
GPU Acceleration for Statistical Gene Classification
Alfredo Benso, Stefano Di Carlo, Gianfranco Politano, and Alessandro Savino

Politecnico di Torino, I-10129, Torino, Italy
Department of Control and Computer Engineering

email: {alfredo.benso,stefano.dicarlo,gianfranco.politano, alessandro.savino}@polito.it

Abstract—The use of Bioinformatic tools in routine clinical
diagnostics is still facing a number of issues. The more complex
and advanced bioinformatic tools become, the more performance
is required by the computing platforms. Unfortunately, the cost
of parallel computing platforms is usually prohibitive for both
public and small private medical practices. This paper presents a
successful experience in using the parallel processing capabilities
of Graphical Processing Units (GPU) to speed up bioinformatic
tasks such as statistical classification of gene expression profiles.
The results show that using open source CUDA programming
libraries allows to obtain a significant increase in performances
and therefore to shorten the gap between advanced bioinformatic
tools and real medical practice.

Index Terms—GPU acceleration, gene expression, statistical
classification, clinical diagnostics

I. INTRODUCTION

Over the past few years, the amount of biological infor-
mation generated by the scientific community has explosively
grown thanks to important advances in both molecular biology
and genomic technologies. To be fruitfully analyzed and
exploited, this vast amount of data requires both advanced
specialized tools and powerful computing platforms. Bioinfor-
matic is the computer science discipline that strives to solve
these problems. A common characteristic of Bioinformatic
algorithms is therefore the high data dimensionality and the
repetitive execution, either sequential or recursive, of heavy
computational cycles. One example is DNA microarray anal-
ysis, one of the fastest-growing technologies in the field of
genetic research. DNA microarrays are small solid supports,
e.g., membranes or glass slides, on which sequences of DNA
are fixed in an orderly arrangement. Tens of thousands of DNA
probes can be attached to a single slide and used to analyze
and measure the activity of genes. Scientists are using DNA
microarrays to investigate several phenomena from cancer to
pest control. DNA microarrays allow to measure changes in
gene expression and thereby learn how cells respond to a
disease or to a particular treatment [1], [2]. However, due to
the large amount of information on their surface, microarrays’
analysis is a complex task. It is in fact very expensive, in terms
of computational costs, to thoroughly analyze all variables and
their correlations. For example, in statistical classification of
gene expression data, most classifiers need features reduction
in order to reduce the complexity of the task and make it
manageable by the available computational platforms [3], [4].

This paper proposes to exploit off-the-shelf Graphic Proces-
sor Units (GPUs) to accelerate DNA Microarray classification.
The main benefit of having accelerated classification algo-

rithms stems in the possibility of avoiding features reduction,
thus minimizing the probability of discarding information
potentially useful for the analysis. A Graphics Processing
Unit is a processor commonly available in modern graphics
adapters, and designed to efficiently compute floating point
operations. Today, parallel GPUs have begun making compu-
tational inroads against the CPU, and a subfield of research,
dubbed GPGPU for General Purpose Computing on GPU,
has found its way into diverse fields [5], [6], [7]. Parallel
distribution of tasks among several dedicated cores heavily
improves time performances of an algorithm.

In this paper, a parallel classification algorithm has been
developed on top of Gene Expression Graphs (GEG) presented
in [8]. The proposed GEG based classifier, already presented
in [8] in its non-parallel version, works by comparing GEGs
actually represented by adjacency matrices. This perfectly
matches two critical requirements of a “GPU enabled” al-
gorithm: first, dealing with large floating point matrices, and
second parallelizing repetitive arithmetical operations among
identically structured data.

The paper is organized as follows: section II describes the
background of the target algorithm; Section III presents the
parallel computational platform and the parallelized algorithm.
Results are presented in Section IV, while Section V concludes
the paper suggesting future possible developments of this
work.

