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Mathematics and Mechanics of Solids
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Behaviour of cell aggregatesunder force-controlled compression.

C.Giverso' *, L. Preziosi*
! Department of Mathematics, Politecnico di Torino, Cors@®degli Abruzzi 24, 10129 Torino, Italy

Abstract.

In this paper we study the mechanical behavior of multitatlaggregates under compressive
loads and subsequent releases. Some analytical propafrties solution are discussed and nu-
merical results are presented for a compressive test undstant force imposed on a cylindrical
specimen. The case of a cycle of compressions at constaet &md releases is also considered.
We show that a steady state configuration able to bear thedaazhieved. The analytical deter-
mination of the steady state value allows to obtain meclap@rameters of the cellular structure
that are not estimable from creep tests at constant stress.

Key words. aggregate compression, living tissues mechanical beliawetasto-visco-plasticity,
creep test

1. Introduction

The description of the mechanical response of soft biokddissues to external stimuli is a chal-
lenging task, both from the biological and the mathemapoaht of view. It has been experimen-
tally observed that biological tissues show uncommon n@Echbresponses and thus they require
mathematical tools different from the ones used for inetteng6, 13]. Indeed, cellular aggregates
are really complex materials, made of multiple subelemenfiaracterized by a non-homogenous
localization of mechanical properties inside them and & higtereogeneity among them [21, 22].
The adhesion among cells is mediated by the expression émdtamn of cell adhesion molecules
(CAMs), especially cadherins, which are the major CAMs oesible for cell-cell adhesion in
vertebrate tissues. The up-regulation or down-regulaif@uch molecules is mediated by the ac-
tivation of specific signalling pathways inside the cellseTaction of such pathways may occur in
response to biochemical stimuli, to genetic alterationoogxternal mechanical stimuli (mechan-
otransduction). The identification of pathways regulatetj behaviour is of fundamental impor-
tance in order to better understand the response of cell€elhdar aggregates. However, due
to the high complexity of living systems, their identificatiis not yet accomplished and thus the
mechanical behavior of multicellular systems is still faorh being understood.

Even without taking into account the high heterogeneitieeilular composition and the complex
subcellular organization, instruments from “non-staddanechanics are required while dealing
with living systems. For instance, Ambrosi and Mollica [1, @pplied thetheory for materials
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with evolving natural configurationgtroduced in [16, 17, 18, 19], to successfully investge|
aggregate growth and remodelling (see [4] for a review).

Referring to the available literature, multicellular aggates have been studied both from the
experimental [7, 8, 9, 12, 23] and the mathematical [1, 2,33,14] point of view. In particular,
in [7, 8, 9] a fixed compressive deformation is applied to & @gfjregate and the stress exerted
by the living material on the upper plate is recorded, wheiagd12] a dense cell suspension is
subjected to shear. In [3, 13, 14] the authors proposed a Inatiie to explain the phenomena
observed during these compression experiments, usingotieept that the natural configuration
evolves, due to the rearrangement of adhesion bonds amtagvadeen the stress inside the ag-
gregate becomes too high. In fact, this reorganizationrgée® a plastic deformation. In [10] the
viscous contribution of the liquid, filling void spaces amarells, was introduced in order to fit the
stress-free evolutions of spheroids, observed in [7, 8|rfjeed, when the imposed deformation
is removed, these biological tests show that the shape eego¥ aggregates is not instantaneous,
as predicted in the models used in [1, 2, 3, 13, 14]. The moaglgsed in [10] is, instead, able
to predict the stress-release dynamics along with pressunteolled experiments (e.g. creep test),
that can not be fully explained with the models in [3, 13]. Hwer, only the case in which the
applied stress is maintained constant is presented in [10].
In order to compare the mathematical model with experimiiatiscan be easily performed on ag-
gregates, itis easier to apply a constant force rather ticanstant stress. Indeed the applied force
can be easily controlled in biological experiments. Moesp®s the aggregate is compressed, the
transverse section of the sample increases and thus thenbfwce is distributed over a bigger
area and the stress is no longer constant. In this work, we #et this leads to the achievement
of a steady state configuration able to bear the load, diftgrérom what shown in [10], in which
the assumption of constant stress leads to the total disrupt the aggregate when the external
stress is above the threshold that induces the interngjaaation of the aggregate structure. The
analytical determination of the steady state value allavgetermine mechanical parameters of the
cellular structure that are not estimable from creep tdstersstant stress.
Thus the aim of this work is to study the capability of aggtegdo reorganize in order to bear an
external load. In Section 2 we present the equations (ad&quten [10]) that describe the deforma-
tion and reorganization of a cylindrical sample of a sofidgocal material under a homogeneous
compressive force directed along thexis, F,,,(t). Some properties of the solution are proved
and numerical results are presented in Section 3 both fargdescompression test and for a cy-
cle of compressive constant forces and subsequent rejeaskisg a comparison with the results
obtained in [10] for a creep test under constant stress.

