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SOME CONDITIONAL RESULTS ON PRIMES BETWEEN
CONSECUTIVE SQUARES

DANILO BAZZANELLA

Abstract. A well-known conjecture about the distribution of primes asserts that be-
tween two consecutive squares there is always at least one prime number. The proof of
this conjecture is quite out of reach at present, even under the assumption of the Riemann
Hypothesis. The aim of this paper is to provide the upper bounds for the exceptional set
for this conjecture under the assumption of some heuristic hypotheses.

1. Introduction

A well known conjecture about the distribution of primes asserts that for every positive

integer n, the interval [n2, (n+1)2] contains at least one prime. The proof of this conjecture

is quite out of reach at present, even under the assumption of the Riemann Hypothesis.

However it is not difficult to prove unconditionally that the conjecture holds for almost all

positive integers n. Indeed, we can prove that almost all intervals of the type [n2, (n+1)2]

contain the expected number of primes.

This paper is concerned with the exceptional set for the distribution of primes between

two consecutive squares, under the assumption of some unproved heuristic hypotheses.

The basic idea was to connect the exceptional set for the distribution of primes in in-

tervals of the type [n2, (n + 1)2] to the exceptional set of the asymptotic formula for the

distribution of primes in short intervals. The properties of the latter set, see D. Bazzanella

and A. Perelli [2], were thus used to obtain the desired results.

In a previous paper, see D. Bazzanella [1], the author proved that each of the intervals

[n2, (n+1)2] ⊂ [1, N ], with at most O(N1/4+ε) exceptions, contained the expected number

of primes, for every constant ε > 0. Under the assumption of the Riemann Hypothesis,

the author also proved that each of the intervals [n2, (n + 1)2] ⊂ [1, N ], with at most

O(f(N) log2N) exceptions, contained the expected number of primes, for every real valued

function f(x)→∞ arbitrarily slowly.

Under the assumption of a stronger hypotheses than the Riemann Hypothesis, we

would expect to obtain smaller bounds for the exceptional set. Infact, assuming a strong

form of the Montgomery Conjecture, the author proved that, with n sufficiently large, each

of the intervals [n2, (n+1)2] contained the expected number of primes without exceptions,
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see [1]. On the other hand, under the assumption of a weaker hypotheses than the Riemann

Hypothesis, we would expect to achieve upper bounds of sizes between O(f(N) log2N)

and O(N1/4+ε).

In order to estimate some sums which arose in our argument we employed the counting

functions N(σ, T ) and N∗(σ, T ). The former is defined as the number of zeros ρ = β + iγ

of the Riemann zeta function which satisfy σ ≤ β ≤ 1 and |γ| ≤ T , while N∗(σ, T ) is

defined as the number of ordered sets of zeros ρj = βj + iγj (1 ≤ j ≤ 4), each counted

by N(σ, T ), for which |γ1 + γ2 − γ3 − γ4| ≤ 1. As D. Bazzanella and A. Perelli [2] we

considered the heuristic assumption that there exists a constant T0 such that

(1.1) N∗(σ, T )� N(σ, T )4

T
T ε

for every T ≥ T0 and arbitrarily small ε > 0, which is close to being the best possible, in

view of the trivial estimate

N∗(σ, T )� N(σ, T )4

T
.

Recall that the Ingham–Huxley density estimate [5, Theorem 11.1] implies

(1.2) N(σ, T )�


T 3(1−σ)/(2−σ)+ν 1

2
≤ σ ≤ 3

4

T 3(1−σ)/(3σ−1)+ν 3

4
≤ σ ≤ 1

,

for arbitrarily ν > 0. Thus from (1.1) it follows that

(1.3) N∗(σ, T )�


T (10−11σ)/(2−σ)+ε 1

2
≤ σ ≤ 3

4

T (13−15σ)/(3σ−1)+ε 3

4
≤ σ ≤ 13

15

.

Remark. The estimate of N∗(σ, T ) proved by D. R. Heath-Brown, see [5, Lemma 12.7],

implies that the upper bound (1.3) holds for 1/2 ≤ σ ≤ 2/3.

Assuming that (1.3) holds also for σ > 2/3 we obtain the first result.

Theorem 1.1. Let ε > 0 be arbitrarily small and assume (1.3). Then each of the intervals

[n2, (n + 1)2] ⊂ [1, N ], with at most O(N1/5+ε) exceptions, contains the expected number

of primes.

