
PoliSave:

Efficient Power Management of Campus PCs

Luca Chiaraviglio, Marco Mellia

Politecnico di Torino

Corso Duca degli Abruzzi 24, Torino, Italy

Email: firstname.lastname@polito.it

Abstract—In this paper we study the power consumption of
networked devices in a large Campus network, focusing mainly
on PC usage. We first define a methodology to monitor host
power state, which we then apply to our Campus network.
Results show that typically people refrain from turning off their
PC during non-working hours so that more than 1500 PCs are
always powered on, causing a large energy waste. We then design
PoliSave, a simple web-based architecture which allows users
to schedule power state of their PCs, avoiding the frustration
of wasting long power-down and bootstrap times of today PCs.
By exploiting already available technologies like Wake-On-Lan,
Hibernation and Web services, PoliSave reduces the average PC
uptime from 15.9h to 9.7h during working days, generating an
energy saving of 0.6kW/h per PC per day, or a saving of more
than 250,000 Euros per year considering our Campus University.

I. INTRODUCTION

Energy consumption has become a key challenge in the last

few years. According to [1], the Information and Commu-

nication Technology (ICT) sector alone is responsible for a

percentage which varies widely between 2% and 10% of the

worldwide energy consumption.

Considering the personal computers, manufacturers have

focussed their attention to offer energy efficient devices,

proposing “green component” as a competitive gain. From

a system point of view, even commercial solutions like [2]

are becoming to be adopted, and solutions that rely on the

idea of protocol proxying [3] and virtualization techniques to

concentrate the number of PCs (or functionalities) on to a

small set of devices are being investigated. However, the power

consumption of a PC, even if used as a “dumb” terminal, is far

from being negligible, and today a simple desktop PC requires

about 100W to be simply up, despite its much more energy

efficient design. Moreover, people generally leave their PC

always powered on, even if not used.

In this paper we experimentally investigate the users’ habits

in our Campus. In particular, we find out that most people

prefer to leave their PCs always powered on, causing an energy

waste that overall can correspond to more than 250,000 Euros

per year. This is mainly due to two dominant factors: i) the

little sensibility people have versus the energy cost, and ii) the

cost both in terms of time and technical skills to properly and

quickly power down and up a PC. These somehow surprising

This work has been supported by the WiFi4Energy project funded by the
Regione Piemonte.

facts suggested us to design a solution that controls the power

state of PCs in the Campus, explicitly targeting the ease of use.

Even though modern OSes offer tools to remotely control the

power state of PCs, we found that these solutions can hardly

be applied in our Campus, since: i) we deal with an hetero-

geneous scenario with different OSes, and ii) users prefer to

control their office PC through a simple interface, avoiding the

complex OS configuration mechanisms. We therefore designed

PoliSave, a centralized web-based architecture which allows

users to automatically schedule power state of their PCs. In

particular, a server remotely triggers power-up and power-

down events by piloting a custom software which has to be

installed on each PC. The client software handles all the tasks

of correct PC configuration, enabling Wake-On-Lan (WoL) on

network cards and hibernation feature on the OS, according to

which the current PC state is saved on the hard disk for quick

recovery at bootstrap. While the proposed scheme follows a

traditional approach, its implementation faced several issues

that we describe and discuss in this paper.

To the best of our knowledge, this is the first work which

quantifies the energy waste due to PCs left powered on during

non-working periods in large Campuses, a timely problem that

we target by proposing a solution whose primary goal is to

minimize the installation and management problems for users.

All the functionalities of PoliSave have been implemented,

and a deployment trial has been studied. Results show that

the possible power saving is huge, with negligible impacts on

users’ habit. At the time of writing, results are so encouraging

that PoliSave is being extended to the whole set of Campus

PCs, and other Italian Universities are studying how to deploy

it. Software is also made available as Open Source from [4].

The paper is organized as follow: Sec. II details the

methodology and results to quantify the power consumption

of electronic devices in our Campus. Then, Sec. III reports

the description of PoliSave architecture. Results are instead

presented in Sec. IV. Sec. V describes the related works.

Finally, conclusions are drawn in Sec. VI.

