# Kähler immersions of the disc into polydiscs. 

Antonio J. Di Scala


#### Abstract

In this short note we give an example of a non trivial, i.e. non totally geodesic, Kähler immersion of a disc into a polydisc.


In this short note we give an example of a non trivial, i.e. non totally geodesic, Kähler immersion of a disc into a polydisc. This example is a counter-example of a conjecture posed in [CU03]. The author discover this example in 2007 [LA07]. In [M09] Mok produce similar examples to the ones contained in this note but using the half-plane model of the hyperbolic disc. A complete description of this non trivial maps can be found in [Ng09] which is the Ph.D. Thesis at Hong Kong University of Mok's student Sui Chung Ng.

Let $\Delta=\left(\Delta, \omega_{\text {hyp }}\right)$ be the unit disc endowed with hyperbolic Kähler form given by the potential $N=-\log \left(1-|z|^{2}\right)$, i.e. $\omega_{\text {hyp }}:=\frac{i}{2} \partial \bar{\partial} N$. The polidisc $\Delta^{n}$ is endowed with the Kähler form $\omega_{\text {poly }}$ given by the potential $\sum_{k=1}^{n}-\log \left(1-\left|z_{k}\right|^{2}\right)$.
Let $\xi \in S^{1}:=\{z \in \mathbb{C}:|z|=1\}$ then the map $f_{j}(z)=\left(0,0, \cdots, 0, \xi z_{j}, 0, \cdots, 0\right)$ is a Kähler embedding of $\Delta$ into $\Delta^{n}$. Such embeddings or the composition of such an embedding with isometries of the disc or the polydisc are the so called trivial embeddings.
Let $z \rightarrow f(z)=\left(f_{1}(z), f_{2}(z)\right)$ be a holomorphic immersion of the disc $\Delta$ into the bidisc $\Delta \times \Delta$. Then $f$ is a Kähler map if and only if there exists $U \in U(2)$ such that:

$$
\binom{f_{1}}{f_{2}}=U\binom{z}{f_{1} f_{2}} .
$$

Let us call $\psi(z):=f_{1}(z) f_{2}(z)$. Let $U$ be the following matrix :

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \sqrt{2} f_{1}=z+\psi \\
& \sqrt{2} f_{2}=z-\psi
\end{aligned}
$$

So

$$
2 \psi=z^{2}-\psi^{2}
$$

and then

$$
\psi(z)=-1+\sqrt{1+z^{2}}
$$

Conversely, if $\psi$ is as above then we can define $f_{1}$ and $f_{2}$ by the equations:

$$
\begin{aligned}
& \sqrt{2} f_{1}=z+\psi \\
& \sqrt{2} f_{2}=z-\psi .
\end{aligned}
$$

The map $\Psi: z \hookrightarrow\left(f_{1}(z), f_{2}(z)\right) \in \mathbb{C}^{2}$ is well defined since there are no problems with the square root in the open disc $|z-1|<1$, i.e. we can take a good branch of the square root by deleting the negative axis.
The map $\Psi: z \hookrightarrow\left(f_{1}(z), f_{2}(z)\right)$ is one to one since $f_{1}(z)+f_{2}(z)=\sqrt{2} z$.
To show that $\Psi(z) \in \Delta \times \Delta$ notice that for all $z \in \Delta$ we have:

$$
0<1-|z|^{2}=\left(1-\left|f_{1}(z)\right|^{2}\right)\left(1-\left|f_{2}(z)\right|^{2}\right)<1
$$

Observe that $f_{1}(0)=f_{2}(0)=0$ so we get, by continuity reasons, that $\left(1>\left|f_{1}(z)\right|^{2}\right)$ and $\left(1>\left|f_{2}(z)\right|^{2}\right)$.
Notice that $\Psi$ is actually an embedding since $\Psi(\Delta)=\left\{\left(z_{1}, z_{2}\right): \sqrt{2}\left(z_{1}-z_{2}\right)=\right.$ $\left.2 z_{1} z_{2}\right\} \subset \Delta \times \Delta$.

Finally it is not hard to see that $\Psi$ is a non trivial Kähler embedding of $\Delta$ into $\Delta^{n}$.

## References

[LA07] Loi, A.: Private communication (e-mail May 2007).
[CU03] Clozel, L. and Ullmo, E. Correspondances modulaires et mesures invariantes. J. Reine Angew. Math. 558 (2003), 4783.
[M03] Mok, N. Local holomorphic isometric embeddings arising from correspondences in the rank-1 case, in Contemporary Trends in Algebraic Geometry and Algebraic Topology, ed. S.-S. Chern, L. Fu and R. Hain, Nankai Tracts in Mathematics, Vol.5, World Scientic, New Jersey 2002, pp.155-165.
[M09] Mok, N. Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric. IMR Preprint Series 2009, http://www.hku.hk/math/imr/, Preprint.
[Ng09] On holomorphic isometric embeddings of the unit n-ball into products of two unit m-balls. IMR Preprint Series 2009, http://www.hku.hk/math/imr/, Preprint.