If we assume the Lindelöf hypothesis, which states that, for every η > 0, the Riemann

Zeta-function satisfies

ζ(σ + it)� tη (1/2 ≤ σ ≤ 1, t ≥ 2),

we can get the following stronger result.
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Theorem 1.2. Let ε > 0 be arbitrarily small and assume the Lindelöf hypothesis. Then

each of the intervals [n2, (n + 1)2] ⊂ [1, N ], with at most O(N ε) exceptions, contains the

expected number of primes.

Finally we assume the Density Hypothesis, which states that for every η > 0 the

counting function N(σ, T ) satisfies

N(σ, T )� T 2(1−σ)+η (1/2 ≤ σ ≤ 1),

and we thus obtain our last result.

Theorem 1.3. Let ε > 0 be arbitrarily small, assume the Density Hypothesis and (1.1).

Then each of the intervals [n2, (n+1)2] ⊂ [1, N ], with at most O(N ε) exceptions, contains

the expected number of primes.

2. Definitions and preliminary lemmas

We will always assume that n, x and N are sufficiently large as prescribed by the

various statements, and ε > 0 is arbitrarily small and not necessarily the same at each

occurrence. As in [2] we define a set related to the asymptotic formula

(2.1) ψ(x+ h(x))− ψ(x) ∼ h(x) (x→∞)

as

Eδ(N, h) = {N ≤ x ≤ 2N : |ψ(x+ h(x))− ψ(x)− h(x)| ≥ δh(x)},
where h(x) is an increasing function such that xε ≤ h(x) ≤ x for some ε > 0. It is clear that

(2.1) holds if and only if for every δ > 0 there exists N0(δ) such that Eδ(N, h) = ∅ for every

N ≥ N0(δ). Hence for small δ > 0, N tending to∞ and h(x) which is suitably small with

respect to x, the set Eδ(N, h) contains the exceptions, if any, to the expected asymptotic

formula for the number of primes in short intervals. Our first lemma is concerned with

the structure of the exceptional set above.

Lemma 2.1. Let δ > 0, xε ≤ h(x) ≤ x, for some ε > 0 and N be sufficiently large

depending on the function h(x). If x0 ∈ Eδ(N, h) then there exists an effective constant c,

depending on δ and h(x), such that

[x0, x0 + c · h(N)] ∩ [N, 2N ] ⊂ Eδ/2(N, h).

Lemma 2.1 may be proved along the same lines as Theorem 1 of [2], and essentially

says that if we have a single exception in Eδ(N, h), with a fixed δ, then we necessarily have

an interval of exceptions in Eδ/2(N, h). Moreover we define a set related to the asymptotic

formula

(2.2) ψ((n+ 1)2)− ψ(n2) ∼ 2n (n→∞)
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as

Aδ(N) = {
√
N ≤ n ≤

√
2N : |ψ((n+ 1)2)− ψ(n2)− (2n+ 1)| ≥ δ(2n+ 1)},

that contains the exceptions, if any, to the expected asymptotic formula for the number

of primes in intervals of the type [n2, (n + 1)2] ⊂ [N, 2N ]. The main tool of the proofs is

the following lemma.

Lemma 2.2. For h(x) = 2
√
x+ 1 and every δ > 0 we have

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

+ 1.

Proof. Let n ∈ Aδ(N) and put x = n2 ∈ [N, 2N ] . From the definition of the set Aδ(N)

we get

|ψ((n+ 1)2)− ψ(n2)− (2n+ 1)| ≥ δ(2n+ 1)

and thus

|ψ(x+ h(x))− ψ(x)− h(x)| ≥ δh(x),

which implies x ∈ Eδ(N, h). From Lemma 2.1 follows that there exists an effective constant

c such that

[x, x+ c · h(x)] ∩ [N, 2N ] ⊂ Eδ/2(N, h).

Let m ∈ Aδ(N), m > n. As before we can define y = m2 ∈ [N, 2N ] and obtain, again by

Lemma 2.1, that

[y, y + c · h(y)] ∩ [N, 2N ] ⊂ Eδ/2(N, h).