II. MONITORING PC USAGE

To answer the question “How much does the energy con-

sumed by PCs cost in a Campus?”, we started collecting data

from Politecnico di Torino. Our institution is the second largest

technical University in Italy, with about 1800 staff members,

and 28.000 students. More than 9000 total PCs are registered

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11418557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

500

1000

1500

2000

2500

3000

3500

4000

00:00 06:00 12:00 18:00 00:00
0

500

1000

1500

2000

2500

3000

3500

4000
P

T
O

T
[k

W
]

N
A

L
L

T [hh:mm]

PTOT
NALL

Fig. 1. Total power consumption vs powered on devices during a day.

in our DNS database (DNS-db)1. Thanks to available historical

data, we tracked the total energy consumption and the electric-

ity bill for our Campus since January 1993. Not surprisingly,

the energy consumption has almost doubled, passing from 500

MWh/month in 1993 to more than 1 TWh/month in 2009, with

a percentage growth of more than 116%. The electricity price

has experienced an even larger increment, with an increase of

218% since 1993, so that now the monthly bill is always more

than 150k Euros per month. This is due to the recent increase

of the energy cost, which went from 0.009 to the 0.017 Euro

per kWh. It is easy to assume that these phenomena are due

to proliferation of electronic systems in our Campus, which

started to happen since 1996.

These numbers suggest that saving on energy consumption

has also beneficial impacts on cost reduction. But “how much

of the energy consumption is due to PCs, and how much

is wasted when PCs are left powered on but idle?” This

second question motivated the development of a methodology

to monitor PC usage in our Campus.

For our purposes, we used nmap version 4.85beta9 [5] to

find the number of devices actually powered on. The port-

scanning routine is scheduled every ∆T = 15m using a

cron entry, to allow nmap to complete a scan without time

overlap. The port-scanning is performed targeting subnets of

each Department of our Campus. In particular, we select a

subset of TCP ports to limit the intrusiveness of the scanning

while having the highest accuracy. Due to the lack of space we

refer the reader to [6] for the complete description. In brief, the

probing is performed on 6 ports, limiting the network overhead

to 11.52kBps to complete the scan.

The final monitoring of our Campus network has been up

and running since mid of June 2009. From the same period, we

collected also data regarding the power consumption of all our

Campus, and of specific departments as well2. Therefore, the

comparison between the Campus power consumption and the

number of active devices is possible. Fig. 1 reports the average

power required by our Campus, PTOT , and the total number of

networked devices powered on, NALL. Results refer to Friday

1For security reasons, information about Campus PCs and users are stored
in the DNS database as additional fields.

2Power consumption data are collected every 15 minutes using probes
connected to the main power cabinets. We thank the Electrical Engineering
Department for sharing these data.

0

500

1000

1500

2000

2500

3000

3500

4000

00:00 06:00 12:00 18:00 00:00

N
O

N

T [hh:mm]

UNCL
MAC
WIN

LINUX
BSD/SUN

OTHER
PHONE
PRINT

NET

Fig. 2. Variation of powered on devices considering the different OSes.

the 26th of June. Both curves follow a typical day-night trend.

In particular, the power consumption during the night is 38%

of the peak hour demand, i.e., 1MW versus 2.5MW of power.

Considering NALL, during the day more than 3500 devices are

powered on. Astonishingly, during the night between Thursday

and Friday more than 2000 terminals are left powered on, and

on Friday night, no less than 1840 hosts are left up and running

for the whole week-end. Update data are available from [4]

which tracks the power state of networked devices in real time.

A natural question arises: “How many of the active devices

are actually PCs that can be potentially turned off during

inactivity intervals?” To answer this question, Fig. 2 reports

the breakdown of the active devices, detailing different OS

architectures. In particular, for each IP address we perform

a double check using both the information registered in the

Campus DNS-db and the OS fingerprint feature of nmap.

