
Assessing the Precision of FindBugs by mining
Java Projects developed at a University

Antonio Vetro’, Marco Torchiano, Maurizio Morisio

Politecnico di Torino
Torino, Italy

name.surname@polito.it

Abstract—Software repositories are analyzed to extract useful
information on software characteristics. One of them is
external quality. A technique used to increase software quality
is automatic static analysis, by means of bug finding tools.
These tools promise to speed up the verification of source code;
anyway, there are still many problems, especially the high
number of false positives, that hinder their large adoption in
software development industry. We studied the capability of a
popular bug-finding tool, FindBugs, for defect prediction
purposes, analyzing the issues revealed on a repository of
university Java projects. Particularly, we focused on the
percentage of them that indicates actual defects with respect to
their category and priority, and we ranked them. We found
that a very limited set of issues have high precision and
therefore have a positive impact on code external quality.

Keywords: Software Quality, Automatic Static Code Analysis,
Defect prediction, Bug Finding Tools

I. INTRODUCTION

Software quality assurance is a very critical activity: it is

historically estimated that rework effort is about 40-50% of
the whole software production effort [4] [5]. Several
techniques can be used to improve quality, we focus on
automatic static analysis and particularly on bug finding
tools. Bug finding tools analyze the source code by applying
a set of rules and produce a list of issues corresponding to
violations of the rules. The issues are supposedly defects of
the program that ought to be removed or fixed.

The software engineering literature still lacks a thorough
assessment of bug finding tools, and many problems have
been identified in literature:

• high number of false positives [15][11]
• detection of only a reduced subset of possible bugs

[15][16]
• the efficiency of the default issues prioritization

decided by tool’s author [10][2]
• the dubious economical benefits brought by their

usage [14][16] .

We studied one of these problems: precision of issues

revealed by bug findings tools. Our goal is to answer the
following research question: which issues are actual
predictors of bugs, and which are not? This knowledge is

very important to provide the developers with accurate
information that can be used effectively in developing and
maintaining the software.

We conducted an empirical validation of the issues of a
widely used tool: FindBugs v1.3.8. In particular we analyzed
the issues produced by FindBugs on a large pool of similar
programs. The main contributions of the paper are:

• It provides empirical evidence about the validity of

issues categories as bug predictors;
• As a consequence identifies a first step to make bug-

finding tool usage more effective;
• Using a large pool of developers, it eliminates the

effect of developer style on the results.

II. CONTEXT AND DEFINITIONS

The program pool was developed in the context of the

Object Oriented Programming (OOP) course at the authors’
university, where students develop Java programs for the
exam. Students develop a first version of the program in
laboratory (the “lab” version), then a tool, PoliGrader[13],
manages the delivery process and runs a suite of black box
acceptance tests (JUnit classes): results of tests and their
source code are sent back to the students, that go home and
improve the lab version, creating a version of the program,
called “home” version, that must pass all acceptance tests.

 The code base used in the experiment consists of 85 Java
assignments from the 2009 OOP course: requirements are
the same for all the assignments; and they are publicy
available at the following URL:
http://softeng.polito.it/vetro/confs/msr2010/Requirements.ht
m. Each assignment contains both lab and home versions
syntactically correct, and home version passes 100% of the
acceptance tests. Acceptance tests are written by teachers of
the course in such a way all functionalities are checked.
Teachers develop also a correct “solution program”, and they
check test coverage on it. The average size of projects is
166.4 NCSS (Non Commenting Source Statements) for lab
versions and 183.81 NCSS for home versions. The estimated
number of function points for the project is 66.30.

An issue produced by FindBugs is characterized by an
ID, a textual explanation, and a location in the source code.
The issues are categorized by FindBugs according to two

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11414434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dimensions: category (Bad Practice, Correctness, Style,
Performance, and Malicious Code are the categories with at
least one issue signaled in our code base) and priority (Low,
Medium, High). Both classifications have been decided by
the tool's authors and are based on their personal experience.

III. EXPERIMENT DEFINITION

To address the research question we consider a main

dependent measure: precision of the issues that can be
defined as the proportion of the signaled issues that
correspond to actual defects.