II. GEG BASED CLASSIFIER

A. Gene Data Modeling

A microarray experiment typically assesses a large number
of DNA probes (e.g., genes, cDNA clones, or Expressed
Sequence Tags - ESTs) providing gene expression levels under
multiple conditions. The multivariate response of a microarray
can be utilized as an electronic fingerprint to characterize a
wide range of phenomena, and to build prediction algorithms
for classifying diseases based on gene expression information.
This process involves several steps including Signal pre-
processing of raw microarray scans, Data modeling, Prediction
(e.g., classification), and Validation [1], [9].

In [10] and [8] we proposed a new graph-based data model
for groups of gene expression profiles built from raw gene
expression measures. The model is constructed in order to
allow efficient classification, and to avoid the influence of pre-
processing steps on the prediction process.

In particular, a set of microarray experiments Tr can be
modeled by a non-oriented weighted graph (Gene Expression

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11415825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Graph) GEGi = (Vi, Ei) where:
• each vertex vx ∈ Vi represents a gene. Only vertices

representing relevant genes are included in the graph;
• each edge (u, v) ∈ Ei ⊆ Vi × Vi connects pairs

of vertices representing genes that are co-relevant, i.e.,
concurrently relevant, within a single sample. It therefore
models relationships among relevant genes of a sample.
If n genes are co-relevant in the same sample, each
corresponding vertex will be connected with an edge to
the remaining n− 1 ones, thus creating a clique;

• the weight wu,v of each edge (u, v) ∈ Ei corresponds
to the number of times genes u and v are co-relevant in
the same sample over the set of samples. In a graph built
over a single experiment, each edge will be weighted as
1. Adding additional microarrays will modify the graph
by introducing additional edges and/or by modifying the
weight of existing ones.

The identification of relevant genes is usually performed by
comparing diseased and healthy tissues. Complementary DNA
(cDNA) microarrays [11], for example, provide for each gene
two expressions using two different fluorescence intensities:
one labeled Cy5 producing a red fluorescence and associated
with a diseased condition, and one labeled Cy3 producing a
green fluorescence and associated with a healthy condition.
The predominance of one of the colors indicates the abundance
of the corresponding DNA sequence, allowing us to introduce
the concept of over-expressed or silenced genes. On the other
hand, equal intensities indicate no peculiar information in
the corresponding gene expression. The (binary) logarithm
of the ratio Cy5/Cy3 (log-ratio) is usually used to express
differential-expression of genes. A positive log-ratio identifies
over-expressed genes while a negative log-ratio indicates a
silenced gene.

A Cumulative Relevance Count (CRC) can be computed
for each node v (gene) of the graph to reflect its expression
trend across the experiments as follows:

CRCv =
�

∀sample∈Tr

Relv (sample) (1)

where Relv(sample) is +1 if v is over-expressed in sample,
-1 if v is silenced in sample, and 0 if v is not relevant in
sample. A gene is considered relevant iff its CRC is not
zero.

Fig. 1 shows an example of GEG construction from a set
Tr of six samples (Fig. 1-a). Each sample includes 4 genes,
and for each gene the Cy5 and Cy3 expression components are
provided. Fig. 1-b shows the log-ratio calculated for each gene
in each sample, and the indication of over-expressed relevant
genes, silenced relevant genes, and non-relevant genes. Fig. 1-c
shows the corresponding GEG, where each vertex corresponds
to a gene that is relevant in at least one experiment. To give
an example of how to compute the CRC for each vertex, and
the weight of each arc, let us look in more details at vertices
C and D. Looking at the log-ratio table, one can see that
gene C is over-expressed in 3 experiments (Exp. 1, 3, and 5),

GEM =

Exp/Gene
Exp.1
Exp.2
Exp.3
Exp.4
Exp.5
Exp.6





A(Cy5, Cy3) B(Cy5, Cy3) C(Cy5, Cy3) D(Cy5, Cy3)
5000, 10 20, 11100 15000, 80 90, 13000
8000, 20 20, 12000 1000, 1050 100, 12000

10000, 10099 30, 30000 11000, 30 40, 1900
1200, 20 15, 10 10, 100 8000, 50
5000, 100 20, 4500 10500, 30 12500, 70
7000, 15 70, 5500 10100, 10050 40, 12500





Exp/Gene
Exp.1
Exp.2
Exp.3
Exp.4
Exp.5
Exp.6





A B C D
8.97 −9.12 7.55 −7.17
8.64 −9.23 −0.07 −6.91
−0.02 −9.97 8.52 −5.57
5.90 0.58 −3.32 7.32
5.64 −7.82 8.45 7.48
8.87 −6.30 0.01 −8.29





(b) Log-ratios matrix and relevance with !=1, and "=1.