IP addresses are then grouped according to different OS

categories. From the bottom, the plot reports: network devices

(e.g., switches and routers), networked printers, VoIP phones

and other small network boxes (e.g., Access Points, small

routers, etc.). All these devices are always powered on, with

only printers that are seldom powered off at night. Considering

Unix like OSes, we define two classes: hosts running Linux

and other Unix hosts (mainly BSD/SUN systems). Also in this

case, most of Unix hosts are left up and running, possibly due

to their “server” capabilities, even if a large fraction of the 350

hosts running Linux could be used as simple terminal. Finally,

the largest fraction of devices is due to personal computers

running Windows family OSes, representing about 30% of

active hosts during the night and more than 40% during the

day. Moreover, we notice that this estimation is a lower-bound,

since it is very likely that unclassified machines (labeled

UNCL) belong to this category as we verified by manually

checking a random samples of them3. Windows machines are

characterized by a more pronounced variability, yet during off-

peak periods about 50% of them are left powered on. We argue

that a large fraction of Windows hosts that are powered off are

actually laptops, while the majority of PCs that are powered on

are regular (and more power hungry) desktop PCs. These data

confirm that of the 2000 hosts left up and running after-hours,

up to 75% could be effectively turned off to save energy.

To assess the impact on the energy consumption of the net-

3OS fingerprint is unreliable in case a firewall is present.

TABLE I
POWER CONSUMPTION OF DEVICES

Type Power [W]

Win 150
Linux 150
UNCL 150

Network 100
Printer 50

BSD/SUN 200
Other 50
Mac 100

Phone 10

worked devices, we estimate the power required by each cat-

egory of devices according to figures that are publicly found.

Tab. I reports the average power consumption estimation we

adopted. In particular, we assume that desktop computers

consume about 150W to account for the power required by

the monitor too. We assume that BSD/SUN systems are used

as servers, for which the power footprint is higher than desktop

PCs. Finally, the power consumption of network devices like

routers is assumed to be 100W, which is possibly a low figure;

however routers typically have several interfaces/IP addresses,

so that the same device is counted several times during a

scan process. Fig. 3 reports the power consumption projection,

considering the dataset of Fig. 1. During the day the total

energy required is more than 500kWh, representing around

26% of the total power required by our Campus. During the

night, about 300kWh are still consumed, corresponding to 35-

40% of the total power consumption (see Fig.1). Moreover,

the power consumption of PCs (both Windows and Linux) is

predominant, suggesting that further improvements have to be

considered to reduce their power consumption.

Finally, we conducted a survey among users to investigate

what are the reasons that refrain users from turning off their

PC. First, the economic incentive is little or totally absent

in the context of a Campus, since energy costs are not split

among users. Second, the frustration of long power down

and bootstrap times of today PCs typically discourages the

adoption of energy wise policies by users. Third, the loss

of state a reboot causes has also been found to be annoy-

ing (if not upsetting), since users prefer to leave the office

with applications and documents still opened on their PCs’

desktop. Fourth, administration tasks (e.g., software updates or

deployment of new software) can be scheduled at night. And

fifth, some users want to access the applications and data on

their office PCs even when they are at home. While technical

solutions to the previous issues are already available (e.g., the

“hibernate” feature that allows to freeze and recover the state

of the PC storing its state on a file), people are not aware of

them. In addition, the OS configuration has been identified as

a complex task that typical user prefers to avoid. Note that

some of these motivations were already pointed out [7], in

which authors consider a set of home users.

III. POLISAVE: MANAGING PC ENERGY CONSUMPTION

The design of PoliSave has to face a complex and very

heterogeneous scenario. In particular, we address the following

requirements: 1) heterogeneity, both in term of users and

OSes; 2) remote control, since power management actions

0

100

200

300

400

500

600

00:00 06:00 12:00 18:00 00:00

P
O

N
[k

W
]

T [hh:mm]

UNCL
MAC
WIN

LINUX
BSD/SUN

OTHER
PHONE
PRINT

NET

Fig. 3. Estimation of the total power consumed by devices.

need to be performed remotely; 3) simple GUI, since the

complexity of the control panel offered by OSes was identified

as one of the major problem; 4) custom deployment, since the

software can be either manually or automatically installed; 5)

security has to be guaranteed since the actions are performed

remotely; 6) consistent information, since the software has

to handle the association between a PC and its user.

These requirements call for a new solution, since the avail-

able ones fail to address some of constraints. For example, a

possible solution for Windows family OSes might be to create

a domain policy in the Active Directory services. However,

this technique can not be applied in our Campus, since not all

Windows PCs are registered in a domain.