If we choose c < 1, we get

y − x = m2 − n2 ≥ (n+ 1)2 − n2 = 2n+ 1 = 2
√
x+ 1 > ch(x)

and thus

[x, x+ c · h(x)] ∩ [y, y + c · h(y)] = ∅.
Hence the lemma is proved, since for every n ∈ Aδ(N) and x = n2, with at most one

exception, we have

[x, x+ c · h(x)] ⊂ [N, 2N ].

�

The next lemma concerns the conditional estimate for the fourth power mean value of

the function ψ(y) in short intervals.

Lemma 2.3. Assume the Lindelöf hypothesis and let ε > 0 be arbitrarily small. Then

there exists a function Σ(y, T ) such that for every ε > 0 we have

(2.3)

∫ 2N

N

∣∣∣ψ (y +
y

T

)
− ψ(y)− y

T
+ Σ(y, T )

∣∣∣4 dy � N4+εT−3
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and

(2.4) Σ(y, T )� y

T log y
,

uniformly for N ≥ 2, 1 ≤ T ≤ N and N ≤ y ≤ 2N .

Lemma 2.3 is due to G. Yu [7, Lemma B]. The interesting consequence of this lemma is

that it allows to obtain the following conditional bound for the exceptional set Eδ(N, h),

with h(x) = 2
√
x+ 1.

Lemma 2.4. Assume the Lindelöf hypothesis, let h(x) = 2
√
x + 1 and let ε > 0 be

arbitrarily small. Then

(2.5) |Eδ(N, h)| � N1/2+ε.

Proof. In order to prove the lemma, we subdivide [N, 2N ] into O(log2N) intervals of type

Ij = [Nj, Nj + Y ] with

N ≤ Nj < 2N and Y � N

log2N
.

For every y ∈ Eδ(N, h) we have

|ψ(y + h(y))− ψ(y)− h(y)| � N1/2

and then

|Eδ(N, h)|N2 �
∫

|ψ(y + h(y))− ψ(y)− h(y)|4 dy

Eδ(N,h)

(2.6)

�
∑
j

∫
|ψ(y + h(y))− ψ(y)− h(y)|4 dy,

Ejδ(N,h)

where Ej
δ(N, h) = Eδ(N, h) ∩ [Nj, Nj + Y ].

If we choose Tj = N
1/2
j /2 we have, by Lemma 2.3, that there exist functions Σj(y, Tj)

satisfy the conditions (2.3) and (2.4), for all values of j. From the Brun–Titchmarsh

theorem, see H. L. Montgomery and R. C. Vaughan [6], we can deduce(
ψ(y + h(y))− ψ(y)− h(y)

)
−
(
ψ(y +

y

Tj
)− ψ(y)− y

Tj
+ Σj(y, Tj)

)
� y

Tj log y
,
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for every j and every y ∈ Ej
δ(Xn, θ). Then from (2.6) it follows that

|Eδ(N, h)|N2 �
∑
j

∫ ∣∣∣∣ψ(y +
y

Tj
)− ψ(y)− y

Tj
+ Σj(y, Tj)

∣∣∣∣4 dy

Ejδ(N,h)

+
∑
j

∫ ∣∣∣∣ y

Tj log y

∣∣∣∣4 dy

Ejδ(N,h)

�
∑
j

∫ 2N

N

∣∣∣∣ψ(y +
y

Tj
)− ψ(y)− y

Tj
+ Σj(y, Tj)

∣∣∣∣4 dy

+ |Eδ(N, h)| N2

log4N

which implies

(2.7) |Eδ(N, h)|N2 �
∑
j

∫ 2N

N

∣∣∣∣ψ(y +
y

Tj
)− ψ(y)− y

Tj
+ Σj(y, Tj)

∣∣∣∣4 dy.

At this point we use Lemma 2.3 to get

|Eδ(N, h)|N2 �
∑
j

∫ 2N

N

∣∣∣∣ψ(y +
y

Tj
)− ψ(y)− y

Tj
+ Σj(y, Tj)

∣∣∣∣4 dy

�
∑
j

N4+εT−3j

� N5/2+ε

and this leads to (2.5). �

3. Proof of the theorems

Let h(x) = 2
√
x+1 and use the classical explicit formula, see H. Davenport [3, chapter

17], to write

(3.1) ψ(x+ h(x))− ψ(x)− h(x) = −
∑
|γ|≤T

xρcρ(x) +O

(
N log2N

T

)
,

uniformly for N ≤ x ≤ 2N , where 10 ≤ T ≤ N , ρ = β+ iγ runs over the non-trivial zeros

of ζ(s) and

cρ(x) =
(1 + h(x)/x)ρ − 1

ρ
.

