
Assessing the Precision of FindBugs by mining  
Java Projects developed at a University 

 
Antonio Vetro’, Marco Torchiano,  Maurizio Morisio 

Politecnico di Torino 
Torino, Italy 

name.surname@polito.it 
 
 

Abstract—Software repositories are analyzed to extract useful 
information on software characteristics. One of them is 
external quality. A technique used to increase software quality 
is automatic static analysis, by means of bug finding tools. 
These tools promise to speed up the verification of source code; 
anyway, there are still many problems, especially the high 
number of false positives, that hinder their large adoption in 
software development industry. We studied the capability of a 
popular bug-finding tool, FindBugs, for defect prediction 
purposes, analyzing the issues revealed on a repository of 
university Java projects. Particularly, we focused on the 
percentage of them that indicates actual defects with respect to 
their category and priority, and we ranked them. We found 
that a very limited set of issues have high precision and 
therefore have a positive impact on code external quality. 

Keywords: Software Quality, Automatic Static Code Analysis, 
Defect prediction, Bug Finding Tools 

I. INTRODUCTION 

 
Software quality assurance is a very critical activity: it is 

historically estimated that rework effort is about 40-50% of 
the whole software production effort [4] [5]. Several 
techniques can be used to improve quality, we focus on 
automatic static analysis and particularly on bug finding 
tools. Bug finding tools analyze the source code by applying 
a set of rules and produce a list of issues corresponding to 
violations of the rules. The issues are supposedly defects of 
the program that ought to be removed or fixed.  

The software engineering literature still lacks a thorough 
assessment of bug finding tools, and many problems have 
been identified in literature:  

 
• high number of false positives [15][11]  
• detection of only a reduced subset of possible bugs 

[15][16] 
• the efficiency of the default issues prioritization 

decided by tool’s author [10][2]  
• the dubious economical benefits brought by their 

usage  [14][16] . 
 
We studied one of these problems: precision of issues 

revealed by bug findings tools. Our goal is to answer the 
following research question: which issues are actual 
predictors of bugs, and which are not? This knowledge is 

very important to provide the developers with accurate 
information that can be used effectively in developing and 
maintaining the software. 

We conducted an empirical validation of the issues of a 
widely used tool: FindBugs v1.3.8. In particular we analyzed 
the issues produced by FindBugs on a large pool of similar 
programs. The main contributions of the paper are: 

 
• It provides empirical evidence about the validity of 

issues categories as bug predictors; 
• As a consequence identifies a first step to make bug-

finding tool usage more effective; 
• Using a large pool of developers, it eliminates the 

effect of developer style on the results. 
 

II. CONTEXT AND DEFINITIONS 

 
The program pool was developed in the context of the 

Object Oriented Programming (OOP) course at the authors’ 
university, where students develop Java programs for the 
exam. Students develop a first version of the program in 
laboratory (the “lab” version), then a tool, PoliGrader[13], 
manages the delivery process and runs a suite of black box 
acceptance tests (JUnit classes): results of tests and their 
source code are sent back to the students, that go home and 
improve the lab version, creating a version of the program, 
called “home” version, that must pass all acceptance tests. 

 The code base used in the experiment consists of 85 Java 
assignments from the 2009 OOP course: requirements are 
the same for all the assignments; and they are publicy 
available at the following URL: 
http://softeng.polito.it/vetro/confs/msr2010/Requirements.ht
m. Each assignment contains both lab and home versions 
syntactically correct, and home version passes 100% of the 
acceptance tests. Acceptance tests are written by teachers of 
the course in such a way all functionalities are checked. 
Teachers develop also a correct “solution program”, and they 
check test coverage on it. The average size of projects is 
166.4 NCSS (Non Commenting Source Statements) for lab 
versions and 183.81 NCSS for home versions. The estimated 
number of function points for the project is 66.30. 

An issue produced by FindBugs is characterized by an 
ID, a textual explanation, and a location in the source code. 
The issues are categorized by FindBugs according to two 
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dimensions: category (Bad Practice, Correctness, Style, 
Performance, and Malicious Code are the categories with at 
least one issue signaled in our code base) and priority (Low, 
Medium, High). Both classifications have been decided by 
the tool's authors and are based on their personal experience. 

 

III.  EXPERIMENT DEFINITION 

 
To address the research question we consider a main 

dependent measure: precision of the issues that can be 
defined as the proportion of the signaled issues that 
correspond to actual defects.  

Precision is a derived measure that can be computed on 
the basis of the following primitive measures: NI, the 
number of issues signaled by FindBugs and NA, the number 
of issues corresponding to actual defects. We do not compute 
recall (commonly coupled with precision), because it would 
require the knowledge of the complete set of defects. This 
can be computed only by hand: given the large number of 
projects to be checked this is a long and error prone process. 

