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Cumulative distribution of the stretching and twisting of vortical structures in
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Using a Navier-Stokes isotropic turbulent field numerically simulated in the box with a discretiza-
tion of 10243 (Biferale L. et al. Physics of Fluids, 17(2), 021701/1-4 (2005)), we show that there
is zero probability of having a stretching-twisting larger than twice the local enstrophy. It can be
observed that, in the unfiltered isotropic field, the probability of the ratio (|ω · ∇U|/|ω|2) being
higher than a given threshold is higher than that of the fields where the large scales were filtered out.
At the same time, it is lower than that of the fields were the inertial and small scales were filtered
out. This is basically due to the suppression of compact structures in the differently filtered ranges.
The partial removal of the background of filaments and sheets does not have a first order effect on
these statistics. The stretching and twisting components are nonskewed but show high kurtosis,
4.6 and 5.28, respectively. These results agree with some aspects observed in recent experimental
analyses of the properties of the isotropic fluctuation vorticity field and of the stretching and tilting
of turbulent material lines.

PACS numbers: 47.27.Ak, 47.27.eb, 47.27.Gs, 47.32.C-

I. INTRODUCTION

The formation of spatial and temporal internal scales
can in part be associated to the stretching and twisting of
vortical structures. Many aspects of the behavior of tur-
bulent fields have been associated to this phenomenon:
the onset of instability, vorticity intensification or damp-
ing, the three-dimensionalization of the flow field [1–3].
In the standard picture of turbulence, the energy cascade
to smaller scales is interpreted in terms of the stretching
of vortices due to the interaction with similar eddy sizes
[4]. Although the important physical role of these in-
ertial phenomena is recognized, the literature does not
often report statistical information on quantities such as
the magnitude or the components of ω · ∇U. Statistics
concerning other gradient quantities, such as the strain
rate or the rate-of-rotation tensors, are more common.
Statistics on the skewness and flatness factors of the ve-
locity derivative have often been considered over the last
20 years in a number of laboratory and numerical stud-
ies that show how these quantities increase monotonically
the with Reynolds number, see e.g. [5] and the review by
Sreenivasan and Antonia (1997)[6]. However, a few ex-
amples can also be cited as far as direct results concerning
stretching-twisting statistics are concerned. In the case
of turbulent wall flows, laboratory measurements of both
the mean and the r.m.s. of fluctuations of the stretching
components across the two-dimensional boundary layer
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have been reported by Andreapoulos and Honkan (2001)
[7]. In this study, the normalized r.m.s values of the
stretching components are very significant throughout
the boundary layer and reach values that are one order
of magnitude larger than the mean span-wise component
(the only significant mean component, however and only
in the near wall region). The observed values for the
r.m.s. of the stretching range from 0.04, close to the
wall, to about 0.004 in the outer part. Other laboratory
statistical information on the stretching of field lines can
be found in [8, 9]. In the first study, probability den-
sity functions of the logarithm of the local stretching in
N cycles were obtained for several two-dimensional time-
periodic confined flows exhibiting chaotic advection. The
stretching fields were observed to be highly correlated in
space when N is large, and the probability distributions
were observed to be similar for different flows. In the
second study, the stretching and tilting of material lines
in quasihomogeneus turbulence (Reλ = 50) was consid-
ered. In particular, the tensor of the velocity deriva-
tives along particle trajectories was measured by means
of 3D particle tracking velocimetry. It was observed that
a statistically high level of vorticity reduces the stretch-
ing rate and alters the orientation of the material lines
with regard to the extensional eigenvector of the rate of
the strain tensor. On the contrary, when the vorticity
magnitude is low, the strain rate contributes to a great
extent to both tilting and stretching. Using data from
highly resolved direct numerical simulations, Hamling-
ton et al. [10] have given a direct assessment of vortic-
ity alignment with the most extensional eigenvector of
the nonlocal strain rate together with some evidence of
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the tendency toward a smaller vorticity stretching ratio
(backgroung to local) for a large vorticity magnitude in
incompressible homogeneous turbulence.

