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Abstract:
This workshop is focussed on recent developments in the field of nonlinear noise models and design techniques for low-noise 
microwave circuits which are intrinsically subject to large-signal operating conditions. In fact, many of the fundamental building blocks 
for the development of high-performance communication systems, like low-phase-noise oscillators, mixers or interference-robust low-
noise amplifiers, are subject to important noise generation phenomena which are strongly conditioned by the presence of large-
amplitude signals. In such cases, normally characterized by periodic or almost periodic non-linear operation, noise modelling in
electron devices becomes much more complex, in comparison with the linear steady-state case, since cyclostationary, instead of 
conventional, stationary equivalent noise sources must be considered in the device models or low noise circuit design.

In this workshop, after outlining the basics of noise generation in semiconductors and of numerical physics-based noise models, non
linear, compact HBT and FET non-linear noise models will be described with examples of application to noise analysis in non linear 
microwave circuits. Design approaches for low-noise oscillators, mixers and amplifiers will also be presented and discussed.
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Physics-Based Nonlinear 
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Outline

• Motivation
• Overview on numerical noise modelling

– Small-signal (stationary)
– Forced large-signal (cyclostationary)
– Autonomous large signal

• Modeling low frequency noise
• Evaluating the Large Signal working point
• Case studies
• Conclusions
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Motivation

• Low-noise circuits important in RF & microwave 
telecommunication systems
– Linear circuits (e.g., low noise amplifiers)
– “Nonlinear” circuits (e.g., mixers, frequency 

multipliers, oscillators)
• Physics-based (PB) simulation is a powerful tool 

for:
– TCAD Device design and optimization
– Development of compact, circuit-oriented model with 

sound physical basis
– Understanding exotic noise mechanisms (1/f?)
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A few basics on physics-
based noise modelling - I

• Microscopic (carrier velocity or population)
fluctuations are a small perturbation of 
– DC steady-state � Small-signal, stationary noise
– Large-signal (quasi) - periodic steady state � LS 

(quasi)-cyclostationary noise
– LS steady-state of autonomous system � LS 

(oscillator) stationary (?) noise
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A few basics on physics-
based noise modelling - II

• Terminal (v,i) fluctuations are evaluated 
through a (linear) Green’s function 
approach from (spatially uncorrelated) 
microscopic (charge or current density) 
fluctuations distribuited in the device 
volume
– SS conditions � Superposition + Filtering of 

microscopic noise source spectra
– LS conditions �Superposition + Filtering & 

frequency conversion
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A few basics on physics-
based noise modelling - III

• The Green’s function (� “impedance field”) 
can be derived through SS (small-signal) or 
SSLS (ss with respect to LS) linearization 
from any PDE based physical model:
– Drift-diffusion (DD)
– Energy balance
– Full hydrodynamic, N moments from BE
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Simulation steps

1. Evaluate the noiseless working point
• Noise sources are switched off
• Solution is (�0, n0,p0,nt,k0)
• The working point depends on the applied generators �

might depend on time and require mixed-mode 
simulation � CPU-intensive for the large-signal case

2. Add (model) the microscopic noise sources
• The working point is perturbed by fluctuations ��

3. Solve the (linear) perturbed system to 
evaluate the terminal electrical fluctuations 
(noise generators) through the Green’s 
function approach
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Example: DD model, SS noise 
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Propagating fluctuations to 
terminals
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SS noise power spectra

• Correlation matrix of open-circuit voltage 
noise fluctuations:                          
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LS cyclostationary noise - I

• Analog applications often require periodic or 
quasi-periodic LS operation

• In LS operation microscopic noise sources 
are amplitude modulated by the periodic LS 
steady-state leading to � cyclostationary 
microscopic sources with correlated
frequency components

• Those are described by the Sideband 
Correlation Matrix (SCM) formalism
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Cyclostationary noise 
formalism

• 2nd order statistical properties through the 
sideband correlation matrix (SCM):

� �� � � � � �, ,y y k lk l
y y � � 
 � �S � �

Correlated sidebands 
of noise process y

�0-�0 �2�0-2�0

� is called 
sideband 
frequency

�k=k�0 LS harmonics

�k=�k+�+ sidebands

• Only the spectral components in each sideband
having the same distance from the LS 
harmonics, are correlated
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LS cyclostationary noise - II

• Green’s functions � conversion Green’s 
functions, implying noise frequency 
conversion into LS spectrum sidebands

• After propagation & conversion noise around 
each harmonic is due to
– microscopic noise source at that sideband
– source conversion from other sidebands

uro

LS extension of 
Green’s function 

approach Microscopic
noise sources

Terminal noise

r
Electron device

Green’s functions
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LS cyclostationary noise - III

SCM of modulated
microscopic fluctuations

Conversion 
Green’s functions

�scopic
noise 
sources

“Sideband” terminal noise

Large-signal
external 
(quasi) 
periodic
V or I
generators 

Modulation 
(local)

Cyclostationary
microscopic 

noise sources
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Noise in autonomous 
systems

• Oscillator noise � open research issue and 
object of debate even at circuit and system 
level

• A. Demir’s approach (system level) 
accounting both for coloured and white 
noise sources � viable way for extension to 
device level

• Work by group of Seoul National University
(white diffusion noise sources)
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Numerical implementation 

• Through standard (e.g. finite box –
Scharfetter-Gummel) discretization the 
Green’s function is derived from a linear 
system (� SS or SSLS)

• Efficient evaluation of the Green’s functions 
at device terminals through adjoint and 
generalized adjoint techniques

• � Bottleneck: LS (quasi) periodic solution 
through Harmonic Balance
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Low frequency noise 
modelling