2. Model formulation

A biphasic mixture consisting of a solid and a fluid phase ihaps the most essential model of
multicellular aggregates [1, 2, 5, 11, 15]. Cells and thewoek of fibers form the solid elastic
skeleton of the mixture, whereas the fluid phase stands éomtierstitial fluid, that completely
saturates the pores of the solid and may move throughout it.
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Therefore, the multicellular aggregate is treated as aataia porous medium, in which cells are
characterized by the volume fractign and the liquid is described by the liquid volume fraction
e =1—¢e.

The mathematical model describing the response of a sdftdical specimen, treated as a porous
medium, to a uniaxial compression test is described in [@8Rg the theory for materials with
evolving natural configurations [16, 17, 18, 19].

According to that theory, we identify witl',, the deformation without cell reorganization (de-
scribing how the body is deforming locally while going frohetnatural configuratiod,, to the
actual configuratiorts,) whereas withF, we refer to the anelastic component due to the internal
re-organization of cells (evolution from the initial configtion %4, to 4,). The multiplicative
decomposition

F=F,F,, (2.1)
holds.
Under the hypothesis of a homogeneous uniaxial compressatisfying
X Y
Y= ,z2=9(t)Z,
(1) (1)

the deformation gradient from the initial to the final configiion is given by

(2.2)

1 1
- d. b) b b
¥ 'ag{ ORI W)}

where is the stretch along the direction of compression (sometioadled deformation in the
following for sake of simplicity).
The deformation gradient associated to the internal renzgtion can be represented by

VAZIORVATON

whereW,,(¢) is a measure of how much the aggregate has reorganized amaktmal configuration
has evolved. We observe that fdr,(t) = 1 we have no contribution due to rearrangement of
bonds inside the body.

We assume that the cellular component obeys a neo-Hookeawild coefficient of the isotropic
term —>.(¢.) and shear modulug, and that the viscous liquid, characterized by kinemate vi
cosityr, moves with the same velocity of the solid. Thus the contstiepart of the Cauchy stress
tensor of the cellular constituert,., and of the liquid,T, is given by

F, = diag{ ! ! \pr(t)} , (2.3)

Tc - _Ec<¢c>1 + /~LBn ; (24)
T, = 2D, (2.5)
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. 1 . . . :
beingB,, = F,F. andD = §(L + LT) the symmetric part of the velocity gradieiit= FF~!.
The total stress exerted by the specinigp, neglecting inertial terms, is

Ty =—pl+ ¢ Te+ ¢To=—(p+ dXe(9c)) I + 16 Bp +2(1 — ¢ )vD. (2.6)

For what concerns the description of plastic contributiwa refer to [13], where the rearrange-
ment of cells during the deformation of a multicellular sphds is related to the existence of a
yield condition in the macroscopic constitutive equatibthe stress tensor. Thus, the plastic evo-
lution is described by the following equation [10, 13], ling the velocity gradient associated with
the internal reorganizatiod,, = Fngl, to the deviatoric part of the Cauchy stress tensor of the
cellular constituentI’. = T, — str(T.)I,

— — (bc o T(‘bc) ! T —
Ly =D, = e |1 oy, o (FETR) &7

In (2.7) it is postulated the existence of a maximum stregs,), that can be sustained by the cell
aggregate before reorganizing. Indeed, if a proper meastine stress(¢. T'.) is below the stress
7(¢.) no remodelling occurs inside the aggregate and thus the deftyms elastically, whereas
if this threshold is overcome, the cellular body undergaemeernal reorganization which can be
modelled at a macroscopic level as a visco-plastic defaamatConsidering that in the uniaxial
compression test, the total force is applied in thdirection, the following balance holds

T,, = diag{0,0, —P,,.(t)} . (2.8)

In a creep test at constant forc®,,,;(t) = Fuppi(t)/Sapp(t) > 0 is known in the compressive
phase and it vanishes in the stress release phase.