Given the previous presented list of requirements, we then

sketch the final PoliSave architecture. It is based on three

main components: a Server, a Client, and a Communication

Protocol. Due to the lack of space we refer the reader to [6] for

a detailed description. Additionally, the live monitoring tool

described in Sec. II has been integrated among the services of

our Campus.

1) Client Architecture: The client manages the actual pow-

ering off mechanism. Two different client architectures have

been developed, for Windows and Linux systems respectively.

Considering the Windows version, the client has been im-

plemented as a multi-threaded background service. One thread

manages the server communication, while a second thread is

used to display pop-up messages to communicate with the

user. Pop-ups are used to warn the user when an action is going

to be performed, allowing him to override it. To perform the

PC shutdown, the client exploits the standard Windows (or

Linux) API, which requires the program to be executed as

administrator. Therefore, we force the execution of the client

with high privileges during the installation phase.

The Linux version of PoliSave is composed by a background

daemon, named polisaved. polisaved communicates

with the server through socket function calls and displays

the informations to the user by means of pop-up windows.

The pop-up is activated using dbus and the x11 system,

eventually opening multiple pop-ups in case several users

are remotely connected. Actions are instead performed by

invoking the primitives of the Hardware Abstraction Layer

(HAL), which allows to list hardware properties, and control

power state of the PC.

bool ClientSetup(bool silent, INFO info) {

RetrieveInfo(&info);

SendInfo("START",info,&s_ans,&ip,&mac);

if((s_ans=="NO") && (!silent)) {

ShowHelp(info);

return false;

}

ADAPTER adapt=FindAdapt(ip,mac);

if(info.vectAdapt[adapt].wol==false)

SetWol(adapt);

if(info.Hib==false)

SetHib(info);

InstallPolisave(info);

RetrieveInfo(&info);

SendInfo("END",info,&s_ans);

if((s_ans=="NO") && (!silent)) {

ShowHelp(info);

return false;

}

ShowWebPage(info);

return true;

}

Fig. 4. The installation steps of the PoliSave client.

During setup, the client software performs some preliminary

actions to optimally configure user’s PC. Fig. 4 reports the

main steps. In particular, the installer gathers system infor-

mation, including WoL state, Hibernation capabilities, IP and

MAC addresses of all network interfaces, OS type and version,

and DNS name. This information is sent to the server, using

either HTTP or HTTPS protocol. Then, once the server answer

is received, the client processes it: if the server does not

grant the client, the setup is aborted and a web page with

detailed information is presented to the user. In case the server

grants the installation, the IP and MAC address of the selected

network interface (the one actually used to contact the server)

are given back. The installer then enables the WoL for this

interface and activates the OS hibernation feature; finally, the

PoliSave service (or daemon) are installed. Result of each

operation is sent back to the server, which finally records the

successful client installation, and presents the user its intranet

private area to show the installation result. For example, in case

the WoL or the Hibernation have not been activated, detailed

instructions are displayed to help the user. The client can be

also installed in silent mode: in this case an eventual failure is

reported directly to the PC administrator and no information

is displayed to the user.

At the moment of writing this paper, the client supports

Windows OS (Windows 7, Vista and XP, 32 or 64 bits, and

earlier versions like Windows 2000 and Windows 98). Con-

sidering Linux, a complete version for the Ubuntu distribution

has been tested.

2) Server Architecture: The server is the core of PoliSave.

It performs client remote power control and it manages the

database of clients, which includes the scheduled events of

users. Both powering off and powering on operations are

managed by the server to which users can access using a

web interface. Users are free to specify a timetable that

stores scheduled actions like stand-by, hibernation, power-off,

power-on of a PC. The server then automatically performs

the operations, periodically querying the database to look for

UPS

PC 4. Grant1. Request

2. Send 3. Display

Fig. 5. The powering off protocol of PoliSave.

actions to be performed. In addition, the user can perform

real time actions, e.g. to immediately turn on (or off) the PC,

triggering a “manual action”.