Precision is a derived measure that can be computed on
the basis of the following primitive measures: NI, the
number of issues signaled by FindBugs and NA, the number
of issues corresponding to actual defects. We do not compute
recall (commonly coupled with precision), because it would
require the knowledge of the complete set of defects. This
can be computed only by hand: given the large number of
projects to be checked this is a long and error prone process.

To determine NA we adopted the concepts of temporal
and spatial coincidence, previously presented in literature in
[6] [10] [7]. We have temporal coincidence when one or
more issues disappear in the evolution from the lab to the
home version, and in the same time one or more defects are
fixed: probably those issues were related to the fixed defects.
In this context defects fixed are revealed when a test that in
lab version fails instead in home version succeeds.

The possibility that a disappearing issue was not related
to the disappearing defect is the noise of this metric, that is
filtered out by adding spatial coincidence: we observe spatial
coincidence when an issue's location corresponds to lines in
the source code that have been modified in the evolution
from the lab to the home versions.

In practice, the combination of temporal and spatial
coincidence is interpreted as a change intended to remove the
issue, that is linked to the defect.

The procedure followed to conduct the study is very
simple: we ran the FindBugs tool on both versions of each
assignment in the repository, then we collected the
information about the change performed to evolve the lab
version into the home version. The changes were identified
using the DiffJ tool, which operates on two versions of a
Java program and is able to compute for each pair of
corresponding Java classes which lines changed.

Afterwards, we computed precision of issues, first
without considering categories and priorities, then analyzing
results observing each issue group (combination of category
and priority) separately.

To determine whether an issue group is a good or bad
defect predictor, we established 2 precision thresholds and
we performed statistical test against null hypotheses.
Thresholds were established after observing the distribution
of issues precision for each assignment (Table I and Figure
1), without distinction of categories and priorities.

TABLE I. PRECISION OF THE WHOLE SET OF ISSUES

Min 1st Q Median Mean 3rd Q Max St dev
0 0 0 0.149 0.25 0.8 0.226

Figure 1. Hystogram of precisions

The mean of precisions is quite low (0.15) and the
variability is high. We decided to consider the issue group
(group G in the following) as a defect predictor if it has a
precision greater than 30%. Such a low value is justified by
the exploratory nature of this work and it compensates for
the large variability we expect to find in each group.
Furthermore this value is far enough from the average
precisions of the issues: in 50% of assignments precision is
0; in 75% (3rd quartile) of the assignments precision is at
most 0.25, less than the threshold; finally, the 30% precision
threshold is the double of the mean of precisions, that is a
quite wide ratio.

To identify the issue groups that can be considered as
defect predictors, we define the first null hypothesis:

HA0: precision of the issues belonging to group G is less

than 30%.

The next step is to find false positives, the bad defects
predictors. We consider as false positives the ones with
precision <5%, a very low threshold. So we formulate the
following parametric null hypothesis:

HB0: precision of the issues belonging to group G is
grater than 5%.

Read together, the two hypotheses mean that a group of
issues G is a good predictor (GP) if precision of the issues

that it contains is >30% and is a bad predictor (BP) (i.e. a
generator of false positives) if precision of the issues that it
contains is <5%. The goal of the data analysis is to reject the
above null hypothesis by means of statistical tests. For this
purpose we selected the single-tailed proportion test with
binomial distribution [12]. Given a sample proportion and
sample size, such a test computes the probability that the
general population (from which the sample is extracted) has
a proportion greater (or lower) than a reference proportion.
To reject the null hypothesis we adopt the standard
significance level at 5%, that is the probability of rejecting a
null hypothesis when it is true (type I error) we consider
acceptable.

IV. RESULTS

Overall FindBugs revealed a total of 508 issues (NI) in

the 85 lab versions of the assignments, among them 94 (NA)
were removed in changed lines (temporal and spatial
coincidence). Table II shows NA / NI at issue group level.
Table III contains precisions and hypothesis tests computed
for each different issue group (p-values are shown below
precision). Columns of Table II and Table III contain
abbreviations of the full names of categories, that are: Bad
Practice, Correctness, Malicious Code, Performance, Style.