) .
Being B,, = diag{lpp(t) vp(t) ¥ (t)} andD = diag{ L 1,1} M from (2.6) and

P(t) " p(t) T WR(t) 22 ()
(2.8) we obtain the following equation representing thdwvon of the stretch of the aggregate

¢ Pappl HDe ‘I[?; - w3

v T 3(l-¢) 31— U2

where we omit the dependence franfor sake of simplicity. Equation (2.9) can still be used to
model the stress-free evolution of the system, imposgipg = 0.
Equation (2.9) needs to be joined with equation (2.7), tgkmo account that

(2.9)

. 1 1 2) -0
T, = - P 2.1
/ udlag{ . 3,3} - (2.10)
and
L 1 19,
Lp_dlag{—ﬁ,—ﬁ,l}w—p. (2.11)

4
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and postulating an equation ftfes. T7.).

Here we consider that the frame invariant measure of thessisghe maximum shear stress magni-
tude, given by half of the difference between the maximumtaaeninimum stress in the principal
directions (Tresca’s criterion)

\1,3 3
f(¢.T,) = “;MZ)T;M : (2.12)

. Under the assumptions stated above, the evolution of teenial reorganization is given by

AL PO e (2.13)
U, BN poc Vi - 0R]) T gu

n(¢e)

Thus the foﬁovf/ing system holds for a uniaxial compressast,twith given applied streg3,,,,

where\ =

is thecell-reorganization tim€or plastic rearrangement time) and= 7(¢.).

o Pappi Hde \Ijg B ¢3

7 (RN A (RN R (244
- 1 [Us—4® 27
v, = Y [ o — M¢C]+sgn (U, — )V, (2.15)

In particular, in [10], this model is applied to the desaoptof cycles of compression and releases
under constant deformation and constant stress.

In this paper we start from the observation that the contréhe compression experiment is usu-
ally on the applied force that is related to the applied sttheoughP,,,;(t) = Fuppi(t)/Sappi(t),
whereS,,,;(t) is the surface on which the load is applied that increasemig s the specimen is
compressed. In order to define the external applied stresee@ to do some hypothesis on the
geometry of the biological sample. In this case we assumdiredcigal sample of soft biological
material, thus, due to the definition Bf we have

Fappi (1)1 (t)

Pappl(t) = WR% )

whereR, is the initial radius of the sample.

In the following we state two propositions that are usefuhtalytically study the behaviour
of the solution of the system (2.14)-(2.15). The first propas allows to eliminate thegn(-) in
(2.15).

Proposition 1. When the aggregate is compressed with any sequence of gsiver®adsr,,, (t) >
0, for t € [ty,ts41] followed by stress release far € [ty 1, touiny], Withi = 0,...,n, if
U, (0) > ¢(0), thenW,(t) > (t), vt > 0.
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The proof follows the same steps used in [10] (Propositignobpserving thatP,,,;(t) =
Foppi(t)/ Sappi(t) > 0, as compressive forces are positive.
Using Proposition 1, scaling times wisA and introducing the dimensionless quantities

- 27 ~ HAP. - Fappl<t)
- - — e F(t) =
! :ugbc 7 a V(l - ¢c) 7 (t) WR(%:“Cbc 7
the system (2.14)-(2.15) can be written in dimensionless fas
{¢ﬁmwmw—ﬁmwa
. (2.16)
U, = —[g(V,, ) — 7|4 ¥,
where Wy Wy
MWy ) =~z 9 ) o= =g = (T )y (2.17)

It can be readily noticed that, fér), ¥,,) € [0,1] x [0, 1], bothg andh are decreasing functions of
v for fixed ¥, and increasing functions df,, for fixed 1.