• Low-frequency (coloured, 1/f or Lorentzian)
noise important in many analog applications 
(mixers, multipliers, oscillators…) where 
noise frequency conversion takes place

• Low-frequency noise � superposition of 
bulk, surface or interface GR noise

• GR trap-assisted noise � theory developed 
by van Vliet in 1960 � trap level rate 
equations added to DD model
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Model + traps: bipolar drift-
diffusion

• Nt traps included
• Device mesh: Ni

internal nodes and 
Nx external nodes 
on metallic 
contacts

• Device contacts:
Nc+1, one 
grounded
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Trap level transition rates

• Nt (local) trap rate equations �SRH model
• Noninteracting traps considered; 

superposition � 1/f spectrum
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SS - GR local noise source
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LS - GR local noise 
source SCM

• In LS conditions the white microscopic RG 
noise sources are (quasi) periodically 
modulated by the working point

• Noise source SCM, e.g.:

� � � �, c 0, c0,,
2

n n k l m k l ml m
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 K

(l-m)-th Fourier component 
of transition rate
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Solving the PB model in LS: 
the embedding circuit

• Represented, in its simplest form, by a 
memory relationship between vc, ic and the 
applied generators s(t)
– For periodic excitation, s(t+T)=s(t)
– For autonomous circuit, s(t)=0
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Solving the PB model in LS: 
discretized model & solution

• (Space) discretized PB model + embedding 
circuit � differential algebraic equation (DAE) 

� �� �eq t i x c3 2N N N N N
   System size:

For a 3-terminal device with 2000 mesh nodes
and 3 traps Neq=12,004!

• Direct computation of the steady-state response 
• Frequency-domain: Harmonic Balance (HB)
• Time-domain: shooting method
• Autonomous case? 
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Case studies

• 2D n+p diode 
– motivation: low-frequency noise compact 

modelling usually based on amplitude modulation 
of stationary SS noise generators � is this 
generally correct / accurate?

• GaAs MESFET and AlGaAs/GaAs HEMT 
Mixer
– 2D LS mixed-mode noise simulation
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2D n+p diode

• n+p junction diode � 1 bulk and 3 surface traps

Surface traps: 
    Nt=1.67$1016 cm-3

    Nt,surf=3.34$1011 cm-2

    energy level: 0.26 eV below Ec
    Trap 1: cn=cp=5.7$10-14 cm3/s
    Trap 2: cn=cp=5.7$10-15 cm3/s
    Trap 3: cn=cp=5.7$10-16 cm3/s

n+ 1017 cm-3

p 1016 cm-3

5
�m

30
�m

2 �m 3 �m

Surface traps area,
0.2 �m thick

Anode

Cathode Bulk trap: 
    Nt=5$1012 cm-3

    cn=cp=5.7$10-13 cm3/s
    energy level: 0.56 eV below Ec

Large-signal simulation:
    6 harmonics + DC
    working point: 0.6 V DC 
            + 50 mV tone @ 5 MHz

x

y
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Stationary GR noise 
spectrum
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Cyclostationary GR noise 
spectrum (absolute freq.)

100 101 102 103 104 105 106 107

Absolute frequency, Hz
108

10-30

10-29

10-28

10-27

10-26

10-25

10-24

10-23

G
R

 to
ta

l n
oi

se
 c

ur
re

nt
 S

C
M

 
di

ag
on

al
 e

le
m

en
ts

, A
2  /

 H
z

Diagonal SCM
elements only

WORKSHOP AND SHORT COURSES

European Microwave Week, Rome, 28th Sept. – 2cd Oct. 2009

Cyclostationary GR noise 
spectrum (sideband freq.)

(0,0)

100 101 102 103 104 105 106 107

Sideband frequency, Hz

10-30

10-29

10-28

10-27

10-26

10-25

10-24

10-23

G
R

 to
ta

l n
oi

se
 c

ur
re

nt
 S

C
M

 
di

ag
on

al
 e

le
m

en
ts

, A
2  /

 H
z

Symbols: stationary GR noise
                spectrum @ 0.62 V bias

(-1,-1)
(+1,+1)

(-2,-2)
(+2,+2)

(-3,-3)(+3,+3)

Diagonal SCM
elements only



WORKSHOP AND SHORT COURSES

European Microwave Week, Rome, 28th Sept. – 2cd Oct. 2009

Remarks

• The SS 1/f like behaviour is preserved in the 
(0,0) sideband

• However, conversion to upper sidebands 
acts differently for bulk and surface traps

• Therefore, noise in upper sidebands is 
markedly different from modulated SS noise 
� which would have the same 1/f like 
behaviour for all sidebands

• Impact on compact modelling! 
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Mixer circuit

• Downconversion mixer, fLO=1 GHz, fRF=1.001 GHz
• Device: 0.3 �m gate HEMT, 100 �m gate periphery
• 1300 nodes, 4 harmonics + DC
• Diffusion noise only
• Noiseless LO

VDD

voutRRF

RLO

fRF

fLO

RF in

LO in Shunt
f%fRF,fLO

C R L

C=6.67 nF
R=1.5 k�
L=3.8 �H
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Mixer working point
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Load noise voltage around IF
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Intrinsic noise figure vs. RF 
source resistance
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Conclusions

• Numerical noise simulation has (hopefully) 
reached maturity

• Progress made in understanding low-frequency 
noise (�1/f) and its frequency conversion (also �
compact modelling) 

• Encouraging advances in oscillator PB modelling
• LS noise simulation requires more efficient WP 

solvers (time domain?)
• General strategy for LS compact modelling still 

an open problem – but this is another story! 
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