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Introduction 
 

Recently Graphic Processing Units (GPUs) have reached very high computing 
and memory capabilities; at the same time the price for these devices has dropped, 
making them suitable for standard workstations. GPUs of the current generation 
are able to perform vector operations at much higher rates with respect to Central 
Processing Units (CPUs). The reason for this discrepancy in floating-point 
capability lies in the specialization of GPUs for compute-intensive highly parallel 
computation, exactly what graphics rendering is about. 
 
Due to the high capabilities of these devices, at a relatively cheap price, many 
numerical applications can be sped up by moving part of the computations from 
the CPU to the GPU. At the aim of simplifying this task, NVIDIA introduced a 
parallel computing architecture named “Compute Unified Device Architecture” 
(CUDA) [1], which provides instruments to the programmers to program the GPU 
with a low effort. 
 
In computational electromagnetics the problems often resort to the solution of a 
linear system of equations, with a number of unknowns that can be in the order of 
hundreds of thousands for usual scattering and antenna problems. The solution of 
linear systems can be efficiently parallelized, and the GPUs allow for a 
parallelization of the computations on a standard workstation. Here we propose a 
GPU-acceleration of a fast solver for the Electric Field Integral Equation (EFIE) 
discretized through the Method of Moments (MoM). 
 

 
Formulation of the problem 

 
The integral equation for Perfectly Electric Conductors (PECs) in free space is 
discretized by the MoM with the usual Rao-Wilton-Glisson basis [2]. The 
computation of the system matrix can be parallelized and accelerated onto GPUs, 
as shown in [3]. Here we focus our attention on the solution of the linear system 
when employing a fast solver. In [4] the Fast Multipole Method (FMM) 
acceleration is described. Here instead we refer to a fast formulation, based on the 
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Green’s function interpolation accelerated by the Fast Fourier Transform (FFT), 
as presented in [5][6] for planar arrays, and in [7] for 3D PEC objects.  
 
This formulation can be classified into the grid-based approaches, where the free 
space Green’s function is mapped onto a regular Cartesian grid. Here the Green’s 
function is expanded in terms of Lagrange polynomials, defined over a regular 
grid. The system matrix is then factorized into a product of sparse matrices. As 
common for all fast IE solvers, a sparse matrix containing the strong interactions 
must be added, due to the poor approximation of the Green’s function near its 
singularity. 
 
The linear system is solved through an iterative solver, based on the BiConjugate 
Gradient Stabilized (BiCGStab) method [8], which requires the evaluation of 
several sparse products at each iteration. Grid-based methods allow for an 
efficient evaluation of the sparse products through the Fast Fourier Transform 
(FFT) algorithm, thanks to the circulant properties that can be obtained after some 
algebraic manipulations.  
 

 
GPU implementation 

 
The main aim of our work is implementing the sparse products on the GPU. A 
limit of GPU computation at present is given by the memory bandwidth of the 
GPU itself; memory transfers from CPU to GPU and vice versa are usually the 
bottleneck for applications, and efficient implementations can be obtained when 
data transfers are minimized. Therefore at each iteration only the right hand side 
vector must be loaded onto the device, while the matrices are transferred to the 
GPU memory at once.  
 
For sparse matrix-vector multiplication several algorithms are known in literature, 
the efficiency strongly varying based on the chosen storage scheme and the 
sparsity pattern of the matrix. Here we implement the algorithm described in [9].  
 
Moreover we use a very efficient implementation of the FFT algorithm directly 
provided by NVIDIA through the CUFFT library [10]. 
 

 
Numerical results 

 
To verify the acceleration obtained by using the GPU in cooperation with the 
CPU, we conducted some experiments comparing the time per iteration obtained 
with this approach, with respect to the same solver ran on one CPU. The 
numerical simulations were performed on an Intel Xeon E5440 (2.83 GHz) 64-bit 
workstation with 32GB of RAM memory. The graphic device is a NVIDIA Tesla 
C1060 (240 cores, 4GB of memory). 
 



The test case is a sphere discretized with triangles of edge around l/10 at the 
frequency of 1 GHz. The radius of the sphere is increased from l to 4.2l, keeping 
the mesh density constant. The iteration times are compared in Figure 1, and the 
speed-up factor of the GPU approach is around 6 for the scenario with about 
80,000 unknowns.  

 
Figure 1: Time per iteration of the BiCGStab solver. Inset: test case with radius 

0.42m, discretized with N = 10,522 unknowns. 
 
The CPU version of the solver uses the FFTW implementation for the FFT 
algorithms, which is the most efficient serial implementation of the algorithm at 
present. It is worth noting that the FFTW algorithms adapt very well with 
arbitrary dimensions of the matrices to transform, and almost piece-wise constant 
behaviors like the one shown are not unexpected. On the other hand we verified 
that CUFFT performs very well only when the dimensions are powers of 2, and it 
is convenient to adopt zero padding strategies, provided that memory is not an 
issue.  
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