In the present work, for the case of isotropic turbu-
lence (Reλ = 280, [11]), we consider statistics related
to the intensity of the stretching-tilting of vortical fila-
ments, sheets and blobs with reference to their vorticity
magnitude.

II. THE NORMALIZED
STRETCHING-TWISTING FUNCTION

With reference to the phenomena described by the in-
ertial nonlinear nonconvective part of the vorticity trans-
port equation, let us introduce a local measure of the
process of three-dimensional inner scales formation

f(x, t) =
|(ω − 〈ω〉) · ∇(U − 〈U〉)|

|(ω − 〈ω〉)|2 (x) (1)

where U = 〈U〉 + u is the velocity field, ω = ∇ × U is
the vorticity vector and the brackets 〈·〉 represent statis-
tically averaged quantities. According to this definition,
f depends on the local instantaneous velocity and vor-
ticity fields. Since we only wish to refer to the action of
the turbulent fluctuation field, the contributions of the
mean velocity and vorticity flow have been subtracted.
In isotropic turbulence, 〈U〉 and 〈ω〉 are zero, thus defi-
nition (1) reduces to

f(x) =
|ω · ∇U|

|ω|2 (x). (2)

The numerator, |ω · ∇U|, the so called stretching-
twisting (or tilting) term of the vorticity equation, is
zero in two-dimensional flows. In 3 D fields, it is respon-
sible for the transfer of the kinetic energy from larger
to smaller scales (positive or extensional stretching) and
viceversa (negative or compressional stretching) and for
the three-dimensionalization of the vorticity field. The
denominator in (2) is the magnitude of the vorticity,
which, leaving aside a factor 1/2, is usually referred to
as enstrophy, the only invariant of the rate-of-rotation
tensor different from zero.

Function f was evaluated over a fully resolved homo-
geneous isotropic incompressible steady in the mean tur-
bulence in order to look for the typical range of values of
f(x) and to relate them to the behavior of the various tur-
bulence scales present in an isotropic field. The database
consists of 10243 resolution grid point Direct Numerical
Simulation (DNS) of an isotropic Navier-Stokes forced
field, at Reynolds Reλ = 280 [11]. Each instant in the
simulation is statistically equivalent, and provides a sta-
tistical set of a little more than 109 elements. We con-
sidered the statistics that were obtained averaging over
three time instants. The field has been slightly modified
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FIG. 1: Compensated 3D energy spectrum

in order to filter out the instantaneous effects of the forc-
ing, in other words, a turbulent kinetic energy inhomo-
geneity of about 20% (in the spatial coordinate system).
As this bias was generated by the energy supply at the
large scale range, the two largest scales have been filtered
out. The resolved part of the energy spectrum extends
up to k ∼ 330. The inertial range extends from k ∼ 10 to
k ∼ 70, see the compensated version of the 3D spectrum
in figure 1. The higher wave-numbers, which are affected
by the aliasing error, are not shown.

The range of values attained by f(x) is wide. Val-
ues as high as a few hundreds were observed at a few
spatial points. In order to read the typical values of
f(x), we study its survival function. By denoting F (s) =
P (f(x) ≤ s) the cumulative distribution function (cdf) of
f(x), the survival function is defined as the complement
to 1 of the cdf,

S(s) = P (f(x) > s) = 1 − F (s). (3)

For each threshold s, S(s) describes the probability that
f(x) takes greater values than s.

It has been found that, when f(x) is evaluated on the
reference turbulent field, the probability that f(x) > 2 is
almost zero, see figure 2. Thus, f(x) = 2 can be consid-
ered the maximum statistical value that f(x) can reach
when the turbulence is simulated with a fine grain.