Let

(3.2) T =
√
N log3N
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and note that

(3.3) cρ(x)� min

(
1√
N
,

1

|γ|

)
.

If we follow the method of D. R. Heath-Brown we can find a constant 0 < u < 1 such

that ∑
|γ|≤T, β>u

xρcρ(x)�
√
N

logN
,

see [5, pag. 319].

Remark. More precisely from (3.2) it follows that we can choose 5/6 ≤ u < 1. Note that

under the assumption of the Density Hypothesis we have the weaker condition 11/14 ≤
u < 1.

Thus we have

ψ(x+ h(x))− ψ(x)− h(x) = −
∑

|γ|≤T, β≤u

xρcρ(x) +O

( √
N

logN

)
and then

(3.4) |Eδ(N, h)|N2 �
∫ 2N

N

∣∣∣∣∣∣
∑

|γ|≤T, β≤u

xρcρ(x)

∣∣∣∣∣∣
4

dx.

To estimate the fourth power integral we divide the interval [0, u] into O(logN) subinter-

vals Ik of the form

Ik =

[
k

logN
,
k + 1

logN

]
.

By the Hölder inequality we have∣∣∣∣∣∣
∑

|γ|≤T, β≤u

xρcρ(x)

∣∣∣∣∣∣
4

� log3N
∑
k

∣∣∣∣∣∣
∑

|γ|≤T, β∈Ik

xρcρ(x)

∣∣∣∣∣∣
4

.

Following again the method of D. R. Heath-Brown, we can get

(3.5)

∫ 2N

N

∣∣∣∣∣∣
∑

|γ|≤T, β≤u

xρcρ(x)

∣∣∣∣∣∣
4

dx� N−1+ε max
σ≤u

N4σM(σ, T ),

where

M(σ, T ) =
∑

β1,...,β4≥σ

|γ1|≤T,...,|γ4|≤T

1

1 + |γ1 + γ2 − γ3 − γ4|

and

(3.6) M(σ, T )� N∗(σ, T ) logN,
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see [5, p. 336]. From (3.4), (3.5) and (3.6) it follows that

(3.7) |Eδ(N, h)| � N−3+ε max
σ≤u

N4σN∗(σ, T ).

To prove Theorem 1.1 we assume (1.3). Then we write

|Eδ(N, h)| �


N−3+ε max

σ≤u
N4σT (10−11σ)/(2−σ)+ε 1

2
≤ σ ≤ 3

4

N−3+ε max
σ≤u

N4σT (13−15σ)/(3σ−1)+ε 3

4
≤ σ ≤ 13

15

.

The above upper bound for the exceptional set attains its maximum at σ = 3/4, so we

get

|Eδ(N, h)| � N7/10+ε,

for every δ > 0. From Lemma 2.2 we conclude

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

+ 1� N1/5+ε,

for every δ > 0. Then the proof of Theorem 1.1 is complete.

Remark. In Theorem 1.1 we need to assume the upper bound (1.3) only for (139 −√
761)/160 ≤ σ ≤ 5/6. For smaller values of σ the estimate of N∗(σ, T ) proved by

D. R. Heath-Brown, see [5, Lemma 12.7], is enough and the bigger values are not involved

in (3.7).

To prove Theorem 1.2 we assume the Lindelöf hypothesis. By Lemma 2.4 we have (2.5)

and then, again by Lemma 2.2, we obtain that

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

+ 1� N ε,

for every δ > 0. Then Theorem 1.2 is proved.

In order to prove Theorem 1.3 we follow the proof of Theorem 1.1 until the equation

(3.7). Then we use (1.1) and the Density Hypothesis to have

|Eδ(N, h)| � N−7/2+ε
(

max
σ≤u

NσN(σ, T )

)4

� N−7/2+ε
(

max
σ≤u

NσT 2(1−σ)
)4

� N1/2+ε.

By Lemma 2.2, we can conclude that

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

+ 1� N ε,

for every δ > 0, and this complete the proof of Theorem 1.3.
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