(a) Initial training set expression levels represented as a gene expression matrix

A
CRC:

5

B
CRC:

-5

C
CRC:

2

D
CRC:

-2

5

3

4

3

4

5

(c) Gene expression graphs.Silenced nodes indicate nodes with negative CRC, i.e., nodes silenced in

the majority of the samples, while over expressed node represent nodes with positive CRC, i.e.,

nodes over-expressed in the majority of the samples.

over-expressed

silenced

over-expressed

silenced

Figure 1. GEG construction example starting from the initial set of gene
expression profiles, to the final graph construction

silenced in one experiment (Exp. 4), and non-relevant in two
experiments (Exp. 2, and 6). The CRC of node C in the GEG
is therefore CRCC = 3−1 = 2. Gene D, instead, is silenced in
4 experiments, and over-expressed in 2 experiments: its CRC
is therefore -2. To compute the weight of the edge (C, D) it
is enough to count the number of experiments in which both
genes are relevant (this time without taking into account the
sign). They are experiments 1, 3, 4, and 5; the weight wC,D

is therefore 4.
If new samples become available from new experiments

referring to the same pathology, the related information can be
easily added to the corresponding GEG without any additional
memory requirement; GEGs memory occupation is in fact
determined by the number of considered genes, only, and is
independent of the number of experiments in the data-set.

B. Classification

Gene Expression Graphs represent an excellent data struc-
ture for building efficient classifiers. The classifier works by
structurally comparing pairs of GEGs: one representing a given
pathology (GEGpat), built from a corresponding training set

Trpat of known samples, and one representing the sample
�s to classify (GEGs). This comparison measures how much
GEGs is similar (or can be overlapped) to GEGpat in
terms of over-expressed/silenced genes (CRC of vertices), and
relationships between gene expressions (weight of edges). The
result of this operation is a proximity score (Ps ∈ [−1, 1] ⊂
R), computed according to eq. 2, measuring the similarity
between the two graphs.

Ps(GEGpat, GEGs) =
SMS(GEGpat, GEGs)

MMS(GEGpat)
(2)

SMS (sample matching score) analyzes the similarity of
GEGpat and GEGs considering those vertices (genes) ap-
pearing in both graphs, only.

SMS is computed as:

SMS (GEGpat, GEGs) =

=
�

∀(i,j)∈Es∩Epat

��
Zi · wi,j · |Zi|

|Zi| + |Zj |

�
+

+
�

Zj · wi,j · |Zj |
|Zi| + |Zj |

��
(3)

where (i, j) are edges appearing in both GEGs and
GEGpat, while Zx is the z-Score of vertex vx computed as:

Zx = CRCxpat · CRCxs (4)

By construction, each vertex vx of a GEG has CRCx < 0
if gx is silenced in the majority of the samples of its training
set, CRCx = 0 if gx is actually not relevant in its training set,
or CRCx > 0 if gx is over-expressed in the majority of the
samples of its training set. The z-Score may therefore assume
the following values:

• Zx > 0: if gx is silenced/over-expressed in both GEGs

and GEGpat;
• Zx < 0: if gx is silenced in GEGs and over-expressed

in GEGpat, or viceversa;
• Zx = 0: if gx is not relevant either in GEGs, or in

GEGpat.
MMS (maximum matching score) is the maximum SMS that
would be obtained with all genes in GEGs perfectly matching
all genes in GEGpat, with the z-Score of each gene always
positive.