III. PROPERTIES OF THE SURVIVAL
FUNCTION OF THE NORMALIZED

STRETCHING-TWISTING: ANALYSIS ON
FILTERED FIELDS

The application of filters to the velocity field, by means
of suitable convolutions, in principle allows the behavior
of the function f(x) to be studied in relation to the dif-
ferent scale ranges of the turbulence. This analysis is
carried out using two filters, a high pass and a band pass
filter.

The first filter is a cut-off filter, which we refer to as
cross filter and which allows the contribution of the struc-
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FIG. 2: Survival probability of the normalized stretching-
twisting function in a fully resolved isotropic 3D turbulent
field (P (f(x) ≥ s). Unfiltered velocity field.

FIG. 3: Scheme of the filter CROSS that can be used as i) a
high-pass filter: the wave-numbers under a certain threshold
are partially removed, see (4) (region in blue in the k1, k2

wavenumber plane), ii) both a band-pass and a low-pass filter:
the wave-numbers inside a range, or above a certain threshold,
are cut, see (5-7) (region in red).

tures that are characterized by at least one large dimen-
sion to be removed. From the Fourier point of view,
this means that the structures whose wave-vector has at
least one small component are filtered out. See, in fig-
ure 3, a graphical scheme of the filtering in the wave
number plane k1, k2 (part in blue). We are thus using
a sort of high-pass filter, which affects all wave-numbers
that, along any possible direction, have at least one com-
ponent under a certain threshold. Given the threshold
kMAX , the filter reduces the contribution of the modes
with wave number components

k1 < kMAX or k2 < kMAX or k3 < kMAX .

The representation of this high-pass filter, ghp, can be
given by a function of the kind [12]
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FIG. 4: Survival probability of the normalized stretching-
twisting function in a high pass filtered isotropic turbulent
field; high-pass filtering

ghp(k) =
∏

i

φ(ki), φ(ki) =
1

1 + e−(ki−kMAX)
(4)

Since function ghp filters any wavenumber that has at
least one component lower than the threshold kMAX , it
reduces the kinetic energy of the filamentous (one compo-
nent lower than kMAX), layered (two components lower
than kMAX) and blobby (three components lower than
kMAX) structures. This filter is efficient in reducing the
integral scale of the turbulence [12].

By varying the value of the threshold, kMAX , it is
possible to consider different scale ranges. The ranges
0 − 10, 0 − 20, 0 − 40 are compared in fig.4. The first
filtering affects the energy-containing range, while the
other two also include a part of the inertial range, see
figure 1. The plots in this figure have coherent behav-
ior. The survival function S for the 0 − 10 filtering is
slightly below the values of the distribution of the unfil-
tered turbulence. This trend is confirmed by the other
two filterings, and the reduction grows as the threshold
kMAX increases. The high-pass filter has the effect of
decreasing the statistical values taken by f(x) in the do-
main. The wider the filtered range, the higher the effect
on f .

It is possible to say that when we reduce the weight
of the large-scale structures (layers, filaments or blobs),
the local stretching-twisting process undergoes a general
decrease with respect to the vorticity intensity. On av-
erage, the values of f(x) go down; and the wider the
range affected, the lower the probability value becomes.
This suggests that the large scales contribute more to
the stretching-twisting (the numerator of f) than to the
fluctuation vorticity magnitude (the denominator of f).
It should be noted that, leaving aside the issue related
to the alignement of the vorticity vector with the eigen-
vectors of the strain rate tensor, a point that has not
been considered in the present study, this trend is con-
sistent with the results in [9 - 10]. This consistency also
includes the results relevant to the fluctuation stretching
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FIG. 5: Probability of the normalized stretching-twisting
function in a band pass filtered (in the inertial range) isotropic
turbulent field of being higher than a threshold s. Control
function 1 − F (x), band pass filtering.

and vorticity magnitude behavior in the boundary layer
turbulence, see fig.s 6 and 9 in [7]. For the large range
0 − 40, a decrease of 30% in the cumulative probability
is observed for a stretching-twisting of about one half of
the local vorticity. The decrease goes up to 80% for a
stretching-twisting of the same magnitude of the vortic-
ity, see figure 4.