The web interface allows users to interact with the server,

from which users can change/add/remove entries from the PC

power scheduling. Web pages are integrated in the Intranet

personal pages, so that the user can simply login using his

credentials. The web interface shows the list of PCs the user

has administrative or user credentials, showing the information

contained in the Campus DNS-db, i.e., IP and MAC addresses,

administrator’s and PC name. The web site is public to re-

motely control PCs even from outside the University Intranet.

Maintaining the Campus DNS-db updated is a major issue,

since people typically forget to update the information when

changing hardware or setup. To help updating it, during

installation the server verifies the client IP and MAC addresses

in the DNS-db. If an entry is returned and the data are

consistent, the installation proceeds. If instead there is some

mismatch, an email is sent to warn both user and administrator,

and installation of the client program is aborted. Once the

client software has been successfully installed, the DNS-db is

verified and eventually updated every time a client contact the

server, thus allowing to track an eventual modification of the

client IP or MAC addresses.

The server is implemented using simple Visual Basic scripts,

with a SQL Server back-end to store the scheduling and

additional information. As in any server based architecture,

the server represents a single point of failure, and standard

solutions are available to eventually handle server failures.

3) Communication Protocols: The power-on mechanism

relies on the WoL protocol standard. According to the stan-

dard, the PC is shut down (Sleeping, Hibernating or Soft Off,

i.e. ACPI state G1 or G2), with power reserved for the network

card. The network card keeps listening for a specific packet

containing a message with 6 copies of its MAC address, called

the “Magic Packet,” broadcasted on the LAN. The magic

packet has to be routed over the network of our Campus

which is a L3 network. However, for security reason, routers

typically do not forward broadcast messages, so that proper

configuration is required on all L3 routers, since the broadcast

packet must be forwarded to the destination subnet too.

The power-off technique is instead implemented by a propri-

etary protocol, as Fig. 5 shows. More in depth, the client (PC)

performs a periodic polling with the server (PS), by sending

a Request message, whose fields are detailed in Tab. II. The

information sent to the server includes the list of IP and MAC

addresses for all the network interfaces of the host, the PC

TABLE II
STRUCTURE OF THE MESSAGES

Request IP list, MAC list, Counter, Host, OS info

Send Action, Time, URL, Message

name as it appears in the DNS and the type of OS in use,

including the system version. These fields are used to keep

the Campus DNS-db updated. Finally, a counter, increased

at any polling and reset after any powering on operation, is

reported too. This counter allows to track the PC power state,

and eventually detect missing poll operations.

When PS receives a Request message, it sends back a

response containing an action among {Hibernation, Stand-by,

Power-Off, Wait, Message}. Besides the power control actions,

the Wait action forces the client to simply return idle and wait

for the next polling event. The Message action allows the

server to send a string Message that it is displayed on the user

screen. This feature can be used for example to warn users to

update the client. The optional URL field contains the new

server URL that has to be used for future polling (useful to

relocate the server). In all cases, the response message includes

a Time value which details when the client has to perform the

next poll. This parameter trades between timely management

and server load. In particular, low Time values lead to quick

response times, but tend to increase the load on the server.

When an action has to be performed, the client displays

a warning message to the user (U) via a pop-up window.

The user can optionally cancel or grant the action, up to a

maximum timeout of one minute. If the event is granted (or the

timeout has expired), then the action is performed by invoking

the system APIs and finally the PC is shut down.

All protocol messages are encapsulated using HTTP proto-

col, and OpenSSL libraries are included to guarantee privacy

and authenticate the server. In this case the HTTPS protocol

is used, and the public key of the server is distributed with

the setup package, together with the server’s certificate.

Thanks to the fact that the communication is started by the

client, the powering off mechanism works even if the client is

behind a NAT. Another advantage is that the client OS does

not need to keep any port open, avoiding both security issues,

and firewall configurations. The powering on procedure still

relies on WoL messages sent by the server, so that the eventual

NAT box has to appropriately route them. Finally, a possible

drawback of the communication protocol is that a manually

triggered powering off event will be actually delayed until the

next client polling phase starts.