MMS (GEGpat) =

=
�

∀(i,j)�Epat

�
wi,j ·

CRC2
i + CRC2

j

|CRCi| + |CRCj |

�
(5)

C. Classifier software implementation

Since the GEG classifier has to compare each pathology
(represented by a GEGpat) with each sample to classify, the
memory required for each comparison has to be enough to
store two GEGs, each of several thousands of vertices (genes).
In order to reduce the required amount of memory GEGs are
never explicitly represented as a matrix or a list. Instead, we
use a matrix where each line stores the genes’ relevance of a
single experiment. Therefore the actual software representation
of a GEG is a matrix of experiments and their gene relevance
values.

Algorithm 1 shows the MMS computation algorithm. For
each row of the GEG matrix (line 4) the MMS contribution of

Algorithm 1 MMS algorithm
1: MMS (n_rows, n_genes, GEGMatrix, CRCVect)
2: mms = 0
3: for r=0 to n_rows-1 do
4: for i=0 to n_genes-1 do
5: for j=i+1 to n_genes - 1 do
6: mms += MMScontribution(GEGMatrix[r][i],

GEGMatrix[r][j])
7: end for
8: end for
9: end for

10: return mms

Algorithm 2 SMS algorithm
1: SMS (n_rows, n_genes, GEGMatrix, CRCVect, SAM-

PLEVect)
2: sms = 0
3: for r=0 to n_rows-1 do
4: for i=0 to n_genes-1 do
5: for j=i+1 to n_genes - 1 do
6: sms += SMScontribution(GEGMatrix[r][i], GEG-

Matrix[r][j], SAMPLEVect[i], SAMPLEVect[j])
7: end for
8: end for
9: end for

10: return sms

each gene is computed (line 7) w.r.t. the set of the remaining
genes (line 6).

Resorting to the same approach, the SMS evaluation algo-
rithm is defined by Algorithm 2. The GEG matrix exploration
remains the same, where the sample vector (SAMPLEVect
in the algorithm) is used to compute each SMS contribution,
according to eq. 3.

III. GPU ACCELERATION

A. CUDA

Nvidia’s Compute Unified Device Architecture (CUDA)
[12] is a software platform for massively parallel high-
performance computing on the company’s powerful GPUs.
CUDA includes C/C++ software- development tools, function
libraries, and a hardware- abstraction mechanism that hides the
GPU hardware from developers. High-performance computing
on GPUs has attracted an enthusiastic following in the aca-
demic community enabling the use of heterogeneous systems
(i.e., CPU+GPU) where CPU & GPU are separate devices with
separate DRAMs [13]. The real breakthrough is that CUDA
can be implemented on most off-the-shelf Nvidia video cards
installed in most personal computers and therefore available
to researchers as well as private and public medical practices.

An important feature of CUDA is that application program-
mers do not write threaded code explicitly. A hardware thread
manager handles parallelism automatically, a vital property
when multithreading scales to thousands of threads. Although

CUDA automates thread management, it does not entirely
relieve developers from thinking about threads. Developers
must analyze their algorithms to determine how best to divide
the data into smaller chunks for distribution among the thread
processors. This data layout or “decomposition” does require
programmers to find the optimal numbers of threads and
blocks that will keep the GPU fully utilized.

Downsides are few. Mainly, GPUs only recently became
fully programmable devices, so their programming interfaces
and tools are somewhat immature. Moreover, single-precision
floating point is sufficient for consumer graphics, so GPUs do
not yet support double precision.

Parallel portions of an application are executed on the device
as kernels. They are functions directly called from the CPU
that run on the GPU. One kernel is executed at a time and it is
- by CUDA using the abstractions of threads, blocks and grids.
The GPU chip is organized as a collection of multiprocessors
(MPs), with each multiprocessor responsible for handling one
or more blocks in a grid. A block is never divided across
multiple MPs and each MP is further divided into a number
of stream processors (SPs) which handle one or more threads
in a block. Main CUDA’s abstraction components can be
summarized as follow:

• Thread: The atomic execution step, managed by an SP.
Each thread uses a local index to access global data ele-
ments such that the collection of all threads cooperatively
processes the entire data set. The amount of threads is
limited to 512 due to the small number of registers that
can be allocated across all the threads running in all the
blocks assigned to an MP.

