 1]. The desired results

follow immediately.

As a direct application of Theorem 4.8 and Theorem 4.9, we may build a condition

for the upper-orthant comparison of the bivariate residual lifes of two GMO distributions,

which are supplements to what stated in Corollary 4.2.
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Corollary 4.10 Let X be defined as in (2.1). Suppose S3 is NWU (NBU) and Si is NBU

(NWU) for i = 1, 2. Then,

ĈX(u, v) ≥ (≤) ĈXt(u, v), for any u, v ∈ [0, 1] and t ≥ 0.

Further, if min{Si, S3} is NBU (NWU) for i = 1, 2, then,

X ≥uo (≤uo)Xt for any t ≥ 0.

Proof Observe that the NWU property of S3 is equivalent to subadditivity of H3, and

similarly the NBU property of Si implies superadditivity of Hi, i = 1, 2. As a result,

Hi ◦H−1
3 is superadditive, i = 1, 2. By Theorem 4.8, we have

ĈX(u, v) ≥ (≤) ĈXt(u, v), for any 0 ≤ u, v ≤ 1 and t ≥ 0.

For i = 1, 2, since min{Si, S3} is NBU,

F̄i(xi) ≥ F̄i,t(xi), for any xi ≥ 0.

Thus, for any t ≥ 0 and x1, x2 ≥ 0,

ĈX

(
F̄1(x1), F̄2(x2)

)
≥ ĈX

(
F̄1,t(x1), F̄2,t(x2)

)
≥ ĈXt

(
F̄1,t(x1), F̄2,t(x2)

)
.

Thus we get

F̄X(x1, x2) ≥ F̄Xt(x1, x2) for any t ≥ 0 and xi ≥ 0, i = 1, 2.

That is, X ≥uo Xt for any t ≥ 0.

The other case may be proved in a similar manner.

The last corollary confirms Theorem 4.4, and the proof is omitted due to similarity.

Corollary 4.11 Let X be defined as in (2.1). Suppose that S3 is DFR (IFR) and that

Si is IFR (DFR), for i = 1, 2. Then,

ĈXs(u, v) ≥ (≤) ĈXt(u, v), for any 0 ≤ u, v ≤ 1 and t ≥ s ≥ 0.

Further, if min{Si, S3} is IFR (DFR) for i = 1, 2, then,

Xs ≥uo (≤uo)Xt for any t ≥ s ≥ 0.
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