IV. RESULTS

To test the effectiveness of PoliSave, we installed the system

on a trial of 70 users of the Electrical Engineering Department

(EEDept). The aim was (i) to test the software implementation

on a real environment, (ii) to assess the possible power-saving

and (iii) to collect feedback from actual users. In particular, we

start by providing a detailed characterization of each device

power state, i.e., the uptime of a device. We assume that time

is divided in slots of duration ∆T = 15m, corresponding to

the measurement instants, i.e. i∆T is the current slot, i ∈

{1, 2, . . . , 96} to consider single day. For each device x, we

define the function

Ix(i) =

{

0 if x is OFF

1 if x is ON
(1)

Then, we compute the total amount of times x is on in a given

day D:

ONx(D) = 15m
∑

i∈D

Ix(i) (2)

Finally, we average over the set K of days in the dataset,

obtaining the average time the device x is active per day, i.e.,

the host daily average uptime:

ONx =

∑

D∈K
ONx(D)

|K|
(3)

We have computed both ONx(K) for x ∈ {PoliSave}
and ONx(K) for x /∈ {PoliSave} ∩ {EEDept}; K =
{Mon, Tue,Wed, Thu, Fri}.

Fig. 6 (left) shows the comparison among the two CDFs.

Normally, about 53% of PCs without PoliSave are always on,

while with PoliSave this percentage falls to less than 6%, with

most of PCs that are alive for less than 12h. The average

daily uptime of PCs managed by PoliSave is 9.7h, while the

average daily uptime for other PCs is 15.9h. This corresponds

to an average saving of more than 6h per working day, or

an annual saving of about 219kW/year (about 100,000 Euros

per year using current electricity costs). The savings achieved

including weekends, for which PoliSave PCs result powered

off for the whole day with probability 0.93, amount to more

than 250,000 Euros per year.

To give some more details on the users’ habit, Fig. 6 (center)

reports the number of ON and OFF events recorded during one

week, computed as

EOFF (i) =
∑

x∈X

|(Ix(i) == 1) && (Ix(i − 1) == 0)|

EON (i) =
∑

x∈X

|(Ix(i) == 0) && (Ix(i − 1) == 1)|

with X = {PoliSave}. Most of PCs running PoliSave

are powered on in the morning and turned off during the

late evening, with the variability of the measurements that

suggests each user has customized the action from the web-

interface. Interestingly, some rare events are recorded at night,

suggesting that the option of manually turning on/off the PC

via the server web interface is seldom used.

Finally, for each PC running PoliSave we compute the

probability to be alive during a time slot i as

Prob{ONx(i)} =

∑

k∈K
Ix(i + k24)

|K|
(4)

Examples of Prob{ONx(i)} are plotted in Fig. 6 (right),

which shows three different profiles. In particular PC2 exploits

automatic power-on feature of PoliSave during all working

mornings at 8.30am. The manual feature is instead adopted

for powering off the PC. The probability of finding PC2 on

during the day is then 5/7 = 0.71. On the contrary, the profile

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 6 12 18 24

C
D

F

NON [hh]

{PoliSave}
{EEDept}-{PoliSave}

0

5

10

15

20

25

00:00 06:00 12:00 18:00 00:00

N
u

m
b

er
o
f

E
v
en

ts

T [hh:mm]

EON

EOFF

0

0.2

0.4

0.6

0.8

1

00:00 06:00 12:00 18:00 00:00

P
r
o
b
{
O

N
x
}

T [hh:mm]

PC1

PC2

PC3

Fig. 6. (left) Host daily average uptime for PCs in the trial and for other PCs. (center) Number of on and off events recorded every 15 minutes. (right)
Probability to be on for three PCs using PoliSave.

of PC1 reveals that PoliSave automatically turns off PC1 at

19:30, so that the probability to be on at night is equal to 0.

Manual powering on is adopted, with the user being in the

office (its PC being alive) smaller than 0.5. PC3 leverages

instead both the powering on and off features, and a very

aggressive policy is adopted by the user to turning off the PC

when possibly idle.

These very favorable results actually encourage our effort,

and, at the time of writing, PoliSave is being extended to the

whole set of Campus PCs, and other Italian Universities are

studying how to deploy it.