• Block: A group of threads, handled by the MP. Their
execution within a block is completely masked and they
could execute concurrently or serially and in no particular
order.

• Grid: A group of blocks, entirely handled by a single
GPU chip. There’s no synchronization among blocks.

CUDA software is compatible with several Nvidia’s graphic
adapters, and it scales autonomously to perfectly fit the amount
of MPs available on each GPU. However, in order to improve
parallelism efficiency, it is mandatory to keep the GPU multi-
processors equally busy, splitting the computation to maximize
the amount of thread and blocks, and concurrently keeping
resource usage low enough to support multiple active thread
blocks per multiprocessor. In fact, increasing occupancy itself
does not necessarily increase performance, thus, to obtain a
good trade off it is necessary to parametrize the application
through the two levels of parallelization.

B. Acceleration

This section describes how the implementation of the classi-
fication algorithm proposed in section II-C can be accelerated
using CUDA programming. To obtain an effective increment
of computation performances, we need to reduce the iteration
loops, which are usually CPU intensive tasks. Fortunately,
because loops iterations work on sub-portion of the memory

Algorithm 3 CUDA MMS algorithm
1: MMS (n_rows, n_genes, GEGMatrix, CRCVect)
2: dimBlock = f(n_gpu, n_threads)
3: mms = 0
4: for r=0 to n_rows-1 do
5: generate BLOCKS of (n_genes / dimBlock)
6: for all block in BLOCKS do
7: elaborate MMS contribute of genes in block
8: update mms with block contributes
9: end for

10: end for
11: return mms

structure, they are quite easy to be parallelized; each paral-
lelized iteration has to be designed to work on a memory
segment independent from the ones of the other iterations.
In this way the elaboration can be done in parallel without
affecting the reliability of the final result.

Looking at the algorithms described in Section II-C, we
can notice that the final result is composed of different con-
tributions, one for each row. There is no interaction between
rows, hence, each contribution can be evaluated separately and
in parallel. Figure 2 provides the work-flow structure of our
approach to the GEG algorithms. In the first step, the original
GEG memory structure is copied from the system memory
to the GPU memory. This is part of the CUDA initialization
and it allows to pass the whole classification effort from the
main system to the GPU system. Once the GPU memory is
initialized, Kernel 1 extracts, one by one, each row of the GEG
which represents the minimum subset of the GEG structure
identified for the actual parallel elaboration. The Kernel 1
instantiates a second kernel (Kernel 2) for each row. Kernel
2 performs the partition of each row in blocks, each referring
to a subset of gene expression values. Because each gene
contribution is computed in relationship to its successors, a
set of threads is defined: for a single gene, a thread elaborates
the relation with the successors (the function F). Once a thread
ends, it returns the result to Kernel 2 which reconstructs the
final result to Kernel 1. All threads are defined among MPs
and SPs according to the CUDA architecture.

This approach is summarized in Algorithm 3 for the MMS
algorithm. Lines 2 and 3 represent the Kernel 1 initialization of
the process by preparing the MMS elaboration (line 3) and
extracting each single row (line 4). Once Kernel 2 receives
the row, it generates the required blocks (line 5). This step is
directly influenced by the number of GPUs available and the
number of threads handled by MPs (line 2), as explained in
the previous section. Each stream processor executes lines 6
and 7 for a given element of the block. Line 7 implements
lines 5 and 6 of the original MMS algorithm (Algorithm 1)
in which genes are set with the element associated to each
thread. Finally, line 8 is performed by Kernel 1 to account for
each block contribute.