In order to examine the existence of stationary configunatiat will also be useful to define by
Y, (¥,,0) the unique value that inverts= 7 with respect ta) for fixed ¥, = ¥, , i.e., such that

‘II3O_¢3(‘IIPO)
Up0,8y(Vpo)) = 55
9(Vp0, ¥y (¥po)) U2 0, (V)

so that the r.h.s. of the second equation in (2.16) vanis&asilarly, we definey.(V,,) as the
unique value that inverts = I, = max;{F'(t)} with respect ta) for fixed ¥, = U, , i.e., such

that o 1/)3(\11 )
W U o)) = 0 e T p 2.1
( p,Ov ¢C( p,O)) \:[112)701p62<\llp70) M » ( 9)

so that the r.h.s. of the first equation in (2.16) vanishes.
The proposition proved in the following will be useful to dedithe yield condition in the case
of experiments under imposed bounded force and the longidehaviour of the solution.

=7, (2.18)

Proposition 2. For any given¥,,

,’7"_

U, 0) < 0o (W — Fy< . 2.20
¢y( pvo) — ¢ ( P,O) M wy(‘llp70) ( )
If Fyy > T the unique solution of the system
Uy(1)
g(\II;m ¢) = 7:7
. 2.21
{h@wM=ﬂm (221)
n (0,12 is¢y = 7/Fy and ¥, such that
7 .
h{U,, — | = Fy. 2.22
(pﬂ) » (2.22)
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Proof. Sincer is a decreasing function of, if ¢, (¥, o) < ©.(¥,0),

- g(\I]P,Oa ‘Py(\I’p,O)) T
Fry =h(Yy0,0e(Yp0)) < h(Ypo0,0,(Ypo0)) = = )

M ( p,0 ( P(])) ( p,0 y( pO)) @y(q]p’()) ¢y<@p70)

Viceversa, iffy; < ——— we have
‘Py(\l’p,o)
g(\I’p 05 ‘Py(\ljp 0)) T =

h(U, o, Y = ’ L = >y = h(V, 0, 0. (¥

( »,0 Spy( p,O)) Spy(\ljp,O) (py(‘llp,O) M ( »,0 SO ( pvo))

and because of the fact thais a decreasing function gf, we can conclude that, (¥, o) < ¢.(¥,0).
On the other hand, for smalland¥,, it is possible to prove that the curi\,,, /) = F),; behaves
like .
Fr
Y= \ij - ?‘1’12,7
while g(¥,,, ) = 7 behaves like

Y =aV,, with a<1, solution of b +7a—-1=0.

This means thatin the squéfg 1]* of the plang ¥,,, 1), for small¥,,, the implicit curvey (¥, ¢) =

7 always starts below (¥, ) = F) and equ (aW, = 1) below or above according to the cri-

terium (2.20) (see Fig. 1). Hence, Af,; > T there s at least a solution of (2.21). Uniqueness

Uy (1)
can be readily realized by observing tlgatyth and thus, substituting in the equations (2.16) the

valuey = 7/Fy;, V¥, is given by the solution of

h(‘llpvﬁ,i) :FMy
M

which is unique due to the monotonicity bf O

3. Resultsand Discussion

In this section some analytical properties of the solutibtihe system (2.14)-(2.15) are stated and
proved, along with simple simulations that clarify the babar of the aggregate subjected to an
external load.

Numerical results are shown in the case of a single commessider constant force and in the
case of a cycle of compression under constant force and guéserelease. However, we remark
that the model presented can be used also to simulate aldoameal tests with applied force
varying in time.