Let us now consider the behavior of f(x) when the in-
ertial and dissipative ranges are affected by the filtering,
namely a band pass filtering. In case, the band width
can be extended to obtain a low pass filtering.

This filter can be obtained by reducing the contribu-
tion of a variable band (see fig.3, the part in red)

kMIN < k1 < kMAX or kMIN < k2 < kMAX or
kMIN < k3 < kMAX .

This yields the filter function gbp

gbp(k) =
∏

i

φ(ki; kMIN , kMAX), (5)

φ(ki; k0) =
1

1 + e−(ki−k0)
, (6)

φ(ki; kMIN , kMAX) = [1 − φ(ki; kMIN )] + φ(ki; kMAX)(7)

The effects of the application of this band-pass filter on
the probability P (f(x) ≥ s) are shown in fig.5.

Let us now consider the inertial range in an extended
way, which includes the − 5

3 range plus all the scales
which are not yet dissipative. The different bands are
10 − 40, large scale inertial filtering, 40 − 70 interme-
diate scale inertial filtering, 70 − 100 small scale inertial
filtering, 100−130 near dissipative, 30−150 intermediate-
inertial/small scale filtering, 150− 330 dissipative. Once
again all the filtered ranges induce the same effects: for
s < 1/2, a slight increase in the survival probability; For
small values of s, the most effective filtering (i.e. the
ones which percentually produce the strongest increase)
are the 10 − 40, 40 − 70 ranges, while, for higher statis-

tically relevant values, 0.5 < s < 2, the most effective
result is obtained filtering over the whole inertial range,
30 < k < 150. An increase of about 60% is observed for
s = 1 and of more than 100% for s = 1.5

This highlights the fact that the structures of the iner-
tial range contribute more to the intensity of the vorticity
field than to stretching and twisting. The general trend
is almost inverted with respect to the case of the high
pass filtered turbulence (compare the 0-40 and 10-40 re-
sults in figures 4 and 5, respectively) and this can be
confirmed, with slight differences, as long as we enlarge
the amplitude of the filtering band to get closer to the
dissipative range.

Finally, moving toward the dissipative range (150 <
k < 330), the band pass filter becomes a sort of low-pass
filter. By filtering these wave numbers, the obtained ef-
fect is minimum, although we have removed the contri-
bution of more or less the highest 200 wave-numbers (see
figure.5).

At this point, let us consider the dual nature of the fil-
aments and sheets, as regards their inclusion in the cat-
egories of the small and large scales. A filament which
is filtered out by the filter ghp because it has a small
wave number (the axial wave number component), will
have two large wave number components (the ones nor-
mal to the axis). Because of these wave components,
it will also be filtered out by the filter gbp. A similar
situation also hold for the sheets. Thus filaments and
sheets are always filtered. The filtering, either the high
pass, low pass or band-pass one, always removes the same
structures. What makes the difference are the compact
structures (the blobs), which non ambiguously belong ei-
ther to the large scale range or to the intermediate-small
scale range. The different behavior shown in fig.s 4 and
5 is therefore mainly due to the blobs contributions, and,
since the variation in the cumulative distributions is op-
posite and almost of the same magnitude, it is possible
to deduce that the partial removal of the background fil-
aments and sheets, which is always done regardless of
the filter typology (high pass, band pass, low pass,..),
is neutral as regards the statistics. In other words, the
filament and sheet partial removal does not produce a
statistical modification of the stretching intensity values
with respect to the vorticity magnitude.

