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Introduction

According to the opinion of these authors, the Wiener-Hopf (W-H) technique is
the most powerful method to solve field problems in presence of geometrical
discontinuities.
In particular this technique has been recently applied to angular region problems,
for example the impenetrable wedges with arbitrary aperture angle [1-5].
In general the W-H formulation of angular region problems yields generalized W­
H equations (GWHE) that are more difficult to study with respect to the classical
W-H equations (CWHE).
It is remarkable that for impenetrable wedges immersed in free space a suitable
mapping reduces the GWHE to CWHE [1,2,3]. However, this property does not
hold for penetrable wedges and more angular region problems [6].
Approximate techniques of factorizations are available and they can be applied to
GWHE and, in particular, the GWHE can be reduced to Fredholm equations of
second kind [3-6].
The aim of our work is to provide an efficient approximate evaluation of the
diffraction coefficients of a dielectric wedge starting by the WH formulation.
An advantage of this approach is constituted by its capability to formulate and
solve the more general wedge problems that involve anisotropic or bianisotropic
media.
This method seems to extend the analysis of problems where the Sommerfeld­
Malyuzhinets formulation does not exist since it is limited to media where the
Helmholtz wave equation holds.

Angular region problems

Without the sake of completeness let us consider an angular problem constituted
by four isotropic angular regions illuminated by plane wave at skew incidence {3.
The Wiener-Hopftechnique [1] for angular problems is based on the introduction
of the following Laplace transforms:

Vz+(lJ,rp) = rEz(p,rp)eJTJPdp, Ip+(lJ,rp) = rH/p,rp)eJTJPdp (1)

Vp+(lJ,rp) = rEp(p,rp)eJTJPdp, Iz+(lJ,rp) = rHz (p,rp)eJTJPdp (2)

where the subscript + indicates plus functions, i. e. functions having regular half­
planes of convergence that are upper half-planes in the 1] -plane.
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Fig. 1: four angular regions.

For region 1 we obtain the following functional equations[1-3,6]:
2 2

; ~+(1],O)-!...£...Ip+(1],O)- aD 1] I z+(1], 0) =-n ~+(-m,ra)-!...£...Ip+(-m,ra)+aD m Iz+(-m,ra) (3)
01& 01& 01& 01&

2 2

; Iz+(1],O)+~Vp+(1],O)+ aD 1] ~+(1],0) =-nlz+(-m,ra)+~Vp+(-m,ra)- a m ~+(-m,ra)
01 J1 01 J1 01 J1 01 J1

where:ao=kcosfJ, '0 =~e -a;, Im['o]~O,q=q(1J)=~';-r/ .
Using symmetry and variable substitutions we obtain similar functional equations
for the other regions. For example in region 3 the following equations hold:

1

_; ~+(-17,-1l)+~Ip+(-17,-1l)- ao 17 I z+(-17,-1l) = -n~+(-m'-Yb)+~Ip+(-m'-Yb)- ao m Iz+(-m'-Yb) (4)
0)& 0)& 0)& 0)&

-; I (-17 -1l)-~V (-17 -1l)+ ao 17 V (-17 -1l) = -n I (-m -Y )-~V (-m -Y )+ ao m V (-m -Y )z+' 0) Jl P+' 0) Jl z+' z+' b 0) Jl P+ , b 0) Jl z+ , b

However we need to notice that the quantities involved in equations (3) and (4)
depend on the constitutive parameters of the angular region (aperture angle and
material), therefore:
for region 1

q =ql = ~~'1-2-_-1]-2 , ,= 'I = ~k12 -a; , & =& l' f-l = f-l1' k =kl =OJ~

m =ml =-1Jcosra +q Isinra' n =nl =-q Icosra -1J sin ra = ~'12 - ml
2

for region 3

q =q3 = ~~'3-2-_-1]-2 , , ='3 =~k; - a; , & =& 3' f-l = f-l 3' k =k3 =OJ~& 3f-l 3

The penetrable wedge

Fig. 2 illustrates the problem of the diffraction by a plane wave at normal
incidence on a dielectric wedge having relative permittivity 8, and immersed in

the free space.
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Fig. 2: the dielectric wedge

The problem can be formulated in terms of functional equations of the kind
described in the previous section. Because of the symmetry we can rewrite the
equations only using two angular regions and therefore by using only two kinds of
constitutive parameters and functions mi , ni •

Let us consider the normal incidence (f3 = 1£ /2, a o = 0) with E-polarized

illumination, we obtain two uncoupled system of GWHE functional equations of
the following kind:

~+(17) =Xi+(-"'I)- ~l- Xj+(-"'I)
~+

Y;+ (17) = X i+(-m2 ) - ~2- X j+(-mJ
n2+

where the unknowns are related to the physical quantities (1)-(2). Notice that the
unknown are defined into three different complex planes: 1], m1, m2 • As reported

in [1,2] we can apply a special transformation to map unknowns defined in 1], mi

into a new unique complex plane 1]i' therefore we obtain CWHE from a GWHE.

However, for multiple angular regions, we need to define multiple 1]i planes [6]

(this is the main difficulty to solve in order to obtain the solution of multiple
angular region problems).

Solution

The solution of the penetrable wedge problem at normal incidence is obtained by
two uncoupled systems of two functional equations whose unknown are defined

into two different complex planes 1]1,1]2:

- - ;1- -
~+ (1]1) = X i+ (1]1)--Xj + (1]1)

~+

- - ;2- -
Y;+ (1]2) = X i+(1]2)--Xj +(1]2)

n2+



The solution of equations (6) can be obtained using the general procedure
described in [3-6], the Fredholm technique, that reduce the factorization of
CWHE to the solution of Fredholm integral equations of second kind.
However the penetrable wedge problem, as the more general angular region

problems, involves more than one complex plane 1]i. The unknowns are defined

into two complex planes therefore we need to relate them. This can be
accomplished using the Cauchy formula [6], for instance:

X. (m ) =_I_rtXj+(~)dm (7)
1+ 2 2· LJJ 11rJ yl ml -m2

The use of the angular plane wand WI and of special warping improve the
convergence of the numerical discretization of the equations (6)-(7).

Further details on the procedure to get the solution and numerical results in terms
of diffraction coefficients of a dielectric wedge will be discussed and presented at
the conference.
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