Therefore, analytical results are generalized to the chsebounded force depending on time,

7
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Figure 1: Vector field (arrows) corresponding to (2.16) Af; < 7/1,(1) (on the left) andFy; > 7/1y(1). The
black curve corresponds (0, ¢) = 7, i.e., ¥, (¥,) whereas the grey curve gV ,, ) = Fur, i.e.,.(U,). If
Fopp(t) < Fr < 7/1,(1), the trajectories will tend toward the grey curve. On theeothand, ifFy, > 7 /1, (1),
trajectories starting fromy = ¥, = 1 will tend to the the intersection of the two curves (squareknavhich
represents the solution of the system (2.16). The gray alelimiting region 1V is thicker because is composed of
non-isolated stationary points.

where possible.
Fig. 2 shows the results for a cyilindrical specimen of liymaterial subjected to a single compres-
sion at constant force (solid curve) and constant streshéthcurve), able to trigger the internal
reorganization. In the case of a constant force, the axfalation progressively increases, as the
aggregate reorganize. A stable deformed configurationtalbear the external load is achieved
even when internal reorganization occurs (see solid cur¥g. 2).
Conversely, when the aggregate is deformed with a condrasssable to trigger the internal reor-
ganization, the aggregate’s remodelling continues umélrulticellular body is totally squeezed
between the upper and the lower plate (see dashed curve.ir2Figndeed, if the applied stress
applied to the specimen is initially above the yield cormfitand it is maintained constant in time,
then the frame invariant measure of the stress in (2.3) iayavabove the threshold that induces
internal reorganization. Thus remodelling continueslatitbonds among cells are broken and the
aggregate is totally disrupted. On the other hand if theiag@phitial force is able to induce the
internal reorganization, as the aggregate reorganizesieiodms, the applied stress is no longer
constant (due to the increasing transverse section) aradiargtry deformation is reached.
The value of the stationary stretch is discussed in CoroBar

The following proposition focuses on the cases in which r@etiong does not occurs. We
observe that initially in the experiment§0) = W,(0) = 1, because simulations starts with an
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Figure 2: Compressions of a cylindrical sample, when a constant matdorce Iy, (solid curve) and when a
constant stress (dashed curve) are applied: reorganizaticthe left) and stretch (on the right). The simulatiores ar
performed setting the same initial stress on the cylindisipacimen of initial radiug: = 1mm (F(t = 0) = —1.1937

; Pa ~ ~
andP(t = 0) = —’f = —1.1937), whereas = 0.625 andji = 1.6.
TUPe

undeformed aggregates, in which no remodelling has oaduHewever, we generalize the state-
ment to anyl,(0) = ¥, > 1), because the result will be useful for the discussion afteollary
4.

Proposition 3. If ¥(0) = vy > 1.(¥,0) and ¥,(0) = ¥, > 1), applying a constant force
F(t) = Fy < 7/1¢y(V,0), ¥Vt > 0, thenV¥,(t) = ¥, , V¢ and the solution of Eq. (2.14), is such
thatz/)(t) > @bc(‘llp,o) > wy(‘llp,o)-

Proof. First of all, beingFy; < 7/1, (¥, ), from (2.20), we havey, > 1.(V,0) > 1, (¥, ).
Thus the following relations hold

h(¥y0,100) = F(0) < h(Wy0,1e(Vp0)) = Fay =0,

and g(@p,07¢0) -7 < g(\I’p70,¢y(\I/p70)) — T = O’

because both andh are decreasing functions o¢ffor fixed ¥,,. Then\i/p(o) = 0, while ¢ initially
decreases. Actually,(t) = V¥, , until ¢ eventually reaches, (¥, ). If this value is overcome,
then the material yields an#l, can only decrease (see region Il in Fig. 1, right panel).
However, we will now prove that)(¢) does not decrease belaw.(V, ) > ,(¥,0), SO the
material never yields andl,,(t) = ¥, o, Vt.

To demonstrate that(t) > v.(V,0), vVt > 0, we definew = ¢ — ¢.(¥, ) and recalling that
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o > 1.(V,0), so thatw_(0) = 0, we have

0> =0 _ / i dt = / i [B(Wy0, ) — (W0, (W ,0))] Pw_d
0 0

Then the r.h.s. either vanishesiif > ¢.(V, (), or is positive ify) < 1.(V, (), because: is a
decreasing function af for fixed ¥,. Hence, because of the arbitrarinesg,af_(¢) = 0Vt and
thus

V() > (Vo) > ¥y (Uy0),  VE.
[l

The condition on the constancy #f(t) can be relaxed, if we assume thiaf, = 1 = 1, as
stated in the following Corollary.