To determine NA we adopted the concepts of temporal 
and spatial coincidence, previously presented in literature in 
[6] [10] [7]. We have temporal coincidence when one or 
more issues disappear in the evolution from the lab to the 
home version, and in the same time one or more defects are 
fixed: probably those issues were related to the fixed defects. 
In this context defects fixed are revealed when a test that in 
lab version fails instead in home version succeeds.  

The possibility that a disappearing issue was not related 
to the disappearing defect is the noise of this metric, that is 
filtered out by adding spatial coincidence: we observe spatial 
coincidence when an issue's location corresponds to lines in 
the source code that have been modified in the evolution 
from the lab to the home versions.  

In practice, the combination of temporal and spatial 
coincidence is interpreted as a change intended to remove the 
issue, that is linked to the defect.  

The procedure followed to conduct the study is very 
simple: we ran the FindBugs tool on both versions of each 
assignment in the repository, then we collected the 
information about the change performed to evolve the lab 
version into the home version. The changes were identified 
using the DiffJ tool, which operates on two versions of a 
Java program and is able to compute for each pair of 
corresponding Java classes which lines changed.  

Afterwards, we computed precision of issues, first 
without considering categories and priorities, then analyzing 
results observing each issue group (combination of category 
and priority) separately.  

To determine whether an issue group is a good or bad 
defect predictor, we established 2 precision thresholds and 
we performed statistical test against null hypotheses. 
Thresholds were established after observing the distribution 
of issues precision for each assignment (Table I and Figure 
1), without distinction of categories and priorities. 

 
 

TABLE I.  PRECISION OF THE WHOLE SET OF ISSUES 

Min 1st Q Median Mean 3rd Q Max St dev 
0 0 0 0.149 0.25 0.8 0.226 

 

 
Figure 1.  Hystogram of precisions 

The mean of precisions is quite low (0.15) and the 
variability is high. We decided to consider the issue group 
(group G in the following) as a defect predictor if it has a 
precision greater than 30%. Such a low value is justified by 
the exploratory nature of this work and it compensates for 
the large variability we expect to find in each group. 
Furthermore this value is far enough from the average 
precisions of the issues: in 50% of assignments precision is 
0; in 75% (3rd quartile) of the assignments precision is at 
most 0.25, less than the threshold; finally, the 30% precision 
threshold is the double of the mean of precisions, that is a 
quite wide ratio.  

To  identify the issue groups that can be considered as 
defect predictors, we define the first null hypothesis:  

 
HA0:  precision of the issues belonging to group G is less  

than 30%. 

 

The next step is to find false positives, the bad defects 
predictors. We consider as false positives the ones with 
precision <5%, a very low threshold. So we formulate the 
following parametric null hypothesis: 

 

HB0:  precision of the issues belonging to group G is 
grater than 5%. 

 

Read together, the two hypotheses mean that a group of 
issues G is a good predictor (GP) if precision of the issues 



that it contains is >30% and is a bad predictor (BP) (i.e. a 
generator of false positives) if precision of the issues that it 
contains is <5%.  The goal of the data analysis is to reject the 
above null hypothesis by means of statistical tests. For this 
purpose we selected the single-tailed proportion test with 
binomial distribution [12]. Given a sample proportion and 
sample size, such a test computes the probability that the 
general population (from which the sample is extracted) has 
a proportion greater (or lower) than a reference proportion. 
To reject the null hypothesis we adopt the standard 
significance level at 5%, that is the probability of rejecting a 
null hypothesis when it is true (type I error) we consider 
acceptable. 

IV. RESULTS  

 
Overall FindBugs revealed a total of 508 issues (NI) in 

the 85 lab versions of the assignments, among them 94 (NA) 
were removed in changed lines (temporal and spatial 
coincidence). Table II shows NA / NI at issue group level. 
Table III contains precisions and hypothesis tests computed 
for each different issue group (p-values are shown below 
precision). Columns of Table II and Table III contain 
abbreviations of the full names of categories, that are: Bad 
Practice, Correctness, Malicious Code, Performance, Style. 

The full tables with number of detections (NI) and 
number of issues removed in changed lines (NA) for each 
project and each issue group are available at the following 
URL: http://softeng.polito.it/vetro/confs/msr2010/ .  