The full tables with number of detections (NI) and
number of issues removed in changed lines (NA) for each
project and each issue group are available at the following
URL: http://softeng.polito.it/vetro/confs/msr2010/ .

TABLE II. DETECTIONS

 Bad Pr. Corr. Mal.C. Perf. Style

Low 5 / 70 1 / 3 0 / 0 0 / 7 5 / 11

Medium 2 / 145 12 / 45 4 / 15 31 / 144 6 / 16

High 13 / 28 12 / 19 0 / 0 0 / 0 3 / 5

TABLE III. PRECISION:TEMPORAL + SPATIAL COINCIDENCE

 Bad Pr. Corr. Mal.C. Perf. Style

Low 7% 33% NA 0% 45%

HA 1 0.50 NA 0.91 0.21

HB 0.71 0.82 NA 0.50 1

Medium 1% 27% 27% 22% 38%

HA 1.00 0.63 0.50 0.98 0.35

HB 0.04 1 1 1 1

High 46% 63% NA NA 60%

HA 0.05 <0.01 NA NA 0.16

HB 1 1 NA NA 1

HA: The null hypothesis is rejected only for categories
Bad Practice and Correctness both at High priority: this is the
set of true positives for spatial + temporal coincidence. All
the other groups have non significant p-values and exhibit
low estimate precisions except for Style at High priority
which has a relatively high precision, though not significant.

HB: Bad Practice and Performance at Low priority, and
Bad Practice Medium priority, are the groups whose
precision is lower then 5%: however, only Bad Practice at
Medium priority has a significant p-value, and we can reject
HB0 for this group.

V. DISCUSSION

The results from the hypothesis testing presented above

let us identify the sets of good and bad defect predictor issue
groups.

On the basis of these results, we built a partial ordering of
the issue groups dividing them into three sets: good, bad and
ambiguous. We devised the ordering by putting in the set of
good issues the issues marked as defect predictors, in the set
of bad issues those issues marked as false positives, and in
the set of ambiguous issues all the others that haven’t been
classified . The set of good predictor issues is GP={Bad
Practice High, Correctness High}, the set of bad predictors
is BP={Bad Practice Medium}, and the remaining issue
groups are ambiguous. Counting the single issues belonging
to those groups, they are just 8 out of 359 (2.23 %).

The rationale of this ranking is a new prioritization of
warnings based on groups, that takes into account the
probability of signaling a defect. An important practical
application of this finding is a filtering strategy that can
avoid to developers the information overload constituted by a
very large number of issues: in our datasets bad predictor
issues are the 28.5 % of the total detections in lab versions.
Fixing issues with a low probability of being related to a
defect is dangerous since we know from Adam’s law [1] that
the probability of introducing a new error during a fault
correction is always different from zero.

VI. THREATS TO VALIDITY

We can identify 2 threats: an external and a construct

threat.
The external threat is: we have studied small student

projects, hence the application of findings in industrial
context is debatable.

Construct threats is concerning the identification of
defects. In this study, no bug database was available: we
made the assumption that all changes were done to fix a
defect: actually, it is possible that some changes were not
related to real defects, but to other motivations (cleaner code,
more readable code, and so on). Nevertheless, we don't
expect that this kind of noise could change results and
ranking, because usually students correct the lab versions in
a quick and dirty way, doing as few changes as possible, for
two reasons: 1) the home version is the last version of the

project, actually no maintenance has to be done
subsequently; 2) students are discouraged in doing many
changes, because the mark suggested by PoliGrader
decreases with the quantity of changes made (see details in
[13]).

VII. RELATED WORK

As already mentioned in section 3, temporal and spatial

coincidence have been used by Boogerd and Moonen [6] and
by Kim and Ernst [10]. Our research confirmed the findings
of [6]: a reduced set of rule violations (even smaller in
percentage, almost identical in absolute value) has impact on
code quality. Difference with their findings is that our “bad
issues” are less then their “bad violations”. Further, our good
issues set is composed exclusively by high priorities issues,
and our bad issues set exclusively by medium priority:
default prioritization of issues seems to be effective, in
contrast with what is found in [10] (but not in University
context).