Corollary 4. If »(0) = 1and ¥, , = 1 and F(t) < 7/¢,(1), then¥,(¢) = 1, V¢ and the solution
of Eq. (2.14) is such that(t) > (1) > 1, (1).

Proposition 3 implies, for instance, that in the case ofgiressed aggregates that have already
deformed plastically, during cyclic compression testsaatstant load, being, , > v at the be-
ginning of every interval of compression (see Propositiprtiien remodelling is not triggered if
Fy < 7/4,(0,0) or equivalently, in dimensional forndy, < 2r27/4,(¥,). Indeed for these
values of applied constant force the stretch leading tortteznal reorganization is never reached,
belng¢(t> > wc(\PPD) > ¢y(\I]p,0> ) vt.

This result can be applied to the description of a cyclic prest and release in which the force
is maintained constanf(t) = Fy, during compression and it is equal to zero during releases.
Therefore, when a constant external fofg is periodically applied and then removedFif, <
7/1,(1), no reorganization occurs and the unloaded specimen wilbgé to the initial configura-
tion, ¢ = 1, following the classical visco-elastic response, due ¢odlastic response of cells and
the viscous term of the liquid component (see Figure 3, tapeju

The corollary states that if an undeformed aggregate isestdy to compression with bounded
force F'(t), with maximum below the critical valug/«, (1), then the deformation of the aggregate
occurs without any plastic effect.

On the other hand, as we shall see in the following propgsitichen a constant forcg), >
7/1,(1) is applied, trajectories enter in the region Il identifiedrig. 1, right panel, and the nat-
ural configuration of the aggregate changes, so that thé@oliends to the intersection between
the two curves in Fig. 1, right panel. In this case, when theeuplate is removed the multicellular
body does not recover its original shape and a macroscofocdation can be seen (lower curves
in Fig. 3, right panel). The internal reorganization ratpeteds on the intensity of the load applied
to the aggregate, compared to the yield stress and, in plantjdt is faster and more intense B
increases, as shown in Fig. 3, left panel. In particular waalestrate the following proposition.

Proposition 5. If Fi, > 7/v,(1), the solutions of (2.16) starting from(0) > 7 and U, >
M

¥(0), are such that)(t) € {FL’ 1} andV,(t) € [V, «, 1], whereV, . is the solution of (2.22).
M

10
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Proof. To prove the thesis we proceed by absurd assuming that tkiste a firstt with

() =V, WU, <0, and o) > E

,’7"_

= =
Fy

or (1) Y(E) <0, and V,(f) >V, .

In the former case, sincg, (¥, o) = (V) ) = FL the same reasoning of the previous

M
proposition can be used. If the line, = ¥, ., is reached the solution will always stay there. In
fact,

90,0, 0(D) = g(¥poes (D) < g (\1100 F—) 7,

M

which implies thafg(¥, (), ¢ (f)) — 7]+ = 0 and thereforel,, = 0, against what assumed.
In the latter case,

0,0 6(0) = (W0 ) > b (B 2 ) = Fur 2 F().

M M

which implies that) > 0, against what assumed.
]

Corollary 6. If F(t) = Fy; > 7/, (1), Vt, being the r.h.s of (2.16) continuous and locally lips-

chitz fory and ¥,, belonging to the compact invariant s ! ,1} X [V, 0, 1], then solutions of
M

(2.16) will tends to the stationary poir(tpi, \prm) , WhereV,, , is the solution of (2.22).
M

Corollary 6 states that, when the aggregate is compresshdwbpnstant force, the stationary
TR

stretch, in dimensional terms, is given by, = , Wherel,; = maxt{Fappl(t)}. From the

M
experimental point of view this allows to determine the eatif the yield stress from a compres-
sion test at constant load measuring the steady statelrstretcr = 2—%21/;00.
Tl

The results demonstrated in Proposition 3 and 5 are alsemvotting the vector field cor-
responding to (2.16). Indeed, f < 7/, (see Figure 1, left panel); and ¥, will tend to the
grey curve, which corresponds to the conditid¥’,,, ¢)) = F. Then the solutions of the system
(2.16) starting from)(0) = 1 and¥,,(0) = 1, will keep ¥, = 1 while ¢ will tend to¢.(1). On the
other hand ifFy; > 7/1,(1) (see Figure 1, right panel); and ¥, will tend to the the intersection
of the gray and black curve, which represents the soluticghesystem (2.21).

