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Kahler immersions of the disc into polydiscs.

Antonio J. Di Scala

Abstract

In this short note we give an example of a non trivial, i.e. non totally
geodesic, Kahler immersion of a disc into a polydisc.

In this short note we give an example of a non trivial, i.e. non totally geodesic,
Kahler immersion of a disc into a polydisc. This example is a counter-example of a
conjecture posed in [CUO03]. The author discover this example in 2007 [LA07]. In
[M09] Mok produce similar examples to the ones contained in this note but using the
half-plane model of the hyperbolic disc. A complete description of this non trivial
maps can be found in [Ng09] which is the Ph.D. Thesis at Hong Kong University of
Mok’s student Sui Chung Ng.

Let A = (A, whyp) be the unit disc endowed with hyperbolic Kahler form given by
the potential N = —log(1— |z]?), i.e. Whyp ‘= 100N . The polidisc A" is endowed
with the Kéhler form wpy, given by the potential Y ,_, —log(1 — |z[?).

Let £ € St :={z € C: |z| =1} then the map f;(z) = (0,0, --,0,£z;,0,---,0) is
a Kéahler embedding of A into A™. Such embeddings or the composition of such
an embedding with isometries of the disc or the polydisc are the so called trivial
embeddings.

Let z — f(2) = (fi(2), f2(2)) be a holomorphic immersion of the disc A into the
bidisc A x A. Then f is a Kéhler map if and only if there exists U € U(2) such

that:
G) =v (ffﬁ) '

Let us call (2) := f1(2)fa(2). Let U be the following matrix :
)

\/§f1:2+¢>
\/§f2:z—@/}.

Then
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So
) = 22 —?
and then

Y(z) = -1+ V1422,

Conversely, if 9 is as above then we can define f; and f, by the equations :
\/§fl =z+ ¢ )
\/§ f 9 =2 — w .

The map ¥ : z — (fi1(2), f2(2)) € C? is well defined since there are no problems
with the square root in the open disc |z — 1| < 1, i.e. we can take a good branch of
the square root by deleting the negative axis.

The map VU : z < (f1(2), f2(2)) is one to one since f(2) + fo(2) = v/22.

To show that ¥(z) € A x A notice that for all z € A we have:

0<1—|2P=(1—[AEPA-1faEP) <1.

Observe that f1(0) = f»(0) = 0 so we get, by continuity reasons, that (1 > |f1(2)|?)
and (1> |f2(2)]?).

Notice that ¥ is actually an embedding since W(A) = {(21,22) : V2(21 — 20) =
22122} CAxA.

Finally it is not hard to see that W is a non trivial Kahler embedding of A into
A",
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