V. RELATED WORK

In [8] the authors collected data on the after-hours power

state of networked devices in office buildings, showing that

most of devices are left powered on during night. However,

the proposed measurement technique is manual, thus limiting

the number of measurements over time and the applicability in

large buildings. In this paper instead we have applied a fully

automatic technique that scales well also for large networks

and tracks the number of devices powered on in real time.

A complementary approach to put the device in power save

mode relies on the idea of proxying. In [9] the authors propose

the proxying technique for network elements. In [10], [11]

the authors extend their technique to end-user PCs, analyzing

which protocols and applications require proxying. Moreover,

connectivity issues are considered in [3]. All of these works

show that the possible power saving derived from proxying

can be huge. However, this technique requires the modification

of the hardware on PCs, which can be an hard task in large

Campuses. Our solution instead is completely software-based

to explicitly address the ease of management.

Finally, commercial vendors like [2] are proposing green

solutions to reduce the power consumption waste for enterprise

networks. Cisco Systems and IBM have recently announced a

solution to remotely monitor and control network devices such

as Access Points, routers, phones and even terminals, exploit-

ing the idea of a central administration [12]. Unfortunately, at

the time of writing, this solution supports only Cisco network

devices, and server OSes, while ignoring Desktop PCs.

VI. CONCLUSIONS AND FUTURE WORK

We have presented PoliSave, a software designed to reduce

power consumption in computer networks. We have first quan-

tified the energy waste that idle PCs generate in our Campus,

showing that more than 50% of PCs are always powered on.

We then described and discussed the architecture of PoliSave, a

web-based service that allows users to automatically schedule

powering on and off of their PCs. Finally, we have performed

extensive measurements on a trial involving more than 70

users, proving the effectiveness of our solution. PoliSave is

being extended to all PC in our Campus, with the goal of

saving about 250,000 Euros from the University energy bill.

As future work, we want to customize the monitor capability

of PoliSave, so that individual users can track the power

consumption of their PCs. Another future topic is to introduce

active learning techniques in order to track the user activity and

then automatically compute the best power scheme to apply

for each user.

REFERENCES

[1] SMART 2020 Report, Enabling the low carbon economy in the
information age, http://www.theclimategroup.org.

[2] Verdiem Surveyor, http://www.verdiem.com.
[3] M. Jimeno, K. Christensen, and B. Nordman, “A Network

Connection Proxy to Enable Hosts to Sleep and Save Energy,”
IEEE IPCCC ’08, Phoenix, AZ, December 2008.

[4] PoliSave web site, http://www.polisave.polito.it/hosts new.
shtml.

[5] nmap Security Scanner, http://nmap.org
[6] L. Chiaraviglio, M. Mellia, “PoliSave: Efficient Power Manage-

ment of Campus PCs,” Technical Report No.01012010, Politec-
nico di Torino, Italy, January 2010. Available from http://www.
telematica.polito.it/chiaraviglio/papers/polisave techreport.pdf.

[7] M. Chetty, A.J. B. Brush, B. R. Meyers, P. Johns, “It’s not
easy being green: understanding home computer power man-
agement,” ACM CHI ’09, Boston, MA, April 2009.

[8] J. Roberson, C. Webber, M. McWhinney, R. Brown, M.
Pinckard, J. Busch, “After-hours Power Status of Office Equip-
ment and Energy use of Miscellaneous Plug-load Equipment,”
Report LBNL-53729-Revised, LBNL, Berkeley, CA, 2004.

[9] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wether-
all, “Reducing Network Energy Consumption via Sleeping and
Rate-Adaptation,” USENIX NSDI ’08, San Francisco, CA, 2008.

[10] S. Nedevschi, J. Chandrashekar, B. Nordman, S. Ratnasamy,
N. Taft, “Skilled in the art of being idle: reducing energy waste
in networked systems,” USENIX NSDI ’09, Boston, MA, 2009.

[11] Y. Agarwal, S. Hodges, J. Scott, R. Chandra, P. Bahl, R. Gupta,
“Somniloquy: Augmenting Network Interfaces to Reduce PC
Energy Usage,” USENIX NSDI ’09, Boston, MA, April 2009.

[12] Cisco Energy Wise, http://www.cisco.com/en/US/products/
ps10195/index.html.