We remark that the conditioh,, > 7/4,(1) is coherent with the one found in [10] for creep tests
at constant stress. Indeed, defining the yield stfgss = Fy,(1)/(nR2), the creep test yield

condition becomeg; , = 27.

11
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Also in the case of a cyclic test, it is possible to see thasthady state stretch and the maximum
internal reorganization that can be induced depend on teesity of imposed loads and do not
tend to the trivial state, i.e¥/, — 0 andy> — 0, in contrast with what shown in [10]. This means
that, as remodelling takes place, cellular aggregategaeare (i.e.V, decreases) in order to bear
the load. Moreover being decreasing, the external streBs,,, generated by a constant force,
decreases in time.

Remodelling Stretch
1.2¢ 1 A A A A A F
1.1¢ 0.9 ‘ \
0.8 F=125/7
_09¢ —— F=25/n
g = 0.7p\/
0.8} —— F=375/1
0.7 067 — F=5/x
06} 05¢
0.5 : ; : ‘ : 0.4 : : : ‘ '
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t/(3X) t/(3\)

Figure 3: Cycle of compressions, when a constant external fdtgeis periodically applied and then removed:
reorganization (on the left) and stretch (on the right). Simeulations are performed settifig= 0.625 andj; = 1.6.
The compression and release times are both equaltof, = 3/2. From top to bottom the applied force increases.

4. Conclusions

In this work we discuss some analytical properties of thetsmt of the system proposed in [10]
to describe cellular aggregates compression. We focusenate in which the biological spec-
imen is deformed under a controlled force. Numerical resaite proposed for the specific case
in which the imposed force is kept constant in time and for @decyf compression at constant
force and subsequent releases. These conditions werepioited in [10], where the main focus
was the description of compression at constant deformatonvhich biological experiments are
present in literature, and the study of creep tests undestanohimposed stress. However, one
of the simplest test that can be done on a specimen in ordessess its mechanical response is
the imposition of a constant load on it. Therefore, usingséi®e apparatus presented in [7], the
numerical results proposed here can be easily validatgupsing different forces on the upper
plate of a cylindrical sample of biological material and rtonng the deformation experienced by

12
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the specimen. Moreover, in order to test the remodellingiooty inside the aggregate, the upper
plate should be lifted up and the shape recovery of the samgietored.

The results reported in this work, highlight that, when tbicé (and not the stress) is maintained
constant, even if the load is initially able to trigger thetwre of adhesive bonds, cells re-allocate
in order to increase the transverse section and to reach antewal configuration that does not
undergo reorganization under the same imposed load. THestnetch reached by the aggregate
depends on the imposed load and on reorganizing properges ) of the cellular structure, but it
is independent from.

Thanks to Corollary 6, it is possible to determine the valtihe yield stress from a compression
test at constant load of an aggregate, simply measuringtélael\s state stretch)... Indeed, in

. . M
dimensional terms; = ——5v.
21 R

However we have to be aware that some simplifications (onebengtry of the sample that is usu-

ally spherical, on the type of deformation experiencedehaeen done in order to obtain equations
that can be analytically studied.

Furthermore, more realistic 2D and 3D simulations of agagteg deformation, considering more
complex aggregate shapes, should be performed, in orddstéanca more precise calculation

of non-homogeneous deformation occurring inside livingatures. Future works should focus

on the derivation of the remodelling equation (2.7) dingétbm measurements of cell-cell bond

rupture, incorporating in the macroscopic model informatleriving from the subcellular scale.

References

[1] D. Ambrosi, F. Mollica.On the mechanics of a growing tumobnt. J. Engng. Sci., 40:1297-
1316 (2002).

[2] D. Ambrosi, F. Mollica.The role of stress in the growth of a multicellular spheradidMath.
Biol., 48:477-499 (2004).

[3] D. Ambrosi, L. PreziosiCell adhesion mechanisms and stress relaxation in the nmechaf
tumours.Biomech. Model. Mechanobiol., 8:397-413 (2009).