The same approach used for the MMS has been used to
write the parallel version of the SMS algorithm. In both

G2 G3 G4 ... GPG1
row 1

row 2

...

row N

GEG File

Kernel 1
G2 G3 G4 ... GPG1

row 1

row 2

...

row N

Kernel 2
G1 G2 G3
A B C D E F Grow X

G4 G5 G6 G7 ... GP

F

E

D

Threads

Block 1

B C DA

C

B

Block 2

E F

C D E F

D E F

E F

F

G

G

G

G

G

G

...

Th.1

Th.2

Th.3

Th.1

Th.2

Th.3

for x in B..G {
 F(A,x)
}

for x in C..G {
 F(B,x)
}

for x in D..G {
 F(C,x)
}

1

2

Figure 2. CUDA GPU Workflow

cases, the CUDA architecture allows to suppress the loop for
single gene contribution by defining a parallel elaboration of
all of them. The scalability of the parallel approach is easily
identified by the number of blocks which can be defined,
according to the video card architecture.

IV. RESULTS

This section shows the results of the comparison between
the standard GEG implementation and its parallel version,
and also analyzes how the improvement depends on the code
parametrization. The comparison between the two different
implementation of the GEG has been calculated for both SMS
and MMS.

Tests have been performed on a Quadro FX 1700 by
NVidia video card (512MB Memory Interface, 128-bit Graphic
Memory Bandwidth, 12.8 GB/sec. Graphics Bus, 32 CUDA
Parallel Processor Cores) [14]. The training sets used to build
the different GEGs come from experiments run on microarray
chips of different sizes: 9K (9216 spots), 18K (18432 spots),
24K (24168 spots), 37K, and 45K (43196 spots) [11].

Figure 3 shows how the parallel implementation is always
faster than the standard version. The increase in performance is
quite constant among all the training classes, with an average
improvement of 50% w.r.t. the original version executed on the
same machine. Moreover, the similar improvement among the
different training sets also demonstrates how the complexity
and size of the GEG does not influence the advantages of the
parallelization.

The experimental data is further detailed in Table I where
we used different numbers of threads in the CUDA-based
computation of the MMS. These additional experiments were
run to study the trade-off among several combinations of
number of blocks and threads, which follow this relationship:
#Blocks = rowLength/#Threads. From the results shown
in the table it is clear how an increase of the number of threads
does not always corresponds to an increase in performances.
In our experiments, any number of threads greater than 30
resulted in very similar performance improvements. This result
demonstrates how, globally, the GEG parallelization is well

0

37.5

75

112.5

150

ALL CBF-AML DLBCL BC CLL CLLww CBCL FL HB

2, 8 4 16 32-512 Reference

Figure 3. MMS results

supported by the scaling of the CUDA’s architecture; the pres-
ence of both long (first rows in Fig.2) and short (latest rows
in Fig.2) threads keeps the calculation effort well balanced,
no matter the amount of blocks. Only when the number of
threads falls below 30, then the performance starts to decrease,
because not all MPs are completely allocated. In the extreme
situation of 2 to 8 threads, performances are in most cases even
worse than the original serial version of the algorithm. CUDA
architecture generally requires a fine tuning of both thread an
block parameters in order to reach its maximum parallelism.
The ability to correctly manage GEGs in comparable time
intervals, even in different configurations, makes it possible to
completely generalize the software’s acceleration, no matter
the specific settings of the considered device.

As a last comment we can note that a 50% improvement
could be also seen as a poor result. Nevertheless, it is necessary
to consider that in its current version the parallelization is
focused on a quite small portion of the code. The application
of the same parallelization to the remaining loops of the
algorithms proposed in section section II-C would lead to
much higher performance improvements.