 

TABLE II.  DETECTIONS 

 Bad Pr. Corr. Mal.C. Perf. Style 

Low 5 / 70 1 / 3 0 / 0 0 / 7 5 / 11 

Medium 2 / 145 12 / 45 4 / 15 31 / 144 6 / 16 

High 13 / 28 12 / 19 0 / 0 0 / 0 3 / 5 

 

TABLE III.  PRECISION:TEMPORAL + SPATIAL COINCIDENCE 

 Bad Pr. Corr. Mal.C. Perf. Style 

Low 7% 33% NA 0% 45% 

HA 1 0.50 NA 0.91 0.21 

HB 0.71 0.82 NA 0.50 1 

Medium 1% 27% 27% 22% 38% 

HA 1.00 0.63 0.50 0.98 0.35 

HB 0.04 1 1 1 1 

High 46% 63% NA NA 60% 

HA 0.05 <0.01 NA NA 0.16 

HB 1 1 NA NA 1 

HA: The null hypothesis is rejected only for categories 
Bad Practice and Correctness both at High priority: this is the 
set of true positives for spatial + temporal coincidence. All 
the other groups have non significant p-values and exhibit 
low estimate precisions except for Style at High priority 
which has a relatively high precision, though not significant. 

HB: Bad Practice and Performance at Low priority, and 
Bad Practice Medium priority, are the groups whose 
precision is lower then 5%: however, only Bad Practice at 
Medium priority has a significant p-value, and we can reject 
HB0 for this group. 

V. DISCUSSION 

 
The results from the hypothesis testing presented above 

let us identify the sets of good and bad defect predictor issue 
groups. 

On the basis of these results, we built a partial ordering of 
the issue groups dividing them into three sets: good, bad and 
ambiguous. We devised the ordering by putting in the set of 
good issues the issues marked as defect predictors, in the set 
of bad issues those issues marked as false positives, and in 
the set of ambiguous issues all the others that haven’t been 
classified . The set of good predictor issues is GP={Bad 
Practice High, Correctness High}, the set of bad predictors 
is BP={Bad Practice Medium}, and the remaining issue 
groups are ambiguous. Counting the single issues belonging 
to those groups, they are just 8 out of 359 ( 2.23 % ).  

The rationale of this ranking is a new prioritization of 
warnings based on groups, that takes into account the 
probability of signaling a defect. An important practical 
application of this finding is a filtering strategy that can 
avoid to developers the information overload constituted by a 
very large number of issues: in our datasets bad predictor 
issues are the 28.5 % of the total detections in lab versions. 
Fixing issues with a low probability of being related to a 
defect is dangerous since we know from Adam’s law [1] that 
the probability of introducing a new error during a fault 
correction is always different from zero.  

 

VI.  THREATS TO VALIDITY  

 
We can identify 2 threats: an external and a construct 

threat.  
The external threat is: we have studied small student 

projects, hence the application of findings in industrial 
context is debatable.  

Construct threats is concerning the identification of 
defects. In this study, no bug database was available: we 
made the assumption that all changes were done to fix a 
defect: actually, it is possible that some changes were not 
related to real defects, but to other motivations (cleaner code, 
more readable code, and so on). Nevertheless, we don't 
expect that this kind of noise could change results and 
ranking, because usually students correct the lab versions in 
a quick and dirty way, doing as few changes as possible, for 
two reasons: 1) the home version is the last version of the 



project, actually no maintenance has to be done 
subsequently; 2) students are discouraged in doing many 
changes, because the mark suggested by PoliGrader 
decreases with the quantity of changes made (see details in 
[13]).  

 

VII.  RELATED WORK 

 
As already mentioned in section 3, temporal and spatial 

coincidence have been used by Boogerd and Moonen [6] and 
by Kim and Ernst [10]. Our research confirmed the findings 
of [6]: a reduced set of rule violations (even smaller in 
percentage, almost identical in absolute value) has impact on 
code quality. Difference with their findings is that our “bad 
issues” are less then their “bad violations”. Further, our good 
issues set is composed exclusively by high priorities issues, 
and our bad issues set exclusively by medium priority: 
default prioritization of issues seems to be effective, in 
contrast with what is found in [10] (but not in University 
context).  

Looking at other studies specifically related to FindBugs 
([3], [9] and [8]), manual checks of issues brought to high 
percentages of true positives: overall percentages declared 
are always higher than 50 %.  

On the other side, a study by Wagner et al. [14] 
demonstrated that FindBugs and PMD (another bug finding 
tool) were able to find only the 16% of defects in one 
project, and none in another one. Our study is the first 
differentiating assessment of issues precision by category 
and priority, and the first that eliminates the effect of the 
developer style since a large pool of developers developed 
the same software.  

 

VIII.  CONCLUSIONS AND FURTHER WORK 

 
The analysis of precisions demonstrated that only 2 out 

of 15 groups of issues can be considered as reliable 
predictors of actual defects, and one group of issues has a 
precision that is practically negligible. These findings and 
the adoption of the technique used may have a practical 
impact in filtering issue notifications for developers to 
reduce information overload. Future work will be devoted to: 
repeat temporal and spatial analysis with higher level of 
detail, specifying the single issues, besides categories and 
priorities, and study the possible correlation between groups 
of issues.  
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