Looking at other studies specifically related to FindBugs
([3], [9] and [8]), manual checks of issues brought to high
percentages of true positives: overall percentages declared
are always higher than 50 %.

On the other side, a study by Wagner et al. [14]
demonstrated that FindBugs and PMD (another bug finding
tool) were able to find only the 16% of defects in one
project, and none in another one. Our study is the first
differentiating assessment of issues precision by category
and priority, and the first that eliminates the effect of the
developer style since a large pool of developers developed
the same software.

VIII. CONCLUSIONS AND FURTHER WORK

The analysis of precisions demonstrated that only 2 out

of 15 groups of issues can be considered as reliable
predictors of actual defects, and one group of issues has a
precision that is practically negligible. These findings and
the adoption of the technique used may have a practical
impact in filtering issue notifications for developers to
reduce information overload. Future work will be devoted to:
repeat temporal and spatial analysis with higher level of
detail, specifying the single issues, besides categories and
priorities, and study the possible correlation between groups
of issues.

REFERENCES

[1] Edward N. Adams. Optimizing preventive service of software
products. IBM Journal of Research and Development, 28(1):2–14, 1984.

[2] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler,
John Penix, and William Pugh. Using static analysis to find bugs. IEEE
Software, 25(5):22–29, 2008.

[3] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John
Penix, and YuQian Zhou. Evaluating static analysis defect warnings on

production software. In PASTE ’07: Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 1–8, New York, NY, USA, 2007. ACM.

[4] B. W. Boehm. Software process management: lessons learned
from history. In ICSE ’87: Proceedings of the 9th international conference
on Software Engineering, pages 296–298, Los Alamitos, CA, USA, 1987.
IEEE Computer Society Press.

[5] Barry Boehm and Victor R. Basili. Software defect reduction
top 10 list. Computer, 34(1):135–137, 2001.

[6] C. Boogerd and L. Moonen. Assessing the value of coding
standards: An empirical study. Software Maintenance, 2008. ICSM 2008.
IEEE International Conference on, pages 277–286, 28 2008-Oct. 4 2008.

[7] Cathal Boogerd and Leon Moonen. Evaluating the relation
between coding standard violations and faultswithin and across software
versions. Mining Software Repositories, International Workshop on, 0:41–
50, 2009.

[8] Brian Cole, Daniel Hakim, David Hovemeyer, Reuven Lazarus,
William Pugh, and Kristin Stephens. Improving your software using static
analysis to find bugs. In OOPSLA ’06: Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pages 673–674, New York, NY, USA, 2006.
ACM.

[9] David Hovemeyer, Jaime Spacco, and Bill Pugh. Evaluating and
tuning a static analysis to find null pointer bugs. Lisbon, Portugal,
September 5–6, 2005. ACM.

[10] Sunghun Kim and Michael D. Ernst. Which warnings should i
fix first? In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 45–54, New
York, NY, USA, 2007. ACM.

[11] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan
Zhou, and Chengxiang Zhai. Have things changed now? An empirical
study of bug characteristics in modern open source software. In ASID ’06:
Proceedings of the 1st workshop on Architectural and system support for
improving software dependability, October 2006.

[12] Erkki P. Liski. An introduction to categorical data analysis, 2nd
edition by alan agresti. International Statistical Review, 75(3):414–414,
December 2007.

[13] Maurizio Morisio and Marco Torchiano. A fully automatic
approach to the assessment of programming assignments. International
Journal of Engineering Education, 0(0):1–16, 2009.

[14] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and
M. Schwalb. An evaluation of two bug pattern tools for java. In Software
Testing, Verification, and Validation, 2008 1st International Conference
on, pages 248–257, 2008.

[15] Stefan Wagner, Jan Jurjens, Claudia Koller, Peter Trischberger,
and Technische Universitat Munchen. Comparing bug finding tools with
reviews and tests. 2008.

[16] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl,
and M. A. Vouk. On the value of static analysis for fault detection in
software. Software Engineering, IEEE Transactions on, 32(4):240–253,
2006.