Number of Threads
GEGs 2 4 8 16 32 64 128 256 512 Original Best Saving
ALL 36 54 36 19 18 17 17 18 18 34 50%
AML na na na 55 50 50 49 49 49 95 48.5%

DLBCL 19 27 18 10 9 9 9 9 9 18 50%
SBT 10 14 10 5 5 4 5 5 5 9 56%
CLL 3 5 4 2 2 2 2 2 2 4 50%

CLLww 9 14 10 5 5 5 4 5 5 9 55.5%
CBCL 49 74 49 26 24 24 24 24 25 47 49%

FL 73 111 73 39 37 36 36 36 36 71 49.5%
HB 95 143 96 51 47 46 47 47 47 102 55%

TOTAL 294 442 446 212 197 193 193 195 196 389 50.5%
* Time expressed in seconds

Table I
TIME RELATIONS

V. CONCLUSION

The parallel processing conversion of the GEG classification
algorithm proposed in this paper aims at showing how the
parallel distribution of tasks on GPU’s dedicated cores heavily
improves time performances. Due to its data structure, the
GEG classification algorithm is a very good example of
how low-cost graphic processor can be used in massive-
calculation algorithms. The time performances show an overall
time saving of 50% and, surprisingly, a low correlation with
any parametrization of the parallelization architecture. Current
work is focused on defining even better parallelization strate-
gies to obtain further performance improvements.

VI. ACKNOWLEDGMENTS

The authors wish to acknowledge and thank Alessio Ver-
cellone and Alessandro Morabito, because without their hard
work and help this work could not have been completed and
submitted in time.

REFERENCES

[1] G. Gibson, “Microarray analysis,” PLoS Biology, vol. 1, no. 1, pp. 28–
29, Oct. 2003.

[2] P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza,
J. A. Lozano, R. Armananzas, A. Santafe, G. ad Perez, and V. Robles,
“Machine learning in bioinformatics,” Briefings in Bioinformatics, vol. 7,
no. 1, pp. 86–112, Feb. 2006.

[3] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A
comprehensive evaluation of multicategory classification methods for
microarray gene expression cancer diagnosis.” Bioinformatics, vol. 21,
no. 5, pp. 631–643, Mar 2005.

[4] S. Deegalla and H. Boström, “Classification of microarrays with knn:
Comparison of dimensionality reduction methods,” in LNCS: Intelligent

Data Engineering and Automated Learning (IDEAL), vol. 4881, 2007,
pp. 800–809.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[6] D. Luebke, “Cuda: Scalable parallel programming for high-performance
scientific computing,” in Biomedical Imaging: From Nano to Macro,

2008. ISBI 2008. 5th IEEE International Symposium on, May 2008, pp.
836–838.

[7] B. Coutinho, G. Teodoro, R. Oliveira, D. Neto, and R. Ferreira, “Pro-
filing general purpose gpu applications,” in Computer Architecture and

High Performance Computing, 2009. SBAC-PAD ’09. 21st International

Symposium on, Oct. 2009, pp. 11–18.
[8] A. Benso, S. Di Carlo, G. Politano, and L. Sterpone, “Differential

gene expression graphs: A data structure for classification in dna
microarrays,” in 8th IEEE International Conference on BioInformatics

and BioEngineering (BIBE), Oct. 2008, pp. 1–6.

[9] D. B. Allison, X. Cui, G. P. Page, and M. Sabripour, “Microarray data
analysis: from disarray to consolidation to consensus,” Nature Reviews:

Genetics, vol. 7, no. 1, pp. 55–65, May 2006.
[10] A. Benso, S. Di Carlo, G. Politano, and L. Sterpone, “A graph-

based representation of gene expression profiles in dna microarrays,”
in IEEE Symposium on Computational Intelligence in Bioinformatics

and Computational Biology (CIBCB), Sept. 2008, pp. 75–82.
[11] cdna stanford’s microarray database. [Online]. Available: http://

genome-www.stanford.edu/
[12] Cuda technical specifications. [Online]. Available: http://www.nvidia.

com/object/cuda_home.html
[13] S. Wei-dong and M. Zong-min, “High-throughput sequence translation

using cuda,” in Biomedical Engineering and Informatics, 2009. BMEI

’09. 2nd International Conference on, Oct. 2009, pp. 1–5.
[14] Quadro fx - technical specifications. [Online]. Available: http:

//www.nvidia.com/page/qfx_mr.html