[4] D. Ambrosi, K. Garikipati, E. KuhIMechanics in biology: Cells and tissud2hil. Trans. R.
Soc. A, 367:3333-3334 (2009).

[5] D. Ambrosi, L. Preziosi, G. VitaleThe insight of mixtures theory for growth and remodeling
Z. Angew. Math. Phys., 61: 177-191 (2010).

[6] D. Ambrosi, L. Preziosi, G. VitaleThe Interplay between Stress and Growth in Solid Tumors.
Mech. Res. Comm., 42: 87-91 (2012).

[7] G. Forgacs, R.A. Foty, Y. Shafrir, M.S. SteinbeXgscoelastic properties of living embryonic
tissues: A quantitative studgiophys. J., 74:2227-2234 (1998).

13



C.Giversoet al. Behaviour of cell aggregates under force-controlled compression.

[8] R.A. Foty, G. Forgacs, C.M. Pfleger, M.S. Steinbdrguid properties of embryonic tissues:
Measurement of interfacial tensiori3hys. Rev. Lett., 72:2298-2301 (1994).

[9] R.A. Foty, G. Forgacs, C.M. Pfleger, M.S. SteinbeBgrface tensions of embryonic tissues
predict their mutual envelopment behavibevelopment, 122:1611-1620 (1996).

[10] C. Giverso, L. PreziosiModelling the compression and reorganization of cell aggtes
Math. Med. Biol., 29(2):181-204 (2012).

[11] A. Grillo, C. Giverso, M. Favino, R. Krause, M. Lampe, @Wittum. Mass Transportin Porous
Media with Variable MassNumerical Analysis of Heat and Mass Transfer in Porous ledi
A. Oechsner, L.F.M. da Silva, H. Altenbach Eds. SpringetagGermany (2012).

[12] A. lordan, A. Duperray, C. VerdieEractal approach to the rheology of concentrated cell
suspensions$hys. Rev. E, 7:011911 (2008).

[13] L. Preziosi, D. Ambrosi, C. VerdieAn elasto-visco-plastic model of cell aggregateS heor.
Biol., 262:35-47 (2010).

[14] L. Preziosi, G. VitaleA multiphase model of tumour and tissue growth includinache-
sion and plastic re-organisatioMath. Mod. Meth. Appl. Sci., 21: 1901-1932 (2011).

[15] L. Preziosi, G. VitaleMechanical aspects of tumour growth: Multiphase mode]limdhe-
sion, and evolving natural configurations M. Ben Amar, A. Goriely, M. M. Miller, L. F.
Cugliandolo, Eds., New Trends in the Physics and MechairfiBsotogical Systems, Lecture
Notes of the Les Houches Summer School, 92: 177-228, Oxforddisity Press (2011).

[16] J. Humphrey, K. Rajagopah constrained mixture model for growth and remodeling of sof
tissuesMath. Mod. Meth. Appl. Sci., 22:407-430 (2002).

[17] J. Humphrey, K. Rajagopah constrained mixture model for arterial adaptations to &-su
tained step change in blood floBiomech. Model. Mechanobiol., 2:109-126 (2003).

[18] E.K. Rodriguez, A. Hoger, A. McCulloclstress-dependent finite growth in soft elastic tis-
suesJ. Biomech., 27:455-467 (1994).

[19] L.A. Taber, J.D. Humphrey&tress-modulated growth, residual stress, and vascultarbe
geneity J. Biomech. Eng., 123:528-535 (2001).

[20] G. A. Truskey, F. Yuan, D.F. KatZransport Phenomena in Biological Systeentice Hall
(2009)

[21] A. Vaziri, A. Gopinath.Cell and biomolecular mechanics in silichNat. Materials, 7: 15-23
(2008).

[22] C. Verdier, J. Etienne, A. Duperray, L. Prezid®eview: Rheological properties of biological
materials C. R. Phys., 10:790-811 (2009).

14



C.Giversoet al. Behaviour of cell aggregates under force-controlled compression.

[23] B.S. Winters, S.R. Shepard, R.A. FoBiophysical measurement of brain tumor cohesion.
Int. J. Cancer, 114:371-379 (2005).

15