IV. FURTHER CONSIDERATIONS

Up to now, we have considered the influence that dif-
ferent coherent structures have on the statistical prop-
erties of the scalar function f(u) = |ω·∇u|

|ω|2 . However,
stretching-twisting is a phenomenon of an intrinsic vec-
torial nature. We have thus also considered the statis-
tical properties of ω·∇u

|ω|2 . The pdf of the components
(which are all alike, since the field is statistically homo-
geneous and isotropic) of the vector ω·∇u

|ω|2 is shown in
figure 6. Symmetry with the vertical axis is expected be-
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FIG. 7: Distribution of the stretching and twisting compo-
nents

cause of isotropy; the skewness is in fact approximately
10−2, which is not meaningfully far from zero. However,
the distribution cannot be approximated with a Gaussian
function. In fact, the actual kurtosis is approximately 55,
which is very far from the Gaussian value of 3.

Finally, we show the distribution for the unfiltered tur-
bulence of the two components involved in the basic scale
differentiation process: – the stretching (positive, exten-
sional, scale reducing, or the negative, compressional,
scale enlarging one ) and – the three-dimensionalization
(vortex twisting). The stretching terms can be isolated
in the vector

(ωx
∂u

∂x
, ωy

∂u

∂y
, ωz

∂u

∂z
) (8)

while the twisting phenomenon is governed by the term

(ωy
∂v

∂x
+ ωz

∂w

∂x
, ωx

∂u

∂y
+ ωz

∂w

∂y
, ωx

∂u

∂z
+ ωy

∂v

∂z
) (9)

where, as usual, (u, v, w) is the velocity field and ω =
(ωx, ωy, ωz) is the vorticity vector in a Cartesian refer-
ence system. The pdf of these quantities are shown in
figure 7. We have only shown one component of each
vector (the z-component), which here is not normalized
by |ω|2. The other two are analogous since the turbu-
lence is isotropic. The skewness is negligible and the

kurtosis is equal to 4.6 and 5.28, respectively. It is inter-
esting to observe that the mean value of the stretching
is almost twice as probable as that of the twisting and
that the kurtosis of the twisting is higher than that of
the stretching, which indicates a higher intermittency of
the three-dimensionalization process.

V. CONCLUSIONS

In short, we have collected a set of statistical informa-
tion about the stretching and twisting of vortical struc-
tures, f(x) = |ω·∇U|

|ω|2 (x), in isotropic turbulence. A first
result is that there is zero probability of having a larger
stretching/twisting of intensity than the double of the
square of the vorticity magnitude. Then, if compact
structures (blobs) in the inertial range are filtered out,
it can be seen that the probability of having higher f
than a given threshold s increases by 20% at s = 0.5,
and by 60-70% at s = 1.0. If larger blobs are instead fil-
tered, an opposite situation occurs. The unfiltered field is
thus a separatrix for the cumulative probability function.
This behavior - high fluctuation vorticity magnitude →
low stretching, and viceversa - agrees with general as-
pects highlighted by different laboratory and numerical
analysis [8 - 10], also in near wall turbulent flow configu-
rations [7]. The present observations must be associated
to the non discriminating effect of filtering on filaments
and sheets, which is due to their specific nature that can-
not be reconciled inside either a category of small or large
scales. It has also been shown that a high intermittency is
associated to f , whose kurtosis is as high as 55, and that
the non normalized twisting component is more inter-
mittent than the stretching component. In other words,
the tilting of field lines is subject to more intense fluc-
tuations than the process of change of scale (which is
relevant to both the positive (elongation) and negative
(compression) stretching. The three-dimensionalization
process is therefore less smooth than the nonlinear scale
variation.

Lastly, it is interesting to observe that box filtering
small scales modifies the stretching statistics to a great
extent. A field filtered in such a way shows a finite
probability of having a larger stretching/twisting larger
than twice the enstrophy [13, 14]. In the context of the
Large Eddy Simulation methodology, where this filtering
is commonly used, it is possible to deduce that, when a
fluctuating field shows such a feature, the field is unre-
solved. As a consequence, it is possible to build a cri-
terion that locates the regions of the field where the in-
clusion of a subgrid term in the governing equations is
advisable.
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